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Abstract: Algorithmic improvements to a high-order space marching method enabling an efficient
strategy for sonic boom propagation by coupling near-field Computational Fluid Dynamics (CFD)
solutions to an efficient space marching solver are described. The space marching solver is based
on a high-order accurate finite-difference discretization of the 3D Euler equations on a specially
designed curvilinear grid to enable a single sweep space marching solution. The improvements to
the existing space marching method [1] include enhancements to the automatically generated grid,
elliptic hole cutting, and generalization of the coupling to both structured and unstructured grid
CFD solvers. The coupled approach is shown to improve efficiency and accuracy by reducing the
necessary domain size of the CFD grid and generating mid-field solutions from coarse CFD grids
equivalent to those obtained using fine grid CFD. This is demonstrated using test cases from the
AIAA Sonic Boom Prediction Workshops and four different CFD solvers.
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1 Introduction
The National Aeronautics and Space Administration (NASA) in collaboration with industry partners is
currently developing the X-59, a supersonic aircraft which is shaped to reduce the loudness of the sonic
boom. It was established in Housman et. al. [1] that a three-step procedure consisting of near-field CFD,
high-order space marching, and far-field acoustic propagation resulted in an efficient and accurate method for
ground level noise predictions using approximately half the computational resources as the conventional two-
step procedure. Moreover, the efficiency gain of utilizing the space marching method facilitated the study of
extending the radial coupling location with the far-field acoustic propagation code. It was demonstrated that
a minimum of four body lengths was necessary to include all relevant three-dimensional azimuthal velocity
effects on the ground level noise prediction. In addition, Duensing et. al. [2] showed that the radial extent
of the CFD domain size could be significantly reduced to approximately half a body length with no loss of
accuracy in ground level noise prediction when coupled to the high-order space marching solver.

Two distinct approaches have been reported in the literature for propagating the nonlinear pressure waves
from the near-field to a distance appropriate for far-field acoustic propagation. The first approach utilizes
a multi-pole matching procedure [3, 4, 5, 6] based on the expansion derived by George [7]. This method
relies on projecting the near-field CFD solution onto a sequence of multi-pole distributions representing the
Whitham F-function [8]. Then at each azimuth, the far-field F-function representation is used as input into
the far-field propagation code. The success of this approach not only relies on the accuracy of the multi-pole
expansion, but also on the procedure which projects the near-field CFD solution onto the multi-pole basis.
The second method utilizes the Euler equations (or reduced forms) directly, including the full-potential
equation [9, 10], or a space marching approach [11, 12, 13]. It is the space marching method that is used in
the present work.
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Space marching is a numerical technique applied to the Euler or Parabolized Navier-Stokes equations
developed in the 1970’s [14, 15, 16] as an efficient solution procedure for three-dimensional supersonic flows.
By marching, either explicitly or implicitly, in the streamwise direction, the three-dimensional problem is
reduced to an unsteady-like two-dimensional one with significant savings in both storage and runtime. In the
1980’s, the method was extended to flows with subsonic pockets [17], equilibrium air computations around
hypersonic vehicles [18], and upwind total variation diminishing (TVD) algorithms [19]. As high-performance
computing resources became more widely available and distributed memory machines became affordable,
time-marching methods became more attractive since a dominant flow direction is not necessary for steady-
state convergence. Nevertheless, some groups have continued to mature space marching methods [20, 21, 22,
23] because of their fast convergence properties and computational efficiency for predominantly supersonic
flow-fields.

In this work, algorithmic improvements to the high-order space marching method, described in Hous-
man et. al. [1], to enable accurate and efficient sonic boom propagation by coupling to either structured
or unstructured CFD near-field solutions are described. First, the computational methodology is provided
including the governing equations, automated Mach-cone aligned space marching grid generation and high-
order numerical discretization along with implicit solution procedure. The automatically generated grid is
enhanced to retain a valid space marching mesh as the local Mach number approaches unity and an elliptic
hole cutting procedure is introduced that allows coupling with the CFD solution closer to the aircraft, further
reducing the accuracy requirements of the CFD. Next, a series of results are presented demonstrating the use
of the space marching solver coupled with different near-field CFD solutions. A generalization of the coupling
code allowing the space marching solver to couple with either structured or unstructured grid CFD solutions
will be demonstrated using test cases from the AIAA Sonic Boom Prediction Workshops. Unstructured grid
solutions provided to the workshop by USM3D and HALO3D, along with structured overset grid solutions
provided by LAVA are utilized. Finally, a local error analysis procedure following Anderson et. al. [24] is
used to assess uncertainty in the space marching grid resolution for a select case from the workshop.

2 Computational Methodology
Nonlinear wave propagation from low-boom supersonic aircraft requires accurate and efficient numerical
methods which fit well within the context of space marching methods. The high-order accurate space
marching algorithm described in this work was developed within the Launch, Ascent, and Vehicle Aerody-
namics (LAVA) framework. The space marching method utilizes similar high-order finite-difference methods
and overset grid interpolation routines as those used in the curvilinear CFD solver in LAVA [25]. A diagram
of the three-step procedure [1]: 1.) surface to near-field CFD, 2.) near-field to mid-field space marching,
3.) mid-field to ground far-field acoustic propagation is shown in Figure 1(a) along with an example of the
space marching solution illustrating the elliptical hole interface with the CFD near-field in Figure 1(b).

To begin, the governing equations in a general curvilinear coordinate system are presented. Next, the
automated Mach-cone aligned curvilinear grid generation method is described along with elliptic hole cutting
procedure. Last, the numerical discretization and implicit space marching solution approach is outlined.

