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Abstract: A defining feature of the discontinuous Galerkin (DG) method for ODE is 

that the piecewise polynomial solution can have a jump discontinuity at the beginning 

of each step. Starting from the standard integral formulation, the DG method is derived 

here in differential form. The key ingredient is a polynomial called the correction 

function, which helps ‘correct’ the discontinuous solution by approximating the jump 

and yields a continuous one. Under the right Radau quadrature, this continuous solution 

is identical to the solutions by the right Radau collocation and the continuous Galerkin 

(CG) methods. Next, the correction function facilitates the construction of the 

associated implicit Runge-Kutta schemes (IRK-DG). Different quadratures for DG 

result in different IRK-DG methods: left Radau quadrature in Radau IA, right Radau 

quadrature in Radau IIA or right Radau collocation, and Gauss quadrature in a method 

called DG-Gauss. The construction of IRK-DG clarifies the meaning and facilitates the 

proofs of various 𝐵(𝑝), 𝐶(𝜂), and 𝐷(𝜁) conditions for accuracy. The two consequences 

of these conditions are that all 𝑠-stage IRK-DG methods are accurate to order 2𝑠 − 1, 

and the IRK-DG methods of Radau type are unique.  Numerical examples showing the 

behavior of the DG solutions are provided. In all, the correction function plays a key 

role and helps establish the relations among the DG, IRK-DG, collocation, and CG 

schemes. 

Keywords: Discontinuous Galerkin, implicit Runge-Kutta, collocation, continuous 
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1     Introduction

The finite element method is popular for numerically solving partial differential equations as well as 

ordinary differential equations (e.g., Eriksson et al. 1996, Johnson 2012, Hughes 2012). The continuous 

finite element, or continuous Galerkin (CG), method was first employed to solve ODE by Argyris & 

Scharpf (1969) and Fried (1969). Hulme (1972) showed that the CG method for ODE is equivalent to the 

collocation method using quadrature points as collocation points. 

Collocation is an idea widely applicable in numerical analysis. For ODE, collocation methods enforce 

the differential equation at the collocation points. These methods were studied by Cooper (1968) and 

Axelsson (1969). Wright (1970) showed that the collocation process leads to an implicit Runge-Kutta 

(IRK) scheme. Collocation methods are covered in most texts on numerical methods for ODE (e.g., Hairer, 

Norsett, & Wanner 1993, Hairer & Wanner 1991, Lambert 1991). 

The discontinuous Galerkin (DG) method, which allows jump discontinuities across cells or elements, 

was introduced by Reed & Hill (1973) for the neutron transport equation. These methods are popular for 

the spatial discretization of conservation laws (Cockburn, Karniadakis, & Shu 2000). LeSaint & Raviart 

(1974) formulated the DG method for ODE and showed, by employing the left Radau quadrature, that the 

method results in an IRK scheme that is A-stable and superconvergent. Delfour, Hager, & Trochu (1981) 

generalized the DG method by using a weighted average of the left and right values for the boundary terms 
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of each step and proved the superconvergence property of the resulting method. In general, such a weighted 

average leads to the coupling among the steps and a very large system of equations, and the method is no 

longer of one-step type. More recent efforts on unifying frameworks for DG and related methods as well 

as their associated IRK schemes include the contributions of Borri & Bottasso (1993), Bottasso (1997), 

Tang & Sun (2012), and Zhao & Wei (2014). Dissipative dynamical behavior of the DG method was 

studied by Estep & Stuart (2001). A posteriori error estimates of the DG method was explored by Baccouch 

(2016). A time finite element method based on Hamilton’s variational principle can be found in Xing, Qiu, 

& Guo (2017). An adaptive DG method for very stiff systems was investigated by Fortina & Yakoubi 

(2019). Additional contributions can be found in the cited references. A common feature of papers on this 

subject is that they are typically highly algebraic and/or analytic, centering on error estimates and stability 

analyses.  

In this paper, we study the DG method for ODE from a perspective different from those in the literature. 

Our focus is on constructing the solution. This task is accomplished by removing the test function in the 

integral formulation and deriving the DG method in differential form. The key ingredient is a polynomial 

called the correction function, which helps ‘correct’ the discontinuous solution by approximating the jump 

at the beginning of each step. The result is a continuous solution for the DG method. Under the right Radau 

quadrature, this continuous solution is identical to the solutions by the right Radau collocation and the CG 

methods. Next, the correction function facilitates the construction of the associated implicit Runge-Kutta 

schemes (IRK-DG). Different quadratures for DG result in different IRK-DG methods: left Radau 

quadrature in Radau IA, right Radau quadrature in Radau IIA or right Radau collocation, and Gauss 

quadrature in a method called DG-Gauss. All 𝑠-stage IRK-DG methods are shown to be accurate to order 

2𝑠 − 1. The proof is carried out by employing the IRK-DG construction to derive various 𝐵(𝑝), 𝐶(𝜂), and 

𝐷(𝜁) conditions. The 𝐶(𝑠) and 𝐷(𝑠) conditions also lead to uniqueness of the Radau type methods. 

Numerical examples showing the behavior of the DG solutions are provided. In sum, the correction 

function plays a crucial role and helps clarify the relations among the DG and related schemes. 

This paper is essentially self-contained and organized as follows: the DG method is presented in §2, 

the resulting IRK-DG §3, accuracy §4, numerical examples §5, and conclusions and discussion §6.  

   

2     Discontinuous Galerkin (DG) Formulation for ODE 
 

For simplicity and with no loss of generality, instead of a system of equations, consider a scalar ODE: 

 𝑢′(𝑥) = 𝑓(𝑥, 𝑢(𝑥))   

with initial condition  

 𝑢(𝑥0) = 𝑢0.  

Assuming a solution exists, the methods studied are of one-step type: the data 𝑢𝑛 at 𝑥𝑛 is known and, with 

step size ℎ (may depend on 𝑛), the solution 𝑢𝑛+1 at 𝑥𝑛+1 = 𝑥𝑛 + ℎ is to be calculated, 𝑛 = 0, 1, 2, ….  

The DG method approximates the solution on (𝑥𝑛, 𝑥𝑛 + ℎ] by a polynomial 𝑢ℎ of degree 𝑘. At each 

𝑥𝑛, the data is 𝑢𝑛 = 𝑢ℎ(𝑥𝑛
−), i.e., upwinding is employed; for 𝑛 = 0, the data is the initial condition 𝑢0. A 

defining feature of the method is that the piecewise polynomial function 𝑢ℎ can be and usually is 

discontinuous across each 𝑥𝑛, i.e., 𝑢ℎ(𝑥𝑛
−) ≠ 𝑢ℎ(𝑥𝑛

+). The solution is 𝑢𝑛+1 = 𝑢ℎ(𝑥𝑛+1
− ).  

As is routine, the reference or local variable 𝜉 on [0, 1] is employed: 

 𝑥 = 𝑥𝑛 + 𝜉ℎ.  

A function 𝑣(𝑥) on [𝑥𝑛, 𝑥𝑛+1] corresponds to a function on [0, 1] also denoted by 𝑣: 𝑣(𝜉) = 𝑣(𝑥(𝜉)). By 

applying the chain rule to the ODE, 

 𝑑𝑢

𝑑𝜉
= ℎ𝑓(𝜉, 𝑢(𝜉)).  

For the moment, with no loss of generality, we assume  

 ℎ = 1.  

Loosely put, ℎ is absorbed into 𝑓. The case of a general ℎ is straightforward and will be expressed later.  



3 

 

 

In the rest of this paper, we employ the notation 

 
𝑢′ =

𝑑𝑢

𝑑𝜉
 .  

Thus, using the local coordinate 𝜉 with the assumption ℎ = 1, the ODE takes the form: on [0, 1], 

 𝑢′(𝜉) = 𝑓(𝜉, 𝑢(𝜉)),       𝑢(0) = 𝑢𝑛. (2.1) 

Denote by 𝑷𝑘 the space of polynomials of degree 𝑘 or less, by 𝒫𝑘 the projection onto 𝑷𝑘 and, for any 

two functions 𝑣 and 𝑤 on [0, 1] (usually polynomials here), 

 
(𝑣, 𝑤) = ∫ 𝑣(𝜉)𝑤(𝜉)𝑑𝜉

1

0

.  

To solve 𝑢′(𝜉) = 𝑓(𝜉, 𝑢(𝜉)), the DG method seeks a polynomial 𝑢ℎ of degree 𝑘 on (0, 1], such that 

for any 𝑣 in 𝑷𝑘, (𝑢ℎ
′ , 𝑣) nearly equals (𝑓, 𝑣); the precise criteria is given by (2.3) below. To involve 𝑢𝑛, 

by integration by parts,  

 (𝑢ℎ
′ , 𝑣) = 𝑢ℎ(1)𝑣(1) − 𝑢ℎ(0+)𝑣(0) − (𝑢ℎ , 𝑣′).  