2.1 Governing Equations
The equations governing the evolution of the near-field supersonic flow to the mid-field are the steady-state
Euler equations of gas dynamics. Definition of the space marching flow domain, near-field to mid-field, starts
with an elliptical region around the aircraft with major axis of approximately 0.5 to 1.5 span and minor
axis chosen close to the fuselage extent. The ellipse extends to a radial distance of approximately 10 body
lengths from the aircraft. This can be extended as far as local atmospheric effects, such as hydrostatic balance
and thermal stratification, are negligible. The steady Euler equations are written for a general curvilinear
coordinate system in strong conservation law form [26] as,

∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ
= 0, (1)
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where

Ê =


ρÛ

ρÛu+ pξ̂x
ρÛv + pξ̂y
ρÛw + pξ̂z
ρÛH

 , F̂ =


ρV̂

ρV̂ u+ pη̂x
ρV̂ v + pη̂y
ρV̂ w + pη̂z
ρV̂ H

 , Ĝ =


ρŴ

ρŴu+ pζ̂x
ρŴv + pζ̂y
ρŴw + pζ̂z
ρŴH

 . (2)

Standard notation is used where ρ is the density, p the pressure, (u, v, w) the Cartesian velocity components,
and H = h + 1

2

(
u2 + v2 + w2

)
is the total enthalpy. The contravariant velocities in the (ξ, η, ζ) coordinate

directions are denoted

Û = uξ̂x + vξ̂y + wξ̂z, V̂ = uη̂x + vη̂y + wη̂z, Ŵ = uζ̂x + vζ̂y + wζ̂z. (3)

Note the metric relations have been scaled by the Jacobian of the metric transformation(
ξ̂x, ξ̂y, ξ̂z

)
= J−1 (ξx, ξy, ξz) , (η̂x, η̂y, η̂z) = J−1 (ηx, ηy, ηz) ,

(
ζ̂x, ζ̂y, ζ̂z

)
= J−1 (ζx, ζy, ζz) . (4)

The equation set is closed by the ideal gas law which relates p = ρRT , where R = Cp(γ − 1)/γ, Cp is the
specific heat at constant pressure, and γ is the ratio of specific heats.

2.2 Mach-cone Aligned Space Marching Grid
A specially designed structured curvilinear grid is used to discretize the space between the near-field and
mid-field. Structured curvilinear grids have several advantages over unstructured, structured cylindrical,
and Cartesian grids for this particular application. The advantages over unstructured grids include the
high efficiency and low memory footprint of the corresponding numerical algorithm and the straightforward
and relatively inexpensive extension to high-order low-dissipation finite-difference discretizations which are
extremely efficient for weakly nonlinear wave propagation. The main advantage over structured cylindrical
and Cartesian grids are the ability to create a Mach-cone aligned mesh for each azimuth within a single grid.
The advantage of using Mach-cone aligned grids for nonlinear wave propagation in low boom environments
has been shown by several groups [27, 28]. One of the first publications demonstrating the use of Mach-cone
aligned grids was Siclari and Darden [12], where they used a cylindrical/spherical coordinate system with
Mach-cone alignment for the bow shock to capture sonic booms from simplified fuselage wing configurations
and propagate them to the mid-field. In fact, the advantage of Mach-cone alignment is so advantageous,
that when using adjoint based mesh adapted Cartesian grids, it was found to be more efficient to solve for a
single azimuth of interest (or a tight range) independently, while insuring Mach-cone alignment with respect
to that azimuth, than to try and solve for all azimuths at once [24].

Inspired by the grid topology used in Siclari and Darden [12] and implicit solution strategies used in overset
grid methods, a specially designed structured curvilinear, Mach-cone aligned, cylindrical-like automated grid
generation procedure, which utilizes iblanking overset grid technology, was established in Housman et. al. [1].
It was determined that orthogonality on the (ξ, ζ) plane requires a local Mach in the free-stream direction
greater than 1.42. Since many of the low-boom supersonic aircraft designs are targeting cruise Mach numbers
ranging from 1.2 - 1.4, a modification to the original space marching grid generator was necessary to maintain
a valid space marching direction. Figures 2(a) - (c) show a side view, front view, and an isometric view of
a coarse space marching grid. The key to maintaining a valid space marching direction is to align the ζ-
coordinate direction with the freestream flow direction. Provided the local Mach number in the freestream
direction remains above unity, the space marching solution algorithm remains valid. This will be guaranteed
provided the elliptic hole interface between the CFD near-field grid and the space marching grid is located
outside the very thin boundary layer of the aircraft (and the freestream Mach is above one of course).
Once the ζ-coordinate direction is defined the ξ-coordinate direction is constructed to maintain Mach-cone
alignment. As mentioned previously, this reduces the effective amount of artificial dissipation, since closely
aligning a coordinate direction with the characteristic surfaces of the solution results in less error. This
is simply because the solution is constant along the characteristic surfaces and even a first-order accurate
numerical scheme can capture a constant solution exactly. Finally, the η-coordinate is chosen to be the
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circumferential direction which is a simple and efficient way to cover the three-dimensional domain that
remains consistent with the characteristic surfaces of the solution. Note, the observant reader may realize
the mesh will have regions of negative volume cells near the axis, this is handled using a blanking procedure
described next.

In addition to the re-orientation of the space marching direction to maintain a valid marching direction
if the local Mach number approaches unity, another major improvement in the automated grid generation
procedure is in the hole cutting definition. In the original approach [1], a cylindrical hole cutting definition
was used to blank, or mark, selected grid points from the space marching grid to effectively remove them
from the grid system. The blanked region of the space marching domain requires the near-field CFD solution
to be used within this region, and this solution must be accurate. This implies that reducing the blanked
region will reduce the accuracy requirements of the near-field CFD, which effectively means that the CFD
grid can be coarsened faster outside of the blanked region. In the new modified approach this is accomplished
by generalizing the cylindrical hole cut with an elliptical hole cut defined using the following equation,√

a0 (y − y0)
2

+ b0 (z − z0)
2

= 1. (5)

The coordinates y0 and z0 define the center of the ellipse while the coefficients a0 and b0 control the major
and minor axis of the ellipse. Note the ellipsoidal hole cut is performed before the space marching grid is
rotated into the freestream flow direction and choosing the free-parameters is currently performed by the
user. Automation of this process is currently being explored along with more elaborate implicit hole cutting
strategies. The current elliptical hole cutting process was deemed efficient and easy for users to understand.
Figures 3(a) - (b) plot a comparison between the original cylindrical hole cutting definition (shown in blue)
and the new elliptical hole cutting definition (show in red). It is evident that the space marching domain,
which starts outside of the hole cutting surface, begins much closer to the aircraft using an ellipsoid versus
a cylinder, especially the region directly below the vehicle which is the predominate contributer for ground
level noise. Presuming the space marching method is more accurate than traditional CFD methods, which
will be demonstrated in this work, implies the closer interface location obtained by the elliptical hole cut is
superior.

2.3 Numerical Discretization
Now that the structured grid and associated curvilinear coordinate directions are established, the numerical
discretization procedure is described. The space marching direction is defined to be in the ζ-coordinate
direction. The choice of using the ζ-coordinate as the space marching direction allows for a cache-friendly
implementation on modern computer hardware. The η coordinate is assigned to the circumferential direction,
and ξ is used for the remaining coordinate direction. Two distinct approaches to the derivative approxima-
tions are used to discretize the governing equations depending on the coordinate direction. In the space
marching direction, backward differencing formulas are utilized to discretize the flux derivative. These are
typically used for discretizing the time-derivative in unsteady Navier-Stokes calculations, and are a natural
choice for the space marching direction since the waves can only travel in the positive ζ-coordinate direction
on the specially designed grid. Three different orders of accuracy for backward differencing are implemented
in the current space marching solver; first-order, second-order, and third-order

∂Ĝ

∂ζ
≈ Ĝl − Ĝl−1

∆ζ
(first-order), (6)

∂Ĝ

∂ζ
≈

3
(
Ĝl − Ĝl−1

)
−
(
Ĝl−1 − Ĝl−2

)
2∆ζ

(second-order), (7)

∂Ĝ

∂ζ
≈

11
(
Ĝl − Ĝl−1

)
6∆ζ

−
7
(
Ĝl−1 − Ĝl−2

)
6∆ζ

+

(
Ĝl−2 − Ĝl−3

)
3∆ζ

(third-order). (8)

In the cross-stream directions, a high-order Hybrid Weighted Compact Nonlinear Scheme (HWCNS) [29,
30, 31] is used to approximate the (ξ, η) derivatives. The HWCNS utilizes a central difference stencil that
combines numerical fluxes at the edges with physical fluxes at the nodes resulting in high spectral accuracy,
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which is important for weakly nonlinear wave propagation. An example of the HWCNS discretization applied
to the ξ-coordinate convective flux is,

∂Ê

∂ξ
≈
a1

(
Ẽj+1/2 − Ẽj−1/2

)
+ a2

(
Êj+1 − Êj−1

)
∆ξ

. (9)

The coefficients a1 and a2 can be chosen to obtain either second (HWCNS2) or fourth (HWCNS4) order
accuracy. The step-sizes ∆ξ and ∆ζ have been taken to be unity. A similar formula is available for the
η-coordinate derivative. The artificial dissipation in the scheme is introduced through the numerical fluxes
at the edges, Ẽj+1/2(QL, QR), which are constructed with a modified Roe numerical flux [32, 33, 34] with
left and right state interpolations, QL and QR, generated from a high-order WENO interpolation [35]. In
the current implementation, third and fifth order accurate upwind biased WENO interpolations (WENO3
and WENO5) and an improved fifth-order accurate WENO interpolation [36] (ZWENO5) is available.

It is well known that free-stream preservation (i.e. the GCL condition) requires that identical finite-
difference operators are used to compute the metric terms, as those used to discretize the convective flux
derivatives [37, 38, 39]. The derivatives which appear in the metric term evaluations for the (ξ, η)-coordinate
directions utilize the same HWCNS as that used for the convective flux where the required half-point grid
values are obtained from central interpolations of the same order as the derivative evaluation. In the space
marching direction, the metric terms are evaluated with the BDF formulas above. Evaluating the metric
terms using standard central differencing, or using the HWCNS in the space marching direction leads to a
breakdown in free-stream preservation. Examples of this were shown in Housman et. al. [1].

To summarize, the nonlinear discrete residual operator at an arbitrary space marching ζ surface plane l,
and (ξ, η) grid point location (j, k), is written as,

Rj,k,l = a1

(
Ẽj+1/2 − Ẽj−1/2

)
+ a2

(
Êj+1 − Êj−1

)
(10)

+ a1

(
F̃k+1/2 − F̃k−1/2

)
+ a2

(
F̂k+1 − F̂k−1

)
+

(
δ
(BDF )
ζ Ĝ

)
l

(11)

This represents a system of nonlinear equations, on the surface of constant l, which must be iteratively
solved. Once the system is solved on this surface, the solution on the next surface, l + 1, can be found. An
efficient implicit solution procedure is described next.

2.4 Implicit Space Marching Solution Procedure
In the single sweep space marching procedure, the solution is marched in the ζ-coordinate direction starting
from an interpolated CFD solution on the inner ellipsoid of fringe points, Qfringe = Interp

(
QCFD

)
. At each

new streamwise station, the nonlinear system of equations is solved on the (ξ, η) plane with the evaluation
of Ĝl−1 and Ĝl−2 (and perhaps Ĝl−3) set from the previous (ξ, η) plane solutions. Only a single sweep is
necessary provided the contravariant Mach number in the streamwise direction is greater than one, M̂ζ =

Ŵ/ĉ > 1, for all streamwise stations. This condition is satisfied when using the specially designed structured
curvilinear grid and results in a reduced nonlinear system of equations where only the solution of the current
plane Ql is unknown for all (j, k). Introducing the iteration parameter, m, and assuming a first-order
discretization in the cross-marching directions, the system at the next l + 1 plane can be represented as,

R (Qm+1, Ql, Ql−1) =
(
Ẽj+1/2,m+1 − Ẽj−1/2,m+1

)
+
(
F̃j+1/2,m+1 − F̃j−1/2,m+1

)
(12)

+
3

2

(
Ĝm+1 − Ĝl

)
− 1

2

(
Ĝl − Ĝl−1

)
.
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Now each term depending on m + 1 can be linearized about the previous iteration (on the current l + 1
plane),

Ẽj+1/2,m+1 ≈ Ẽj+1/2,m +

(
∂Ẽj+1/2,m

∂Qj+1,m

)
∆Qj+1,m +

(
∂Ẽj+1/2,m

∂Qj,m

)
∆Qj,m

F̃k+1/2,m+1 ≈ F̃k+1/2,m +

(
∂F̃k+1/2,m

∂Qk+1,m

)
∆Qk+1,m +

(
∂F̃k+1/2,m

∂Qk,m

)
∆Qk,m

Ĝm+1 ≈ Ĝm +

(
∂Ĝm
∂Qm

)
∆Qm.