At 𝜉 = 0, the data 𝑢𝑛 is more critical and is employed instead of 𝑢ℎ(0+) above.  

The DG method seeks 𝑢ℎ of degree  𝑘 on (0, 1] such that for any 𝑣 in  𝑷𝑘 (called a test function), 

 𝑢ℎ(1)𝑣(1) − 𝑢𝑛𝑣(0) − (𝑢ℎ, 𝑣′) = (𝑓, 𝑣). (2.2) 

The above is often called the weak form. Integrate (𝑢ℎ , 𝑣′) by parts, we obtain the strong form 

 [𝑢ℎ(0+) − 𝑢𝑛]𝑣(0) + (𝑢ℎ
′ , 𝑣)  = (𝑓, 𝑣). (2.3) 

At 𝑥𝑛+1, the solution 𝑢𝑛+1 is, in the local coordinate, 

 𝑢𝑛+1 = 𝑢ℎ(1) = 𝑢ℎ(1−). (2.4) 

Strictly speaking, 𝑢ℎ is defined on (0,1]. To simplify the notation, its domain is extended to [0,1] by  

 𝑢ℎ(0) = 𝑢ℎ(0+).  

Since 𝑣 ∈ 𝑷𝑘, we can replace 𝑓 on the right-hand side of (2.3) by its projection onto 𝑷𝑘, i.e., 𝒫𝑘(𝑓). Set 

 𝑓ℎ = 𝒫𝑘(𝑓). (2.5) 

By the above two equations, the strong form (2.3) can be written as 

 [𝑢ℎ(0) − 𝑢𝑛]𝑣(0) + (𝑢ℎ
′ , 𝑣)  = (𝑓ℎ, 𝑣). (2.6) 

Note that 𝑓ℎ = 𝒫𝑘(𝑓) is of degree 𝑘, and 𝑢ℎ
′ , degree 𝑘 − 1. Loosely put, 𝑢ℎ

′  nearly equals 𝑓ℎ except for 

the term [𝑢ℎ(0) − 𝑢𝑛]𝑣(0). 

The following simple example shows the essential properties of the DG solution. With 𝜉 on [0, 1], solve 

 𝑢′(𝜉) = 𝑓(𝜉) = 6𝜉 − 5,          𝑢(0) = 3.  

The exact solution is trivial, 

 𝑈(𝜉) = 3𝜉2 − 5𝜉 + 3. (2.7) 

For the linear DG solution 𝑢ℎ(𝜉) = 𝑎𝜉 + 𝑏, on [0, 1], by the strong form (2.6) with 𝑣 = 1 and 𝑣 = 𝜉, a 

little algebra yields 𝑎 = −1 and 𝑏 = 2, or 

 𝑢ℎ(𝜉) = −𝜉 + 2. (2.8) 

The solution at the end of the step is 𝑢ℎ(1) = 𝑈(1) = 1. (See Fig. 2.1.) 

Next, on [0, 1], the two left Radau points are 0 and 2/3, and right Radau points, 1/3  and 1. The 

quadratic solution 𝑈 of (2.7) and the linear DG solution 𝑢ℎ above intersect at (1/3, 5/3) and (1,1) i.e., 

the abscissas of their intersections are the two right Radau points (see Fig. 2.1b). Whereas 𝑈 satisfies 

𝑈(0) = 𝑢𝑛 = 3, the DG solution 𝑢ℎ does not, and 𝑢ℎ interpolates 𝑈 at the two right Radau points and is 

defined by the values of 𝑈 at these two points. On the other hand, 𝑢ℎ
′  and 𝑈′ intersect at (2/3, −1), i.e., 

the abscissa of their intersection is the interior left Radau point (see Fig. 2.1a). That is, the solutions 𝑈 and 

𝑢ℎ match at the right Radau points, and their derivatives 𝑈′ and 𝑢ℎ
′  match at the interior left Radau points.  
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It will be shown that (a) the above relation for 𝑈 and 𝑢ℎ as well as that for 𝑈′ and 𝑢ℎ
′  hold true for the 

general case; (b) the left and right Radau points also play an essential role in the approximate Dirac delta 

and the correction functions, respectively; and (c) 𝑈 is a collocation as well as a CG solution. 

Fig. 2.1a shows the plots of 𝑓(𝜉) = 6𝜉 − 5 (thick blue line) and 𝑢ℎ
′ = −1 (dot-dashed green line); the 

𝜉-coordinate of their intersection is the nonzero member of the two left Radau points (blue square dots on 

𝜉-axis). Fig. 2.1b shows the (exact) quadratic solution 𝑈 (thick blue curve) and the linear DG solution 𝑢ℎ 

(dot-dashed green line); the intersections of 𝑈 and 𝑢ℎ (big red round dots) and their 𝜉-coordinates, which 

are the two right Radau points (small red round dots).  

We can also turn the problem around and ask: on [0, 1], how do we evaluate the derivative of the 

discontinuous function 𝑢ℎ defined by 𝑢ℎ(0) = 3 and, for 0 < 𝜉 ≤ 1, 𝑢ℎ(𝜉) = −𝜉 + 2? The answer is that 

the DG method amounts to the following derivative evaluation: reconstruct the solution via 𝑈 of one degree 

higher than 𝑢ℎ that interpolates 𝑢ℎ at the right Radau points and satisfies 𝑈(0) = 3: 𝑈 = 3𝜉2 − 5𝜉 + 3; 

the derivative of the discontinuous function 𝑢ℎ is given by 𝑈′. Note that 𝑈′ is of the same degree as 𝑢ℎ. 

Such a derivative estimate for a polynomial with a jump discontinuity also holds true for the general case. 

 

 

 
 

(a)  (b)  

Fig. 2.1 The graphs of (a) 𝑓(𝜉) = 6𝜉 − 5 (thick blue line), 𝑢ℎ
′ = −1 (dot-dashed green line), and the two 

left Radau points (blue square dots on 𝜉-axis); and (b) the quadratic solution 𝑈 (thick blue curve), the 

linear DG solution 𝑢ℎ (dot-dashed green line), and the two right Radau points (red round dots). 

 

 

Approximate Dirac Delta Function 𝛾 at 𝜉 = 0 

The standard approach is to solve the weak form (2.2) or the strong form (2.3). Here, the goal is to 

define a polynomial 𝑈 of degree 𝑘 + 1 closely related to 𝑢ℎ and has the properties that 

 𝑈′ = 𝑓ℎ     and   𝑈(0) = 𝑢𝑛. (2.9) 

In other words, we wish to eliminate the test function 𝑣 in (2.6).   

To this end, let ℝ be the real line. The mapping 𝐵 from 𝑷𝑘 to ℝ defined by, for each 𝑣 in 𝑷𝑘,  

 𝐵(𝑣) = 𝑣(0),  

is a linear functional on 𝑷𝑘. Thus, there exists 𝛾 in 𝑷𝑘 such that 𝐵(𝑣) = (𝛾, 𝑣), i.e.,  

 (𝛾, 𝑣) = 𝑣(0).   (2.10) 

The polynomial 𝛾 of degree 𝑘 is called an approximate Dirac delta function for the following reason. 

In our context, on [0, 1], let the Dirac delta function at 𝜉 = 0 be denoted by 𝛿0 and defined by 𝛿0(𝑣) =
𝑣(0) for any continuous function 𝑣 on [0, 1]. Then 𝛾 defined above is an approximation of 𝛿0 by an 

element of 𝑷𝑘. 

In fact, 𝛾 can be expressed explicitly. Let the 𝑘 + 1 left Radau points on [0, 1] be denoted by 𝜉𝐿,1, …, 

𝜉𝐿,𝑘+1 where 𝜉𝐿,1 = 0. Let 𝑙𝐿,1, …, 𝑙𝐿,𝑘+1 be the corresponding Lagrange (basis) polynomials, which are 

of degree 𝑘 and satisfy 𝑙𝐿,𝑗(𝜉𝐿,𝑖) = 𝛿𝑖,𝑗. Then 

𝑢ℎ
′

 

𝑓 

 

𝑢ℎ  

 

𝑈 

Right Radau points 

 

Left Radau points 
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 𝛾 = (𝑘 + 1)2𝑙𝐿,1. (2.11) 

To show the above, let the corresponding left Radau quadrature weights be 𝑏𝐿,1, …, 𝑏𝐿,𝑘+1 where 

 
𝑏𝐿,1 =

1

(𝑘 + 1)2
. (2.12) 

(The standard weight of  2/(𝑘 + 1)2 is due to the domain being [−1, 1]; see, e.g., Hildebrand 1974). Recall 

that the Radau quadrature with 𝑘 + 1 evaluation points has a degree of precision 2𝑘, i.e., it is exact for any 

polynomial of degree 2𝑘 or less. Consequently, for any 𝑣 in 𝑷𝑘, since 𝑙𝐿,1𝑣 is of degree 2𝑘 or less, by 

applying the left Radau quadrature, and since 𝑙𝐿,1 vanishes at all Left Radau points except at 𝜉𝐿,1 = 0, 

 
(𝑙𝐿,1, 𝑣) = ∫ 𝑙𝐿,1(𝜉)𝑣(𝜉)𝑑𝜉

1

0

= 𝑏𝐿,1𝑣(0) =
1

(𝑘 + 1)2
𝑣(0).  