Using the above linearization and introducing a pseudo-time stepping term to improve convergence during
the early stages of the nonlinear planar relaxation procedure, Equation 12 can be rewritten as,

−

(
∂F̃k−1/2,m

∂Qk−1,m

)
∆Qk−1,m −

(
∂Ẽj−1/2,m

∂Qj−1,m

)
∆Qj−1,m

+

[
3

2

Γ

J ∆τ
+

(
∂Ẽj+1/2,m

∂Qj,m

)
−

(
∂Ẽj−1/2,m

∂Qj,m

)
+

(
∂F̃k+1/2,m

∂Qk,m

)
−

(
∂F̃k−1/2,m

∂Qk,m

)]
∆Qj,k,m (13)

+

(
∂Ẽj+1/2,m

∂Qj+1,m

)
∆Qj+1,m +

(
∂F̃k+1/2,m

∂Qk+1,m

)
∆Qk+1,m

= −R (Qm, Ql, Ql−1) ,

where Γ = ∂W/∂Q is the change of variables matrix from conservative variables W to primitive variables
Q. Utilizing a defect-correction approach the first-order right-hand-side, R, is replaced with the high-order
accurate discretization, R in Equation 10. Blanked points are handled by replacing the left-hand-side blocks
by the identity matrix on the diagonal and setting the right-hand-side to zero. The fringe points, which are
the points where the solution is interpolated from the near-field CFD solution, are also handled similarly
with left-hand-side blocks replaced by the identity matrix and right-hand side zero, but the solution values
Q are set to the interpolated valued during initialization. This decouples both the blanked and fringe points
from the system of equations. Equation 13 is approximately solved to obtain a quasi-Newton correction
∆Qm. As the iteration procedure converges m → ∞, the norm of the high-order residual converges and
the nonlinear system of equations at that plane is satisfied (||R|| → 0 and Qm → Ql+1). In the current
implementation an alternating line-implicit Jacobi relaxation procedure in the (ξ, η)-coordinate directions is
used.

3 Results
The high-order single sweep space marching method described above is used to propagate several near-field
CFD solutions for different low-boom aircraft geometries from the Second and Third AIAA Sonic Boom
Prediction Workshops. First a demonstration of CFD domain reduction is provided using structured overset
grid solutions for the C608 test case from the Third AIAA Sonic Boom Prediction Workshop provided
by Duensing et. al. [2]. Second, the generalization of the CFD coupling from structured overset grid CFD
solutions to unstructured grid solutions is demonstrated using USM3D solutions on the C608 aircraft provided
by Elmiligui et. al. [40]. Next, the accuracy enhancement capability of the space marching method is
demonstrated using the sequence of coarse, medium, and fine grid CFD results for the C608 provided to the
workshop by Ozcer et. al. [41] of ANSYS Canada. Finally, an automated local error analysis method based
on Richardson extrapolation is described and used to evaluate the space marching grid resolution sensitivity
on the JAXA Wing Body (JWB) from the Second AIAA Sonic Boom Prediction Workshop.
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3.1 CFD Domain Reduction
Results from the CFD domain reduction for the C608 were originally published in Duensing et. al. [2] and
repeated here for completeness of this work. A domain of dependence study is performed to determine the
required radial extent of the CFD domain. This analysis consisted of constructing a forward opening Mach
cone placed just upstream of the nose of the vehicle and a Mach cone opening in the opposite direction
placed near the aft of the vehicle. The placement of these cones along the streamwise axis was adjusted
until the entire vehicle geometry was encompassed by the two cones. The radius where the cones intersect,
R/Lbody = 0.53, provides a good estimate of the required radial domain extent. Figure 4 (a) shows the
intersection of the two Mach cones along with the C608 vehicle located within the two cones.

3.1.1 Domain of Dependence Results

Using the Mach-cone based domain of dependence a modified off-body CFD grid script was generated which
allows the user to input the desired radial extent of the off-body grid. Figure 4 (b) shows the resulting
off-body grids for the three radial CFD domain extents of interest; R/Lbody = 0.53 the minimum required
radial extent contains a total of 149 million grid points including the medium resolution near-body grids;
R/Lbody = 4 based on the workshop specification of the sBOOM coupling at R/Lbody = 3 which is 178
million grid points; and R/Lbody = 7 for sensitivity analysis of sBOOM coupling location at R/Lbody = 6
which contains 203 million grid points. The R/Lbody = 0.53 grid results in a 16 percent reduction in grid
points compared to the R/Lbody = 4 grid, and a 26.5 percent reduction compared to the R/Lbody = 7 grid.

CFD solutions for the three grids were generated using the LAVA structured curvilinear overset grid
solver. A comparison of the pressure field on a cylinder at R/Lbody = 0.25 is plotted for domain extents
of R/Lbody = 4 and R/Lbody = 0.53 in Figs. 5 (a) and (b) respectively. This location is near the coupling
location of the space marching grid which will be described in more detail in the next section. There is no
visible difference between the two solutions at the pressure scales included in the plots. This implies that the
simplified domain of dependence study is sufficient for the C608 vehicle. Examining the on-track pressure
signature at R/Lbody = 0.25 in Figure 6, no difference in the pressure signatures is observed. In the next
two sections the reduced CFD domain will be used as input into the space marching solver and the resulting
pressure field will be compared with the larger CFD domain results.