That is, 

 ((𝑘 + 1)2𝑙𝐿,1, 𝑣) = 𝑣(0).  

The above and (2.10) completes the proof of (2.11).  

Fig. 2.2a shows the 3 left Radau points (blue square dots on the 𝜉-axis) and the corresponding Lagrange 

polynomials for 𝑘 = 2, and Fig. 2.2b shows the approximate Dirac delta function 𝛾 for 𝑘 = 8 (thin blue 

curve) and 𝑘 = 9 (red thick curve). 

 

 

  
(a)   

  
(b)  

Fig. 2.2 (a) The left Radau points 𝜉𝐿,𝑗 (blue square dots) and the corresponding Lagrange polynomials 𝑙𝐿,𝑗, 

𝑗 = 1, 2, 3 for 𝑘 = 2. (b) The approximate Dirac delta function 𝛾 = (𝑘 + 1)2𝑙𝐿,1 for 𝑘 = 8 (blue thin 

curve) and 𝑘 = 9 (red thick curve). 

 

 

With 𝛾 as in (2.11), by using (2.10), the strong form (2.6) can be written as 

 [𝑢ℎ(0) − 𝑢𝑛](𝛾, 𝑣) + (𝑢ℎ
′ , 𝑣)  = (𝑓ℎ, 𝑣). (2.13) 

That is (recall 𝑢ℎ
′ = 𝑑𝑢/𝑑𝜉 and ℎ is absorbed into 𝑓), on [0, 1], 

 [𝑢ℎ(0) − 𝑢𝑛]𝛾 + 𝑢ℎ
′  = 𝑓ℎ. (2.14) 

Here, 𝑢ℎ
′  is of degree 𝑘 − 1, but 𝛾 is of degree 𝑘 matching that of 𝑓ℎ = 𝒫𝑘(𝑓). 

It will be shown later that by using a quadrature for DG, 𝑓ℎ can be defined by its values at the quadrature 

points. As such, the above equation yields a differential formulation for DG involving no inner products. 

The left Radau points play a special role in the above differential formulation. Indeed, by (2.11), the 

above implies 

 𝑢ℎ
′ − [𝑢𝑛 − 𝑢ℎ(0)](𝑘 + 1)2𝑙𝐿,1 = 𝑓ℎ. (2.15) 

Thus, in solving 𝑢′ = 𝑓, the DG solution 𝑢ℎ satisfies, at the interior left Radau points 𝜉𝐿,𝑗, i.e., for 2 ≤ 𝑗 ≤

𝑘 + 1, 

𝑙𝐿,1 

 

𝑙𝐿,2 𝑙𝐿,3 

Left Radau points 𝜉𝐿,𝑗 
 

𝜉𝐿,1 𝜉𝐿,2 𝜉𝐿,3 

𝑘 = 9 𝑘 = 8 
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 𝑢ℎ
′ (𝜉𝐿,𝑗) = 𝑓ℎ(𝜉𝐿,𝑗) (2.16) 

and for 𝑗 = 1, i.e., at 𝜉 = 𝜉𝐿,1 = 0, by (2.15), 

 𝑢ℎ
′ (0) − (𝑘 + 1)2[𝑢𝑛 − 𝑢ℎ(0)] = 𝑓ℎ(0). (2.17) 

Loosely put, the jump in function values at 𝜉 = 0 from 𝑢𝑛 to 𝑢ℎ(0) does not alter the derivative at the 

nonzero left Radau points by (2.16); however, at 𝜉 = 0, by the above, the derivative 𝑢ℎ
′ (0) is ‘corrected’ 

by an amount of −(𝑘 + 1)2[𝑢𝑛 − 𝑢ℎ(0)] to account for the jump (see also Fig. 2.1). In other words, by 

employing the 𝑘 + 1 left Radau points to evaluate the derivative of 𝑢ℎ, all the corrections caused by the 

jump [𝑢𝑛 − 𝑢ℎ(0)] in function values at the left boundary is lumped to the left boundary itself and the 

amount of correction for the derivative evaluation at the left boundary is −(𝑘 + 1)2[𝑢𝑛 − 𝑢ℎ(0)]. This 

discussion will be clarified further by the correction function of the next subsection. 

As a consequence of (2.16) and (2.17), the solution 𝑢ℎ can be constructed from the values of 𝑓ℎ at the 

left Radau points as follows. Consider 𝑘 of the 𝑘 + 1 left Radau points away from the left boundary, 

namely, 𝜉𝐿,𝑗, 2 ≤ 𝑗 ≤ 𝑘 + 1.  Let 𝑙𝐿,2
(𝑘−1)

, …, 𝑙𝐿,𝑘+1
(𝑘−1)

 be the corresponding Lagrange (basis) polynomials, 

which are of degree 𝑘 − 1. Then, by (2.16) and, since 𝑢ℎ
′  is of degree 𝑘 − 1, 

 
𝑢ℎ

′ (𝜉) = ∑ 𝑓ℎ(𝜉𝐿,𝑗)𝑙𝐿,𝑗
(𝑘−1)

(𝜉)
𝑘+1

𝑗=2
. (2.18) 

Therefore,  

 
𝑢ℎ

′ (0) = ∑ 𝑓ℎ(𝜉𝐿,𝑗)𝑙𝐿,𝑗
(𝑘−1)(0)

𝑘+1

𝑗=2
.  

Substitute right-hand side the above into (2.17), we obtain 

 
𝑢ℎ(0) = 𝑢𝑛 +

1

(𝑘 + 1)2
[𝑓ℎ(0) − ∑ 𝑓ℎ(𝜉𝐿,𝑗)𝑙𝐿,𝑗

(𝑘−1)(0)
𝑘+1

𝑗=2
]. (2.19) 

Since 𝑢ℎ(𝜉) = 𝑢ℎ(0) + ∫  𝑢ℎ
′ (𝜂)

𝜉

0
𝑑𝜂, the above and (2.18) yield a solution  that depends only on 𝑓ℎ(𝜉𝐿,𝑗), 

 
𝑢ℎ(𝜉) = 𝑢ℎ(0) + ∫ ∑ 𝑓ℎ(𝜉𝐿,𝑗)𝑙𝐿,𝑗

(𝑘−1)
(𝜂) 

𝑘+1

𝑗=2

𝜉

0

𝑑𝜂. (2.20) 

Whereas 𝑢ℎ can be expressed using the values of 𝑓ℎ at the left Radau points as in the above two 

equations, it turns out that by using the right Radau points, 𝑢ℎ can be expressed in a simpler and more 

conveying manner as will be shown by (2.34) or (2.35) below. 

 

Correction Function 𝑔 

The polynomial 𝛾 approximates the derivative of a jump. We now wish to approximate the jump itself. 

In other words, we wish to integrate (2.14) by first integrating −𝛾.  

Let the polynomial 𝑔 of degree 𝑘 + 1 be defined by 

 𝑔′  = −𝛾 = −(𝑘 + 1)2𝑙𝐿,1 (2.21) 

and 

 𝑔(0) = 1. (2.22) 

These two conditions result in  

 
𝑔(𝜉) = 1 − ∫ (𝑘 + 1)2𝑙𝐿,1(𝜂)𝑑𝜂

𝜉

0

. (2.23) 

The function 𝑔 defined above satisfies  

 𝑔(1) = 0. (2.24) 

Indeed, by using the left Radau quadrature and (2.12), 
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∫ (𝑘 + 1)2𝑙𝐿,1(𝜉)𝑑𝜉

1

0

= 1.  

The above (which is also a property of the Dirac delta function) and (2.23) imply (2.24). 

As a consequence of 𝑔(0) = 1 and 𝑔′  = −𝛾, similar to (2.17), loosely put, when calculating the 

derivative of a jump at 𝜉 = 0, a jump of size 1 in function values (i.e., 𝑔(0) = 1) leads to a jump of size 

−(𝑘 + 1)2 in derivative values (i.e., 𝑔′(0) = −(𝑘 + 1)2). 