3.1.2 Space Marching Grid and Solution

Figure 7 (a) - (d) shows several views of a coarse grid version of the space marching grid. The radial
domain extent was set to R/Lbody = 10 to enable sBOOM coupling up to R/Lbody = 9. The space marching
direction is oriented in the streamwise direction and the solution starts at the first upstream plane and
marches downstream. The first three layers of nodes outside of the user-defined elliptic hole cutting surface,
denoted "fringe" points, are used to couple the CFD solution to the space marching grid. The fringe
points are illustrated in the Figure 7 (d), the CFD solution is interpolated at these locations and used as
boundary conditions during the space marching solution procedure. Three space marching grid resolutions
were generated with ∆s/Lbody = 0.006, 0.003, and 0.0015 which resulted in 18.9 million, 72.3 million, and
285.4 million grid points respectively.

The fourth-order Hybrid Weighted Compact Nonlinear scheme with third-order WENO interpolation
is used in the non-space marching direction, while the second order backward differencing scheme is used
in the space marching direction. The two-dimensional non-linear system is solved at each space marching
station using an alternating line Jacobi relaxation procedure, and the L2-norm of the residual is reduced by
two orders of magnitude before marching to the next station. For the three space marching grids used in
this study, the space marching solution time required 44 seconds, 139 seconds, and 440 seconds respectively,
using 80 OpenMP threads on a modern high-end workstation. These computational resources are negligible
compared to the cost of the CFD (O(100− 1000) CPU core hours) even on the finest space marching grid.

In order to establish the necessary mesh resolution for the space marching grid, the near-field pressure
signatures are compared to the CFD solution. Figures 8 (a) - (d) plot the pressure signatures at R/Lbody = 3
and 6 both on-track (φ = 0◦) and off-track (φ = 30◦) for the CFD as well as for the three space march-
ing grid resolutions considered. Noticeable differences between the CFD and the coarsest space marching
grid resolution, ∆s/Lbody = 0.006, are observed. The medium and fine space marching grid resolutions,
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∆s/Lbody = 0.003 and 0.0015 are essentially on-top of the CFD. An inset image of the wave-train created
by the wing are included in each image. Examination of the inset images shows a minor discrepancy be-
tween the medium space marching grid resolution and the CFD. The fine space marching grid solution is
indistinguishable from the CFD. From this analysis, the ∆s/Lbody = 0.0015 space marching grid resolution
is chosen for far-field propagation with sBOOM.

Three radial coupling locations were analyzed for coupling the space marching solution with sBOOM,
R/Lbody = 3, 6, and 9. The closer two locations were also propagated using the R/Lbody = 7 CFD solution.
Figure 9 (a) plots a comparison of the ground signatures using the space marching and CFD solutions
coupled at R/Lbody = 3. The two ground signatures are almost identical with only a minor discrepancy
between 120 − 130 ms. The difference in the perceived loudness (PL) level is 0.2 dB between the solutions
with the space marching solution producing a PL of 77.9 dB and the CFD generating 77.7 dB. A similar
comparison is shown in Figure 9 (b) but with coupling location extended to R/Lbody = 6. Again, there is
almost no difference in the ground signatures with the same minor discrepancy between 120− 130 ms. As in
the previous analysis, a 0.2 dB difference is observed in the PL but the levels are slightly elevated to a PL
of 78 dB for space marching and 77.8 for CFD. This example demonstrates that utilizing space marching
between the near-field CFD and the far-field acoustic propagation allows significant CFD domain reduction
without any loss of accuracy in ground level noise prediction. Moreover, the reduction in CFD domain size
reduces the necessary grid points in the CFD grid resulting in faster turnaround time [2].

3.2 Unstructured CFD Solver Coupling
Coupling the space marching solver to other meshing paradigms, such as unstructured meshes, requires a
generalization of the overset grid interpolation routines to CFD grid element types other than hexahedral
cells. A standalone program name Interpolator has been developed which handles interpolating CFD solu-
tions onto an arbitrary set of three-dimensional coordinates. Currently, hexahedral, tetrahedral, triangular
prismatic, and pyramid cells are supported. Recently, an extension to arbitrary polyhedral cells is being
tested using the LAVA Unstructured CFD solver, but results from this coupling will not be reported in the
current work.

As part of the Third AIAA Sonic Boom Prediction Workshop [42, 43], participants were asked to submit
their CFD grids and solutions along with the required workshop data. Although few participants provided
the additional files, several NASA groups as well as ANSYS Canada were gracious enough to do so. One
such group from NASA Langley [40], utilizing USM3D, provided their CFD solution on the committee
provided mixed-element grid containing 20, 701, 451 vertices with 14, 681, 692 tetrahedra, 146, 667 pyramids,
and 35, 346, 643 prisms. Figure 10 (a) shows an isometric view of the unstructured mesh which uses prismatic
cells in both the boundary layer and Mach-cone aligned extruded mesh, along with tetrahedral cells filling
in the space between with pyramid cells interfacing the prisms and tetrahedra. For the space marching grid,
a total of 72, 053, 928 grid points are used with 776 points in the space marching direction, 513 points in
the Mach-cone aligned radial direction, and 181 points in the circumferential direction. In addition, a total
of 278, 559 fringe points are interpolated from the USM3D solution. A comparison of the unstructured and
space marching grids on the symmetry plane is plotted in Figure 10 (b) - (c).

For this example, two different convective flux discretizations are compared using the space marching
method. The first is a robust 4th-order centered hybrid weighted nonlinear scheme using 3rd-order WENO
for the left/right state interpolation for the midpoint fluxes, denoted HWCNS4-WENO3. The second dis-
cretization uses the same 4th-order centered hybrid weighted nonlinear scheme but uses 5th-order ZWENO
interpolation for the left and right states, denoted HWCNS4-ZWENO5. A standard second-order accurate
flux discretization is used in USM3D with the convective fluxes approximated with HLLC and limited with
the Barth-Jesperson limiter. A comparison of the pressure field on the symmetry plane between USM3D
and space marching using the HWCNS4-WENO3 and HWCNS4-ZWENO5 is shown in Figure 10 (e) - (g).
No visible difference can be observed in the contour plots, except at the downstream of the aft-end of the
vehicle where space marching using HWCNS4-ZWENO5 appears sharper than the other two solutions. Al-
though we could not find the reported computational resources for the USM3D solution on this mesh, the
space marching solver required 4.3 seconds to generate the automated grid, 8.4 seconds to interpolate the
unstructured CFD solution to the fringe points, and 138.3 seconds for HWCNS4-WENO3 and 146 seconds
for HWCNS4-ZWENO5 to propagate the solution 10 body lengths. Again, all space marching simulations
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were performed using 80 OpenMP threads on a modern high-end workstation. Note that only a radial do-
main extent of 5 body lengths was used for the unstructured mesh, limiting the potential radial coupling
locations with the far-field acoustic propagation solver. This limitation is removed through coupling with
the space marching solver, and in fact the radial domain of the unstructured mesh can be further reduced
as demonstrated in the previous example.