The following assertion holds: the polynomial 𝑔 defined by (2.23) of degree 𝑘 + 1 is orthogonal to all 

polynomials of degree 𝑘 − 1 or less: 

 𝑔 ⊥ 𝑷𝑘−1. (2.25) 

For the proof, let 𝑣 be in 𝑷𝑘, then 𝑣′ is in 𝑷𝑘−1 and, as 𝑣 spans 𝑷𝑘, 𝑣′ spans 𝑷𝑘−1. Next, recall that 

𝑔(0) = 1 and 𝑔(1) = 0; thus 

 (𝑔, 𝑣′) = 𝑔(1)𝑣(1) − 𝑔(0)𝑣(0) − (𝑔′, 𝑣) = −𝑣(0) − (𝑔′, 𝑣).  

By (2.21), 𝑔′ = −𝛾. Therefore, 

 (𝑔′, 𝑣) = (−𝛾, 𝑣) = −𝑣(0),  

where the last equality above follows from (2.10). As a result of the above two equations, for all 𝑣 in 𝑷𝑘, 

 (𝑔, 𝑣′) = 0.  

As 𝑣 spans 𝑷𝑘, 𝑣′ spans 𝑷𝑘−1, and assertion (2.25) follows. 

We can now show that 𝑔 defined by (2.23) is identical to the right Radau polynomial of degree 𝑘 + 1 

defined by the 𝑘 + 2 conditions that it vanishes at the 𝑘 + 1 right Radau points and 𝑔(0) = 1. 

Indeed, condition 𝑔(0) = 1 is satisfied by requirement (2.22). Next, let the 𝑘 + 1 right Radau points 

be denoted by 𝜉𝑅,1, …, 𝜉𝑅,𝑘+1. Among these points, 𝑔(𝜉𝑅,𝑘+1) = 𝑔(1) = 0 by (2.24). Consider now the 

𝑘 members other than the right boundary, namely, 𝜉𝑅,1, …, 𝜉𝑅,𝑘. Let 𝑙𝑅,𝑖
(𝑘−1)

, 1 ≤ 𝑖 ≤ 𝑘, be the 

corresponding Lagrange polynomials of degree 𝑘 − 1. Then, since, by (2.25), 𝑔 is orthogonal to 𝑷𝑘−1,  

 (𝑔, 𝑙𝑅,𝑖
(𝑘−1)

) = 0.   

Next, evaluate (𝑔, 𝑙𝑅,𝑖
(𝑘−1)

) by the 𝑘 + 1 right Radau quadrature. Since 𝑔(1) = 0 and 𝑙𝑅,𝑖
(𝑘−1)

(𝜉𝑅,𝑗) = 𝛿𝑖𝑗 for 

1 ≤ 𝑖, 𝑗 ≤ 𝑘, we obtain, with 𝑏𝑅,𝑖 the Radau weight at 𝜉𝑅,𝑖,  

 (𝑔, 𝑙𝑅,𝑖
(𝑘−1)

) = 𝑏𝑅,𝑖𝑔(𝜉𝑅,𝑖)𝑙𝑅,𝑖
(𝑘−1)

(𝜉𝑅,𝑖) = 𝑏𝑅,𝑖𝑔(𝜉𝑅,𝑖).   

The above two equations imply 𝑏𝑅,𝑖𝑔(𝜉𝑅,𝑖) = 0. Since all Radau weights are nonzero (strictly positive),  

 𝑔(𝜉𝑅,𝑖) = 0.  

This completes the proof.  

Fig. 2.3a shows the cubic correction function 𝑔 for the case 𝑘 = 2; here, 𝑔′ vanishes at two of the three 

left Radau points: 𝑔′(𝜉𝐿,2) = 𝑔′(𝜉𝐿,3) = 0. Fig. 2.3b shows the correction function of degree 𝑘 + 1 for 

𝑘 = 8 (thin blue curve) and 𝑘 = 9 (thick red curve).  

The following remark is in order. In our context, the Heaviside function 𝐻 on [0, 1] is the step-up 

function defined by 𝐻(0) = 0 and 𝐻(𝜉) = 1 for 0 < 𝜉 ≤ 1. Then 𝐻′ = 𝛿0 or 𝐻 is the integral of 𝛿0. Let 

the step-down function be defined by Stdn = 1 − 𝐻 or Stdn(0) = 1 and, for 0 < 𝜉 ≤ 1, Stdn(𝜉) = 0. 

Then, Stdn′ = −𝛿0. Concerning the corresponding polynomial approximations, 𝑔 of degree 𝑘 + 1 

approximates the step-down function, and 𝑔′ = −𝛾 of degree 𝑘 approximates −𝛿0. 

The correction function 𝑔 can also be defined by using the Legendre polynomials, which are typically 

defined on [−1, 1]. Any function 𝑉 on [−1, 1] corresponds to a function 𝑣(𝜉) on [0, 1] by 

 𝑣(𝜉) = 𝑉(2𝜉 − 1).  

All special polynomials discussed here are on [0, 1] using the above transformation. For any integer 𝑛 ≥ 0 

(𝑛 here has nothing to do with the subscript 𝑛 of 𝑢𝑛), the Legendre polynomial of degree 𝑛 denoted by 𝐿𝑛 

is defined by the 𝑛 + 1 conditions that 𝐿𝑛(1) = 1 and 𝐿𝑛 is orthogonal to 𝑷𝑛−1. Then, as is well known,  
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 𝐿𝑛(0) = (−1)𝑛.  

Next, the left and right Radau polynomials of degree 𝑛 are respectively defined by 

 𝑅𝐿,𝑛 =
1

2
(𝐿𝑛 + 𝐿𝑛−1)  and  𝑅𝑅,𝑛 =

(−1)𝑛

2
(𝐿𝑛 − 𝐿𝑛−1). (2.26) 

Note that 𝑅𝑅,𝑛(𝜉) = 𝑅𝐿,𝑛(1 − 𝜉). The above definitions imply 

 𝑅𝐿,𝑛(0) = 0,  𝑅𝐿,𝑛(1) = 1,  𝑅𝑅,𝑛(0) = 1,  and  𝑅𝑅,𝑛(1) = 0.  

The correction function 𝑔 equals the right Radau polynomial of degree 𝑘 + 1 (see Huynh 2007, 2009a): 

 𝑔 = 𝑅𝑅,𝑘+1. (2.27) 

Also note that since 𝐿𝑛 ⊥ 𝑷𝑛−1 for all 𝑛, by the second half of (2.26), 𝑔 above satisfies 𝑔 ⊥ 𝑷𝑘−1, 

consistent with (2.25). 

 

  

  
(a)  

 
(b) 

Fig. 2.3 (a) The cubic correction function 𝑔 for the case 𝑘 = 2; 𝑔 vanishes at the three right Radau points 

(red round dots) and has local extrema at two of the three left Radau points (blue square dots). (b) The 

correction functions of degree 𝑘 + 1 for 𝑘 = 9 (thick red curve) and 𝑘 = 8 (thin blue curve). 

 

Fig. 2.4 shows, on [0, 1], the graphs of the Legendre polynomials of degree 𝑛 (thin blue curve) and 

degree 𝑛 − 1 (thin purple curve), the left Radau polynomial of degree 𝑛 or 𝑅𝐿,𝑛 = (𝐿𝑛 + 𝐿𝑛−1)/2 (dashed 

red curve) , and the right Radau polynomial 𝑅𝑅,𝑛 (thick red curve); Fig. 2.4a depicts the case 𝑛 = 2 and 

Fig. 2.4b the case 𝑛 = 3. The zeros of the right Radau polynomial are the right Radau points (red round 

dots), and the zeros of the left Radau polynomial are the left Radau points (blue square dots).  The interior 

left Radau points (the exception is the first one, 𝜉 = 0) are the local extrema of the right Radau polynomial 

and, vice versa, the interior right Radau points (the exception is the last one, 𝜉 = 1) are the local extrema 

of the left Radau polynomial. The abscissas of the intersections of the curves 𝐿𝑛−1 and 𝐿𝑛 are also the 

interior right Radau points. 

 

   

(a)  (b)  

Fig. 2.4 The graphs of 𝐿𝑛 (thin blue curve), 𝐿𝑛−1 (thin purple curve), 𝑅𝐿,𝑛 (dashed red curve), and 𝑅𝑅,𝑛 

(thick red curve) for (a) 𝑛 = 2 and (b) 𝑛 = 3. 

𝐿2 

𝐿1 

𝑅𝑅,2 

 
𝑅𝑅,3 

 

𝐿2 

𝐿3 

𝑅𝐿,3 

 

𝑔 

𝜉𝑅,1 𝜉𝑅,2 𝜉𝑅,3 

𝜉𝐿,2 𝜉𝐿,3 𝜉𝐿,1 

𝑔 𝑘 = 9 𝑘 = 8 

𝑅𝐿,2 
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Note that the Radau polynomials were employed in the flux reconstruction method to correct for the 

jumps in fluxes at the cell boundaries (Huynh 2007, 2009a, Huynh, Wang, & Vincent 2014). They were 

employed for error estimates in Baccouch (2016) to prove the super-convergence properties. 

We review the key properties of 𝑔. It is of degree 𝑘 + 1 so that 𝑔′ is of degree 𝑘 matching that of 𝑢ℎ 

and 𝑓ℎ. It vanishes at the 𝑘 + 1 right Radau points; on the other hand, 𝑔′ vanishes at 𝑘 of the 𝑘 + 1 left 

Radau points; the exception is 𝑔′(0) = −(𝑘 + 1)2. It provides a polynomial approximation to the step-

down function. The polynomial −𝑔′ = 𝛾 = (𝑘 + 1)2𝑙𝐿,1 of degree 𝑘 approximates 𝛿0. Finally, 𝑔 is the 

polynomial of degree 𝑘 + 1 defined by the 𝑘 + 2 conditions that 𝑔(0) = 1, 𝑔(1) = 0, and 𝑔 ⊥ 𝑷𝑘−1.  

 

DG Formulation via Correction Function 

We can now apply the correction function 𝑔 to the DG formulation. 

To prepare for the resulting implicit Runge-Kutta methods, from here on, we deal with the equation 

𝑢′ = 𝑑𝑢/𝑑𝜉 = ℎ𝑓 and a general step size ℎ. By (2.21), 𝑔′  = −𝛾; therefore, (2.14) takes the form  

 ([𝑢𝑛 − 𝑢ℎ(0)]𝑔 + 𝑢ℎ)′  = ℎ𝑓ℎ. (2.28) 

Next, set 

 𝑈 = [𝑢𝑛 − 𝑢ℎ(0)]𝑔 + 𝑢ℎ. (2.29) 

Then 𝑈 is of degree 𝑘 + 1 whereas 𝑢ℎ is of degree 𝑘, and (2.28) can be written concisely: 

 𝑈′ = ℎ𝑓ℎ.  (2.30) 

Eq. (2.29) implies, since 𝑔(0) = 1, 

 𝑈(0) = 𝑢𝑛  (2.31) 

and, since 𝑔(1) = 0, 

 𝑈(1) = 𝑢ℎ(1).  (2.32) 

The polynomial 𝑈 defined by (2.29) solves the ODE by matching it closely as shown by (2.30) and 

(2.31). At the 𝑘 + 1 right Radau points, the values of 𝑈 match those of 𝑢ℎ, i.e., for 1 ≤ 𝑖 ≤ 𝑘 + 1, 

 𝑈(𝜉𝑅,𝑖) = 𝑢ℎ(𝜉𝑅,𝑖). (2.33) 

Thus, 𝑢ℎ can be defined by 𝑈(𝜉𝑅,𝑖), 1 ≤ 𝑖 ≤ 𝑘 + 1, and vice versa, 𝑈 can be defined by the starting 

condition 𝑢𝑛 and the values 𝑢ℎ(𝜉𝑅,𝑖) at the right Radau points; 𝑈 can also be defined by the 𝑘 + 2 

conditions of 𝑈(0) = 𝑢𝑛 and 𝑈(1) = 𝑢ℎ(1) at the two ends, and the 𝑘 conditions that 𝑈 is as close as 

possible to 𝑢ℎ in the sense that they have the same projection onto 𝑷𝑘−1 (a consequence of (2.29) and 𝑔 ⊥
𝑷𝑘−1). 

As a result of (2.30) and (2.31), with 𝜉 varies on [0, 1],  

 
𝑈(𝜉) = 𝑢𝑛 + ℎ ∫ 𝑓ℎ(𝜂, 𝑢ℎ(𝜂))𝑑𝜂

𝜉

0

. (2.34) 

Thus, if 𝑓ℎ = 𝒫𝑘(𝑓) is known via a quadrature rule or exact integration, 𝑈 can be obtained by the above. 

The solution 𝑢ℎ satisfies, by the above and (2.29), 

 
[𝑢𝑛 − 𝑢ℎ(0)]𝑔(𝜉) + 𝑢ℎ(𝜉) = 𝑢𝑛 + ℎ ∫ 𝑓ℎ(𝜂, 𝑢ℎ(𝜂))𝑑𝜂

𝜉

0

. (2.35) 

Since 𝑓ℎ depends on 𝑢ℎ, the above results in an implicit system of equations discussed in the next section. 

At 𝑥𝑛+1, or 𝜉 = 1, the solution is  

 
𝑢𝑛+1 = 𝑢ℎ(1) = 𝑈(1) = 𝑢𝑛 + ℎ ∫ 𝑓ℎ(𝜂, 𝑢ℎ(𝜂))𝑑𝜂

1

0

. (2.36) 

The relation among the solution 𝑈 and the collocation, as well as CG solutions, is discuss below.  

To prepare, with 𝜉 on [0, 1], consider the ODE 𝑢′(𝜉) = 𝑑𝑢/𝑑𝜉 = ℎ𝑓(𝜉, 𝑢(𝜉)) and 𝑢(0) = 𝑢𝑛. 

In the case of collocation, let 𝜂𝑖, 1 ≤ 𝑖 ≤ 𝑘 + 1, be strictly increasing values on [0, 1]. The collocation 

method with collocation points 𝜂𝑖 seeks a polynomial solution 𝒰 of degree 𝑘 + 1 satisfying 
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 𝒰(0) = 𝑢𝑛, (2.37) 

and, for 1 ≤ 𝑖 ≤ 𝑘 + 1, 

 𝒰′(𝜂𝑖) = ℎ𝑓(𝜂𝑖, 𝒰(𝜂𝑖)). (2.38) 

The CG method seeks a polynomial of degree 𝑘 + 1, also denoted by 𝒰, that satisfies (2.37) and, for 

any 𝑣 in 𝑷𝑘,  

 (𝒰′, 𝑣) = ℎ(𝑓(𝜉, 𝒰(𝜉)), 𝑣). (2.39) 

The solution at 𝑥𝑛+1 for either method is 𝒰(1).  

Let 𝑙𝑖, 1 ≤ 𝑖 ≤ 𝑘 + 1, be the Lagrange polynomials corresponding to 𝜂𝑖’s. Then under the quadrature 

associated with 𝜂𝑖’s, the above with 𝑣 = 𝑙𝑖 implies (2.38), which results in the following claim. 

The CG method using the quadrature associated with the collocation points and the corresponding 

collocation method yield identical solutions.  

For later use, under the quadrature associated with the collocation points, the CG and collocation 

solution satisfies, by the above claim and by (2.39), 

 𝒰′ = ℎ𝒫𝑘(𝑓(𝜉, 𝒰(𝜉))). (2.40) 

Proposition 2.1. Under the right Radau quadrature, the DG solution 𝑈 defined by (2.29) is identical to 

the right Radau collocation solution as well as the CG solution under the same quadrature.   

Indeed, at each right Radau point 𝜉𝑅,𝑖, 1 ≤ 𝑖 ≤ 𝑘 + 1, since 𝑔(𝜉𝑅,𝑖) = 0, by (2.29), 

 𝑈(𝜉𝑅,𝑖) = 𝑢ℎ(𝜉𝑅,𝑖).   (2.41) 

Therefore, 𝑓(𝜉𝑅,𝑖, 𝑢ℎ(𝜉𝑅,𝑖)) = 𝑓(𝜉𝑅,𝑖, 𝑈(𝜉𝑅,𝑖)). Next, under the right Radau quadrature, 𝑓ℎ = 𝒫𝑘(𝑓) is 

determined by the 𝑘 + 1 values 𝑓(𝜉𝑅,𝑖, 𝑢ℎ(𝜉𝑅,𝑖)) (see also (3.5) below). As a result, for 1 ≤ 𝑖 ≤ 𝑘 + 1, 

 𝑓ℎ(𝜉𝑅,𝑖, 𝑢ℎ(𝜉𝑅,𝑖)) = 𝑓(𝜉𝑅,𝑖, 𝑢ℎ(𝜉𝑅,𝑖)) = 𝑓(𝜉𝑅,𝑖, 𝑈(𝜉𝑅,𝑖)).  (2.42) 

Consequently, for 1 ≤ 𝑖 ≤ 𝑘 + 1,  (2.30) implies, 

 𝑈′(𝜉𝑅,𝑖) = ℎ𝑓(𝜉𝑅,𝑖, 𝑈(𝜉𝑅,𝑖)). (2.43) 

Thus, the DG solution 𝑈 of degree 𝑘 + 1 can be defined by the 𝑘 + 2 conditions of 𝑈(0) = 𝑢𝑛 and the 

above, which is exactly the definition (2.38) of the collocation solution with 𝒰 replaced by 𝑈. The claim 

after (2.39) shows that the collocation solution is the same as the CG solution under the quadrature with 

collocation points as quadrature points. See also Huynh (2009b). This completes the proof. 