For a more quantitative comparison, the on-track pressure signature at three body lengths, r/L = 3, below
the aircraft is extracted from all three solutions and plotted in Figure 11. Almost no difference is observed
between the CFD solutions and two space marching solutions with the exception of the wave near x/L = 3.85.
A close-up of this region is shown in the upper-right inset of Figure 11. The HWCNS4-WENO3 appears to
smooth this wave compared to the USM3D solution using the current space marching grid resolution. On
the other-hand, the HWCNS-ZWENO5 solution captures this wave, as well as several other sharp solution
features with more even resolution (i.e. less numerical dissipation) than either the HWCNS-WENO3 space
marching solution or the original USM3D solution. This demonstrates how the high-accuracy and low-
dissipation of the space marching solver can be used to reduce numerical discretization error in nonlinear
wave propagation from the aircraft to the radial coupling location with far-field propagation code. A more
complete example of this accuracy enhancement feature is illustrated in the next section.

3.3 CFD Accuracy Enhancement
In this section the space marching method is utilized to improve the accuracy of a CFD solution. The
ANSYS Canada group, Ozcer et. al. [41], provided coarse, medium, and fine mixed-element unstructured
grid results for the C608 test case from the Third AIAA Sonic Boom Predition Workshop. These grids
were the committee generated meshes and include a coarse mesh consisting of 11, 782, 783 vertices with
10, 599, 974 tetrahedra, 106, 080 pyramids, and 19, 224, 816 prisms; a medium mesh consisting of 20, 701, 451
vertices with 14, 681, 692 tetrahedra, 146, 667 pyramids, and 35, 346, 643 prisms; and a fine mesh consisting
of 34, 879, 443 vertices with 21, 266, 609 tetrahedra, 146, 667 pyramids, and 61, 007, 871 prisms. Note the
medium mesh is identical to the mesh used in the USM3D coupling example in the previous section. The
flow solver, HALO3D [44], is a node-centered/edge-based Galerkin finite-element method. A progressive
solution strategy was used for the submitted results. To begin, the flow-field is initialized to free-stream and
a first-order Roe method is used. Then the discretization accuracy is increased to a second-order Roe scheme
with MUSCL and minmod limiter. The final solution is then obtained by switching to the AUSM+up scheme
with MUSCL and van Albada limiter. Again, the computational time was not reported in the workshop
slides.

By having access to CFD solutions on a sequence of refined meshes, the space marching solution coupled to
the coarse grid CFD solution can be compared directly to the fine grid CFD solution. A space marching grid
refinement study was performed using the coarse grid HALO3D solution to begin the analysis. A sequence
of three space marching grids were automatically generated including a coarse 18, 932, 419 grid point mesh,
medium 72, 053, 928 grid point mesh (same mesh used in USM3D coupling), and fine 280, 884, 850 grid point
mesh. The total time to generate the automatic grids, interpolate the coarse grid HALO3D solution onto
the fringe points and to compute the space marching solution on a workstation was 48.6 seconds for the
coarse mesh, 156.7 seconds for the medium mesh, and 610.2 seconds for the fine mesh. This includes grid
and solution I/O. Figure 12 plots a comparison of on-track pressure at r/L = 3 between the coarse HALO3D
solution and the space marching solutions from the coarse, medium, and fine grids. It is apparent from the
line-plot that many of the sharp features are smoothed over in the coarse grid CFD solution. While even
the coarse space marching grid is able to preserve these features even though the fringe points for each of
the space marching solutions is interpolated from the same coarse grid HALO3D solution. In addition, no
substantial difference is observed between the medium and fine space marching grid solutions. The inset
image in the upper-right corner of Figure 12 shows a close-up view of the wave-train to confirm this.

Now that the medium space marching grid has been shown to be sufficient for coupling with the coarse
unstructured HALO3D solution, a comparison of this space marching solution with finer mesh solutions from
HALO3D are performed. Figure 13 (a) - (d) plot the on-track pressure signature at r/L = 2, 3, 4, and 5 body-
lengths. The medium grid space marching solution is essentially equivalent to the fine unstructured HALO3D
solution across the radial extraction locations. Only a minor discrepancy is observed in the recover of the
nose-shock. In fact, based on the trend between the coarse, medium, and fine unstructured grid solutions
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it appears the space marching solution coupled to the coarse grid HALO3D solution is more accurate than
the fine grid HALO3D solution at propagating one of the wing-shocks located at x/L = 2.85 for r/L = 2,
x/L = 3.85 at r/L = 3, x/L = 4.85 at r/L = 4 and x/L = 5.85 at r/L = 5. The other discrepancy between
the space marching solution and the fine unstructured HALO3D solution is observed on the aft-end of the
signature at r/L = 5. Figure 14 (a) shows the pressure field on the symmetry plane along with the r/L = 5
on-track extraction line from the HALO3D CFD solution. A spurious wave reflected from the outer radial
boundary is pointed out using a magenta arrow and the artificial recover region downstream of the spurious
wave is circled with a magenta ellipse. These non-physical solution features are not observed in the space
marching solution, plotted in Figure 14 (b), and are the cause of the differences between CFD and space
marching on r/L = 5. This points to another advantage of coupling space marching to near-field CFD when
the CFD boundary conditions show strong boundary reflections, which will require larger radial domains
than those necessary for far-field acoustic coupling. Based on this analysis, coupling the coarse unstructured
grid HALO3D solution with the medium grid space marching solution results in a mid-field solution that
is at least as accurate as the fine unstructured grid HALO3D solution. The mesh size difference between
the coarse and fine unstructured meshes is approximately a factor of three, while the medium grid space
marching method only adds 2 minutes and 37 seconds which is completely negligible, demonstrating the
CFD accuracy enhancement of space marching.