The above discussion shows that the right Radau quadrature is a convenient and sensible choice of 

quadrature for the DG method in the context of ODEs. (It is important to note that this comment does not 

hold in the context of conservation laws, where upwinding at each interface can involve values from both 

sides, not just by the value from the left as is the case here). Below, however, the quadrature can be the 

left or right Radau, Gauss, or a blending of the Radau quadratures where the evaluation points are the zeros 

of 𝑄 defined by, with 0 ≤ 𝛼 ≤ 1, 

 𝑄 = 𝛼𝑅𝑅,𝑘+1 + (1 − 𝛼)(−1)𝑘+1𝑅𝐿,𝑘+1. (2.44) 

Such a quadrature, with 𝑘 + 1 evaluation points, has a degree of precision 2𝑘 or higher. 

Concerning the two DG solutions 𝑢ℎ and 𝑈, if an approximation at 𝜉 for 0 < 𝜉 < 1 is needed, 𝑈(𝜉) is 

generally a better choice than 𝑢ℎ(𝜉). The values of 𝑢ℎ at the right Radau points are more accurate than 

those at other points since they match the values of 𝑈 (of one degree higher). What is crucial, however, is 

that at 𝜉 = 1, 𝑈 and 𝑢ℎ yield the same solution 𝑢𝑛+1, which is accurate to order 2𝑘 + 1, the order of 

accuracy of the right Radau quadrature. On the other hand, the expected order of accuracy for a quadrature 

using a polynomial approximation of degree 𝑘 is only 𝑘 + 1. The property of much higher accuracy order 

than expected is also called ‘super convergence’ (e.g., Adjerid et al. 2002, Baccouch 2016). 

As a passing remark, the correction function 𝑔 was employed to reconstruct the flux for conservation 

laws in the flux reconstruction or FR method (Huynh 2007, 2009a, Huynh, Wang, and Vincent 2014). The 

method, in turn, is used in codes applied to practical calculations such as PyFR (https://www.pyfr.org/) 

and GFR (Spiegel et al. 2022). Here, the function 𝑢 itself is being reconstructed from 𝑢ℎ in the form of 𝑈. 

Thus, the above formulation can be considered as the FR, or ‘function reconstruction’, approach for ODE.  

https://www.pyfr.org/
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3     Implicit Runge-Kutta Methods Resulting from DG Formulation  
 

We next construct the implicit Runge-Kutta method resulting from the DG formulation or IRK-DG. Here, 

the correction function 𝑔 plays a crucial role. To be consistent with the standard RK notation, let the 

number of stages be 

 𝑠 = 𝑘 + 1.  

A quadrature on [0, 1] with 𝑠 evaluation points 𝜉1, …, 𝜉𝑠 and a degree of precision 2𝑠 − 2 or higher is 

employed, e.g., the left or right Radau, Gauss, or a blending of the Radau quadratures via (2.44). Denote 

the corresponding Lagrange polynomials by 𝑙𝑗, 1 ≤ 𝑗 ≤ 𝑠, which are of degree 𝑠 − 1 and defined by 

𝑙𝑗(𝜉𝑖) = 𝛿𝑖𝑗 . Then, for each 𝑗, the quadrature weight is  

 
𝑏𝑗 = ∫ 𝑙𝑗(𝜉)𝑑𝜉

1

0

. (3.1) 

Note that even if the Legendre polynomials are employed as basis functions for the DG formulation, we 

still need a quadrature to evaluate inner products. Since the quadrature is assumed to be exact for 

polynomials of degree 2𝑠 − 2 or less, and 𝑙𝑖𝑙𝑗 is of degree 2𝑠 − 2, for 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 

 (𝑙𝑖, 𝑙𝑗) = 𝛿𝑖𝑗𝑏𝑗 , (3.2) 

Thus, 𝑙𝑗, 𝑗 = 1, … , 𝑠, form an orthogonal basis for 𝑷𝑠−1.  

At each quadrature point 𝜉𝑗, set 

 𝑢𝑛,𝑗 = 𝑢ℎ(𝜉𝑗)   and   𝑓𝑛,𝑗 = 𝑓(𝜉𝑗, 𝑢𝑛,𝑗).  (3.3) 

Then, the solution 𝑢ℎ of degree 𝑠 − 1 can be expressed as 

 
𝑢ℎ(𝜉) = ∑ 𝑢𝑛,𝑗 𝑙𝑗(𝜉)

𝑠

𝑗=1
. (3.4) 

Concerning a similar expression for 𝑓ℎ = 𝒫𝑠−1(𝑓), whereas 𝑢ℎ is a polynomial, 𝑓(𝜉, 𝑢ℎ(𝜉)) can be a non-

polynomial. Since 𝑙𝑗, 𝑗 = 1, … , 𝑠, form an orthogonal basis for 𝑷𝑠−1, 

 
𝒫𝑠−1(𝑓) = ∑

(𝑓, 𝑙𝑗)

(𝑙𝑗, 𝑙𝑗)
𝑙𝑗

𝑠

𝑗=1
.  

By using the quadrature, (𝑓, 𝑙𝑗) = ∫ 𝑓(𝜉, 𝑢ℎ(𝜉))𝑙𝑗(𝜉)𝑑𝜉
1

0
= 𝑏𝑗𝑓𝑛,𝑗. As a result of (3.2) and the above, 

under the quadrature with evaluation points 𝜉𝑗’s, 

 
𝒫𝑠−1(𝑓)(𝜂) = (𝒫𝑠−1(𝑓))(𝜂) = 𝑓ℎ(𝜂) = ∑ 𝑓𝑛,𝑗 𝑙𝑗(𝜂)

𝑠

𝑗=1
. (3.5) 

Next, set 

 
𝑙𝑗(𝜉) = ∫ 𝑙𝑗(𝜂)𝑑𝜂

𝜉

0

 (3.6) 

and 

 
𝑓ℎ(𝜉) = ∫ 𝑓ℎ(𝜂)𝑑𝜂

𝜉

0

. (3.7) 

Then, for each fixed 𝜉, the quantities 𝑙𝑗(𝜉), 1 ≤ 𝑗 ≤ 𝑠, are the weights at 𝜉𝑗 for a quadrature from 0 to 𝜉: 

 
∫ 𝑓ℎ(𝜂)𝑑𝜂

𝜉

0

= 𝑓ℎ(𝜉) = ∑ 𝑓𝑛,𝑗 𝑙𝑗(𝜉)
𝑠

𝑗=1
. (3.8) 

If 𝜉 = 1, the quadrature weights are, by (3.1), 

 𝑙𝑗(1) = 𝑏𝑗, (3.9) 
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and the degree of precision for the corresponding quadrature is 2𝑠 − 2 or higher as in our assumption. For 

𝜉 ≠ 1, however, the quadrature (3.8) has a degree of precision of only 𝑠 − 1. 

Fig. 3.1a shows, for the case 𝑠 = 3, the cubics 𝑙𝑗, 1 ≤ 𝑗 ≤ 3; here, the quadrature points are the 3 left 

Radau points; the quadratic 𝑙𝑗 used in (3.6) to construct 𝑙𝑗 for this case is identical to 𝑙𝐿,𝑗 of Fig. 2.2a.  

 

 

  
(a)  

 
(b) 

Fig. 3.1 (a) The polynomials 𝑙𝑗 for the case the quadrature points are the 3 left Radau points (blue square 

dots); (b) the values 𝑙𝑗(𝜉𝑅,𝑖), 1 ≤ 𝑖, 𝑗 ≤ 3, i.e., the entries of the matrix 𝑴𝑅𝐼, are represented by the red 

round dots; the values at the red round dots on the vertical line at each right Radau points 𝜉 = 𝜉𝑅,𝑖 form 

the entries for the 𝑖-th row of 𝑴𝑅𝐼.  

 

 

Assume for the moment, the values 𝑢𝑛,𝑗 at the quadrature points 𝜉𝑗 are known, 1 ≤ 𝑗 ≤ 𝑠; therefore, 

𝑓𝑛,𝑗 = 𝑓(𝜉𝑗 , 𝑢𝑛,𝑗) are also known.  Using (3.4) and (3.5), Eq. (2.35) implies 

 
[𝑢𝑛 − ∑ 𝑢𝑛,𝑗 𝑙𝑗(0)

𝑠

𝑗=1
] 𝑔(𝜉) + ∑ 𝑢𝑛,𝑗 𝑙𝑗(𝜉)

𝑠

𝑗=1
= 𝑢𝑛 + ℎ ∑ 𝑓𝑛,𝑗  ∫ 𝑙𝑗(𝜂)𝑑𝜂

𝜉

0

𝑠

𝑗=1
. (3.10) 

Note that the above equation involves no inner product since 𝑓ℎ = 𝒫𝑠−1(𝑓) is defined by 𝑓𝑛,𝑗.  

Our goal is to obtain an implicit system of equations for 𝑢𝑛,𝑖, 1 ≤ 𝑖 ≤ 𝑠, as shown below in (3.22) 

(these values define 𝑢ℎ). To this end, at each right Radau point 𝜉𝑅,𝑖, since 𝑔(𝜉𝑅,𝑖) = 0, by evaluating the 

above at 𝜉𝑅,𝑖 and by using (3.6),  

 
∑ 𝑢𝑛,𝑗 𝑙𝑗(𝜉𝑅,𝑖)

𝑠

𝑗=1
= 𝑢𝑛 + ℎ ∑ 𝑓𝑛,𝑗 𝑙𝑗(𝜉𝑅,𝑖)

𝑠

𝑗=1
. (3.11) 

Note (3.11) does not hold at points other than right Radau.  

Concerning the left-hand side above, with ‘R’ for ‘right’ Radau or ‘row’, and ‘Q’ for ‘quadrature’ or 

‘column’, denote the matrix 

 𝑴𝑅𝑄 = {𝑙𝑗(𝜉𝑅,𝑖)}
𝑖,𝑗=1

𝑠
. (3.12) 

For the following row vectors of values at quadrature points, denote the corresponding column vectors by 

 
𝒖𝑛 = ((𝑢𝑛,𝑗)

𝑗=1

𝑠
)

𝑇
,   𝒇𝑛 = ((𝑓𝑛,𝑗)

𝑗=1

𝑠
)

𝑇
,   and  𝟏 = (1,1, … 1)𝑇  

where the superscript ‘T’ represents the transpose. When it does not cause confusion, we simply use the 

index 𝑖 and the notation (𝑢𝑛,𝑖)
𝑖=1

𝑠
 for a column vector. Then, by (3.4), the left-hand side of (3.11) implies 

 
(𝑢ℎ(𝜉𝑅,𝑖))

𝑖=1

𝑠
= (∑ 𝑢𝑛,𝑗 𝑙𝑗(𝜉𝑅,𝑖)

𝑠

𝑗=1
)

𝑖=1

𝑠

= 𝑴𝑅𝑄 ∙ 𝒖𝑛. (3.13) 

That is, with 𝒖𝑛 the (column) vector of values at the quadrature points, which determines 𝑢ℎ, the vector 

of values of 𝑢ℎ at the right Radau points is given by the matrix-vector product 𝑴𝑅𝑄 ∙ 𝒖𝑛.  

𝑙1 

𝑙2 

𝑙3 

𝜉 

𝑢 𝑢 

𝜉 

𝜉1 𝜉2 𝜉3 𝜉𝑅,1 𝜉𝑅,2 𝜉𝑅,3 

Quadrature points 𝜉𝑗 
 

Right Radau points 𝜉𝑅,𝑗 

𝑙1 

𝑙2 

𝑙3 



13 

 

 

Concerning the right-hand side of (3.11), with ‘R’ for ‘right’ Radau and ‘I’ for ‘integral’, denote  

 
𝑴𝑅𝐼 = {∫ 𝑙𝑗(𝜂)𝑑𝜂

𝜉𝑅,𝑖

0

}
𝑖,𝑗=1

𝑠

= {𝑙𝑗(𝜉𝑅,𝑖)}
𝑖,𝑗=1

𝑠
. (3.14) 

As in (3.8), for each fixed 𝑖, the 𝑖-th row of 𝑴𝑅𝐼, i.e., the row vector {𝑙𝑗(𝜉𝑅,𝑖)}
𝑗=1

𝑠
,  provides the weights 

for a quadrature formula with evaluation points 𝜉𝑗, 1 ≤ 𝑗 ≤ 𝑠, for the integral from 0 to 𝜉𝑅,𝑖: 

 
∫ 𝑓ℎ(𝜂)𝑑𝜂

𝜉𝑅,𝑖

0

= 𝑓ℎ(𝜉𝑅,𝑖) = ∑ 𝑓𝑛,𝑗 𝑙𝑗(𝜉𝑅,𝑖)
𝑠

𝑗=1
.  

The quadrature formula has a degree of precision of only 𝑠 − 1, except when 𝑖 = 𝑠, where the degree of 

precision is 2𝑠 − 2 or 2𝑠 − 1. The rightmost hand side above is the 𝑖-th row of the vector 𝑴𝑅𝐼 ∙ 𝒇𝑛, and 

 (𝑓ℎ(𝜉𝑅,𝑖))
𝑖=1

𝑠
= 𝑴𝑅𝐼 ∙ 𝒇𝑛. (3.15) 

That is, multiplying by 𝑴𝑅𝐼 (on the left) yields the vector of the integration from 0 to the right Radau 

points. For later use, concerning the components, with each fixed 𝑗, by replacing 𝑓ℎ by 𝑙𝑗 in the above, 

 (𝑙𝑗(𝜉𝑅,𝑖))
𝑖=1

𝑠
= 𝑴𝑅𝐼 ∙ (𝑙𝑗(𝜉𝑖))

𝑖=1

𝑠
. (3.16) 

Here, the column vector (𝑙𝑗(𝜉𝑖))
𝑖=1

𝑠
 has all zero entries except the 𝑗-th entry, i.e., 𝑖-th row where 𝑖 = 𝑗, 

which equals 1 since 𝑙𝑗(𝜉𝑖) = 𝛿𝑖𝑗 , and the right-hand side above yields the 𝑗-th column of 𝑴𝑅𝐼. 

Fig. 3.1b shows the entries of 𝑴𝑅𝐼 as red round dots (corresponding to the setting in Fig. 3.1a). Here, 

again the quadrature points are the 3 left Radau points. For each fixed 𝑖, the 𝑖-th row of 𝑴𝑅𝐼 consists of 

the values of the three red round dots on the vertical line through the right Radau point 𝜉 = 𝜉𝑅,𝑖. For each 

fixed 𝑗, the 𝑗-th column of 𝑴𝑅𝐼 consists of the values of the three red round dots on the curve 𝑙𝑗. 

Continuing with the derivation of the IRK method, using (3.13) and (3.15), Eq. (3.11) implies 

 𝑴𝑅𝑄 ∙ 𝒖𝑛 = 𝑢𝑛𝟏 + ℎ 𝑴𝑅𝐼 ∙ 𝒇𝑛. (3.17) 

To obtain 𝑴𝑅𝑄
−1 , denote the Lagrange polynomials for the right Radau points by 𝑙𝑅,𝑗, 1 ≤ 𝑗 ≤ 𝑠. Set 

 𝑴𝑄𝑅 = {𝑙𝑅,𝑗(𝜉𝑖)}
𝑖,𝑗=1

𝑠
. (3.18) 

Suppose the vector 𝒗 of the 𝑠 values 𝑣𝑅,1, …, 𝑣𝑅,𝑠 at the right Radau points is known; 𝒗 determines a 

polynomial 𝑣 of degree 𝑠 − 1. The vector of values of 𝑣 at the quadrature points is given by 𝑴𝑄𝑅 ∙ 𝒗.   

With 𝑰 denoting the 𝑠 × 𝑠 identity matrix, we next show that 

 𝑴𝑄𝑅 ∙ 𝑴𝑅𝑄 = 𝑰. (3.19) 

Indeed, let 𝑤 be a polynomial of degree 𝑠 − 1, and let 𝒘𝑄 be the vector of values of 𝑤 at the quadrature 

points. Then 𝒘𝑅 = 𝑴𝑅𝑄 ∙ 𝒘𝑄 is the vector of values of 𝑤 at the right Radau points, and 𝒘𝑅 also defines a 

polynomial identical to 𝑤. Next, the vector of values of 𝑤 at the quadrature points is given by 𝑴𝑄𝑅 ∙ 𝒘𝑅, 

which is identical to 𝒘𝑄; thus, (3.19) follows. 

The constant function 1 takes on the value 1 at all points, as a result, 

 𝑴𝑄𝑅 ∙ 𝟏 = 𝑴𝑅𝑄 ∙ 𝟏 = 𝟏.  