3.4 Local Error Analysis
In the previous examples there was full-domain CFD results to compare the CFD coupled to space marching
solutions to in order to verify the accuracy of the space marching method. In practice, the advantage of
coupling the CFD method to space marching is fully realized when the radial extent of the CFD domain is
significantly reduced. Verification of the space marching solutions, when CFD data is not available, can be
performed using a similar technique as that used on full-domain CFD solutions [24]. The local error analysis
method is based on a Richardson type extrapolation. One advantage of the space marching approach over
general CFD methods is that a nested family of refined grids are easily generated facilitating the easy use of
Richardson type methods. A second advantage of space marching is the speed of the algorithm. This allows
very fine meshes to be utilized, enabling the asymptotic regime to be realized, at least in smooth parts of
the flow.

Application of the local error analysis procedure is demonstrated on the JAXA Wing Body (JWB) test
case from the Second AIAA Sonic Boom Prediction Workshop. The JWB is an Lref = 38.7 m long wing-
body configuration flying at an altitude of 15.76 km, flight speed of Mach 1.6 and an angle of attack of
2.3 degrees, resulting in a flight Reynolds number of 5.7 million per meter. The CFD mesh consists of
a structured overset grid with 13 zones and 14, 416, 429 grid points. The radial domain extent is limited
to R/L = 0.47 and a new adaptive redistribution algorithm, being developed by Chase Ashby from U. of
Kentucky, has been applied to the off-body grid which maintains Mach-cone alignment, see Figure 15. For
the space marching analysis, a family of nested refined grids were generated including a coarse grid with
22, 746, 813 grid points, medium grid with 87, 374, 673 grid points, fine grid with 342, 664, 675 grid points, and
a reference grid with 1, 356, 638, 802 grid points. The space marching analysis, including automated mesh
generation, CFD solution interpolation, and the single sweep space marching solution procedure, required
53.1 seconds for the coarse grid, 189.1 seconds for the medium grid, 752.3 seconds for the fine grid, and 3366
seconds for the reference grid. All computations performed using 80 OpenMP threads on a modern high-end
workstation. The reference mesh solution is a good example of the speed of the algorithm, requiring less
than one hour to compute a solution with 1.3 billion grid points on a workstation.

Utilizing the Richardson-like procedure based on the L1 norm [24], a point-wise local truncation error
estimate is computed using the coarse, medium, and fine grid space marching solutions. Figures 16 (a) -
(d) plots the on-track pressure signature from the fine (red) and reference (black) grid solutions along with
the local error estimate (pink) at r/L = 2.55, r/L = 3, r/L = 6, and r/L = 9. An inset in the upper-right
corner is included in each figure showing a close-up of shocks propagated from the wing-fuselage interaction
region. First, it is observed that the reference solution over-plots the fine grid solution almost everywhere,
up to plotting accuracy. Second, the reference grid solution is contained within the point-wise local error
bounds across the signature domain for all radial extraction locations. These two observations indicate that
the space marching solutions used in the local error analysis are likely within the asymptotic regime, and
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that the error estimates should be accurate. Third, the relative magnitude of the local error bounds is
not growing with increasing radial distance. This implies that the high order space marching discretization
is not introducing additional error with increased radial distance, i.e. more than the truncation error of
the discretization itself. In other words, the non-linear systems at each space marching plane are being
approximately solved sufficiently well that the sub-iteration error is smaller than the truncation error.

Examining the location and magnitude of the local error estimates in Figures 16 (a) - (d) indicate
high confidence in the smooth regions of the signatures. Near the shocks and high gradient regions of the
signatures the error estimate increases in magnitude with a maximum just upstream of the reference solution
shock location. This is caused by an effective dispersion error in the space marching direction using BDF2
discretization. Implicit dispersion relation preserving discretizations may reduce the magnitude of these
error estimates, but as demonstrated in the first example they do not appear to affect the accuracy of the
ground level noise estimate compared to convectional CFD. Moreover, with the speed and automation of the
space marching method, these error estimates are trivial to compute and can be used for ground level noise
uncertainty analysis using statistical approaches. The same can not be said for conventional CFD in which
generating a consistent family of refined grids is difficult and the computational cost is not feasible for grids
on the order of the fine and reference space marching solutions.

4 Conclusion
Algorithmic improvements to a high-order space marching method for sonic boom propagation have been
presented. Modification to the automated space marching grid generation procedure to ensure a valid
space marching direction as the local Mach number approaches unity was described. Generalization of the
cylindrical hole cutting procedure to elliptical was also described. This allowed the interface between CFD
and space marching to be moved closer to the aircraft thus reducing the accuracy and mesh resolution
requirements for the CFD, in addition to reducing the necessary radial domain extent of the CFD grid.
Examples of these features were shown for the C608 and JWB using LAVA CFD solutions on CFD grids
with very limited radial domain extents. Extension of the overset interpolation based coupling procedure
from structured overset grids to mixed-element unstructured grids was demonstrated using unstructured CFD
solutions computed using USM3D and HALO3D from the Third AIAA Sonic Boom Prediction Workshop.
Moreover, the accuracy enhancement capabilities of space marching were shown using the coarse unstructured
grid HALO3D solution as input. By coupling this coarse CFD solution to the high-order space marching
method, a solution with equivalent accuracy to the fine unstructured HALO3D solution was obtained. Note
the additional expense of the space marching solution procedure, including automated mesh generation,
interpolation of the CFD solution to the fringe points, and space marching solution only required 2 minutes
and 37 seconds on a workstation. Finally, a local error analysis procedure, first developed for CFD, was
applied to the space marching method for the JAXA Wing Body from the Seconds AIAA Sonic Boom
Prediction Workshop. The error analysis showed that similar levels of uncertainty in the pressure signatures
used for far-field acoustic propagation are obtained compared to CFD, but at a reduced computational cost
and more automated way by using nested refined grids. In addition, results from the error analysis and
a reference space marching solution computed on a grid with 1.3 million grid points indicated that the
asymptotic regime was achieved and the accuracy of the error estimates.

A convincing argument for replacing the two-step, CFD coupled with far-field acoustics, to the three-step,
CFD coupled to space marching coupled to far-field acoustics, was presented in Housman et. al. [1]. Accuracy
of the three-step approach compared to the two-step approach for a low boom powered aircraft design was
confirmed in Duensing et. al. [2]. The improvements presented in this paper allow coupling of the space
marching solver to nearly any CFD solver using conventional meshing paradigms, and applied to supersonic
aircraft designs over a large range of free-stream cruise Mach numbers. In fact, the three-step procedure
utilizing space marching is currently being used within the NASA Commercial Supersonic Technology (CST)
project and in conjunction with database generation for mission planning of the upcoming X59 Low Boom
Flight Demonstrator (LBFD).
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Figure 1: (a) Diagram of three-step procedure to ground level noise prediction. (b) Solution on the space
marching domain showing elliptical hole cutting procedure.
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Figure 2: (a) Side view (b) front view, and (c) isometric view of a coarse space marching grid.

(a) LM-1044 (b) C608

Figure 3: Comparison of cylindrical (blue) versus elliptical (red) hole cutting surfaces defining the near-field
CFD and space marching interface location.
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(a) Domain of dependence based on free-stream Mach cones (b) Off-body CFD grid radial extent

Figure 4: Domain of dependence and radial extent sensitivity for CFD off-body Mach cone aligned grid.

(a) R/Lbody = 4 (b) R/Lbody = 0.53

Figure 5: Plot of CFD pressure field on a cylindrical isosurface with radius r/Lbody = 1/4 using a CFD
domain extent of (a) 4 body lengths and (b) 0.53 body lengths.
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Figure 6: Plot of on-track pressure signatures using different radial domain extents at r/L = 1/4.
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(a) Symmetry plane (b) Close-up view (Coarse)

(c) Isometric view (d) Fringe points

Figure 7: Images of a coarse space marching grid illustrating the elliptic hole cutting and fringe points where
the CFD solution is interpolated.

x/L

∆p
/p

∞

3 3.5 4
0.01

0.005

0

0.005

0.01

CFDR/L
body

 = 7
SM∆s/L

body
 = 0.006

SM∆s/L
body

 = 0.003
SM∆s/L

body
 = 0.0015

Ontrack r/L
body

 = 3

x/L

∆p
/p

∞

3.8 3.9 4
0.0075

0.005

0.0025

0

0.0025

x/L

∆p
/p

∞

6 6.5 7
0.006

0.004

0.002

0

0.002

0.004

0.006

CFDR/L
body

 = 7
SM∆s/L

body
 = 0.006

SM∆s/L
body

 = 0.003
SM∆s/L

body
 = 0.0015

Ontrack r/L
body

 = 6

x/L

∆p
/p

∞

6.65 6.7 6.75 6.8 6.85 6.9 6.95 7

0.005

0.004

0.003

0.002

0.001

0

0.001

(a) (b)

x/L

∆p
/p

∞

3 3.5 4
0.01

0.005

0

0.005

0.01

CFDR/L
body

 = 7
SM∆s/L

body
 = 0.006

SM∆s/L
body

 = 0.003
SM∆s/L

body
 = 0.0015

Offtrack r/L
body

 = 3, φ = 30
o

x/L

∆p
/p

∞

3.8 3.9 4
0.01

0.0075

0.005

0.0025

0

0.0025

x/L

∆p
/p

∞

6 6.5 7
0.006

0.004

0.002

0

0.002

0.004

0.006

CFDR/L
body

 = 7
SM∆s/L

body
 = 0.006

SM∆s/L
body

 = 0.003
SM∆s/L

body
 = 0.0015

Offtrack r/L
body

 = 6, φ = 30
o

x/L

∆p
/p

∞

6.65 6.7 6.75 6.8 6.85 6.9 6.95 7

0.005

0.004

0.003

0.002

0.001

0

0.001

(c) (d)

Figure 8: Comparison of pressure signatures between CFD and three space marching grid resolutions at
various on-track and off-track radial locations.
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Figure 9: (a-c) Comparison of ground signatures using CFD and space marching coupled to sBoom at
different radial locations. (d) Scaled near-field pressure signatures illustrating complex three-dimensional
wave propagation.
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(e) USM3D (f) SM-HWCNS4-WENO3 (g) SM-HWCNS4-ZWENO5

Figure 10: (a) Isometric view of the mixed-element unstructured grid. (b) Symmetry plane of the unstruc-
tured grid. (c) Symmetry plane of the space marching grid. (e-g) Pressure contours on the symmetry plane
from USM3D, space marching using HWCNS4-WENO3, and space marching using HWCNS4-ZWENO5.
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Figure 11: Comparison of USM3D on-track pressure signature at r/L = 3 to space marching solutions using
the baseline numerical discretization (HWCNS4-WENO3) and the low-dissipation discretization (HWCNS4-
ZWENO5).
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Figure 12: Comparison of HALO3D on-track pressure signature at r/L = 3 using the coarse unstructured
mesh to space marching solutions using coarse, medium, and fine space marching grids.
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Figure 13: Comparison of coarse, medium, and fine unstructured HALO3D solutions to the medium grid
space marching solution at (a) r/L = 2, (b) r/L = 3, (c) r/L = 4, and (d) r/L = 5.

(a) HALO3D (b) Space Marching

Figure 14: Pressure contour on the symmetry plane showing the r/L = 5 extraction line from (a) the
HALO3D solution on the fine unstructured grid and (b) the space marching solution on the medium space
marching grid.
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Figure 15: Plot of the off-body adapted Mach-cone aligned CFD mesh on the symmetry plane for the JAXA
Wing Body (JWB) colored by pressure.
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Figure 16: On-track pressure signatures plotted with local error estimate and very fine grid reference solution
at r/L = 2.55, r/L = 3, r/L = 6, and r/L = 9.
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