Multiply (3.17) on the left by 𝑴𝑄𝑅 and using the above two equations, we obtain 

 𝒖𝑛 = 𝑢𝑛𝟏 + ℎ 𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼 ∙ 𝒇𝑛, (3.20) 

where 𝒖𝑛 = (𝑢𝑛,𝑖)
𝑖=1

𝑠
 and 𝒇𝑛 = (𝑓𝑛,𝑖)

𝑖=1

𝑠
. Next, set 

 𝑨 =  𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼, (3.21) 

Then the resulting IRK-DG method follows from (3.20): 

 𝒖𝑛 = 𝑢𝑛𝟏 + ℎ 𝑨 ∙ 𝒇𝑛. (3.22) 
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In summary, the DG method using a quadrature with 𝑠 evaluation points 𝜉𝑖’s and of a degree of 

precision 2𝑠 − 2 or higher results in an 𝑠-stage IRK scheme with a Butcher tableau (see also Table 3.1 

below) defined by, for 1 ≤ 𝑖, 𝑗 ≤ 𝑠, the stages 𝑐𝑖 = 𝜉𝑖 (leftmost column), the quadrature weights 𝑏𝑗 at 𝜉𝑗 

(bottom row), and with 𝑴𝑄𝑅 by (3.18) and 𝑴𝑅𝐼 by (3.14), the matrix 𝑨 (upper right matrix) where 

 𝑨 = (𝑎𝑖𝑗)
𝑖,𝑗=1

𝑠
= 𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼. (3.23) 

Eq. (3.22) can be written in a more familiar form: for 1 ≤ 𝑖 ≤ 𝑠, 

 
𝑢𝑛,𝑖 = 𝑢𝑛 + ℎ ∑ 𝑎𝑖,𝑗𝑓(𝜉𝑗, 𝑢𝑛,𝑗)

𝑠

𝑗=1
. (3.24) 

With 𝑢𝑛,𝑖 by the above implicit system of equations, and 𝑓𝑛,𝑗 = 𝑓(𝜉𝑗, 𝑢𝑛,𝑗), the solution is given by  

 
𝑢𝑛+1 = 𝑢𝑛 + ℎ ∑ 𝑏𝑗𝑓𝑛,𝑗

𝑠

𝑗=1
. (3.25) 

The vector 𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼 ∙ 𝒇𝑛 =  𝑨 ∙ 𝒇𝑛 in (3.20) plays an important role. Its meaning is discussed below.  

The vector 𝑴𝑅𝐼 ∙ 𝒇𝑛 = (𝑓ℎ(𝜉𝑅,𝑖))
𝑖=1

𝑠
 given by (3.15) is the vector of values of 𝑓ℎ at the 𝑠 right Radau 

points. These 𝑠 values define a polynomial of degree 𝑠 − 1 denoted by 𝑟, which is generally different from 

𝑓ℎ of degree 𝑠. Then, 𝑴𝑄𝑅 ∙ (𝑓ℎ(𝜉𝑅,𝑖))
𝑖=1

𝑠
 yields the vector of values of 𝑟 at the quadrature points: 

 (𝑟(𝜉𝑖))
𝑖=1

𝑠
= 𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼 ∙ 𝒇𝑛 = 𝑨 ∙ 𝒇𝑛. (3.26) 

Concerning the components, for each fixed 𝑗, the 𝑠 values 𝑙𝑗(𝜉𝑅,𝑖) at the right Radau points, 1 ≤ 𝑖 ≤ 𝑠, 

define a polynomial denoted by 𝑟𝑗 of degree 𝑠 − 1, which is different from 𝑙𝑗 of degree 𝑠; and 

 (𝑟𝑗(𝜉𝑖))
𝑖=1

𝑠
= 𝑴𝑄𝑅 ∙ (𝑙𝑗(𝜉𝑅,𝑖))

𝑖=1

𝑠
= 𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼 ∙ (𝑙𝑗(𝜉𝑖))

𝑖=1

𝑠
 (3.27) 

where the second equality follows from (3.16). Since 𝑴𝑄𝑅 ∙ 𝑴𝑅𝐼 = 𝑨, the above implies  

 (𝑟𝑗(𝜉𝑖))
𝑖=1

𝑠
= 𝑨 ∙ (𝑙𝑗(𝜉𝑖))

𝑖=1

𝑠
.  

Since 𝑙𝑗(𝜉𝑖) = 𝛿𝑖𝑗 , for each fixed 𝑗, the product 𝑨 ∙ (𝑙𝑗(𝜉𝑖))
𝑖=1

𝑠
 yields the 𝑗-th column of 𝑨. In other words, 

for 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 

 𝑎𝑖𝑗 =  𝑟𝑗(𝜉𝑖). (3.28) 

The above argument implies that multiplying a vector 𝒇𝑛 by 𝑨 (on the left) yields a vector, which is an 

approximation (via 𝑟) to the integration of 𝑓ℎ from 0 to the quadrature points 𝜉𝑖, 1 ≤ 𝑖 ≤ 𝑠. In other words, 

𝑨 corresponds to quadrature formulas: for each fixed 𝑖, the 𝑖-th row of 𝑨 corresponds to the weights of a 

quadrature formula for the integration from 0 to 𝜉𝑖 with quadrature points 𝜉𝑗 and quadrature weights 𝑎𝑖𝑗, 

1 ≤ 𝑗 ≤ 𝑠. Due to the approximation by 𝑟𝑖, we expect a reduction in the degree of precision by 1 as will 

be discussed when dealing with condition 𝐶(𝜂) for accuracy after (4.3). 

Regarding the solution 𝑢ℎ, using the above, Eq. (3.24) implies, for each 𝑖, 1 ≤ 𝑖 ≤ 𝑠, 

 
𝑢𝑛,𝑖 = 𝑢𝑛 + ℎ ∑ 𝑓𝑛,𝑗𝑟𝑗(𝜉𝑖)

𝑠

𝑗=1
.  

Then, 𝑢ℎ of degree 𝑠 − 1, defined by the values 𝑢𝑛,𝑖’s above at the quadrature points, is given by 

 
𝑢ℎ =  𝑢𝑛 + ℎ ∑ 𝑓𝑛,𝑗 𝑟𝑗

𝑠

𝑗=1
.  

That is, if 𝑓𝑛,𝑗, 1 ≤ 𝑗 ≤ 𝑠, are known, the solution polynomial 𝑢ℎ can be obtained by the above. 

Fig. 3.2 shows, for 𝑠 = 2 (i.e., 𝑘 = 1), the entries of 𝑨 (big square dots) of the Butcher tableau. The 

IRK-DG method has quadrature points 𝜉𝑖’s (small black squares) of type (a) left Radau, (b) Gauss, and (c) 

right Radau. For each fixed 𝑗, the quadratic 𝑙𝑗 is shown by the thin curve, and the values of 𝑙𝑗 at the two 

right Radau points are given by the two red round dots; these values determine a linear function 𝑟𝑗 shown 

by the thick line. The two values 𝑟𝑗(𝜉𝑖) at the quadrature points 𝜉𝑖, 1 ≤ 𝑖 ≤ 2, shown as big square dots, 
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form the 𝑗-th column of the matrix 𝑨. For each fixed 𝑖, the entries for the 𝑖-th row of 𝑨 are represented by 

the large square dots on the vertical line 𝜉 = 𝜉𝑖. Note that in Fig. 3.2c, since the quadrature points are also 

the right Radau points, the red round dots are identical to and appear on top of the large square dots. 

Table 3.1 shows, for 𝑠 = 2, the Butcher tableaux of the IRK-DG methods where, similar to Fig. 3.2,  

the quadrature is of type (a) left Radau, (b) Gauss, and (c) right Radau. Here, the values for the entries of 

𝑨 match the values at the large square dots of Fig. 3.2. Also note that Table 3.1a corresponds to the Radau 

IA method and Table 3.1c to Radau IIA (Ehle 1969, Axelsson 1969). The IRK-DG method of Table 3.1b, 

derived here constructively via the correction function, was derived algebraically in (Bottasso 1997, Tang 

& Sun 2012); it is called DG-Gauss here. 

 

 

 
(a)  

 
(b)  

 
(c)  

Fig. 3.2 The entries of 𝑨 of the Butcher tableau for the DG method with 𝑠 = 2 represented by big square 

dots; each 𝑖-th row of 𝑨 corresponds to the values on the vertical line at 𝜉 = 𝜉𝑖. The quadrature points 𝜉𝑖’s 

(small black squares) are of type (a) left Radau, (b) Gauss, and (c) right Radau. The quadratic 𝑙𝑗 is shown 

by the thin curve, and the values of 𝑙𝑗 at the two right Radau points are given by the two red round dots; 

these values determine a linear function 𝑟𝑗 shown by the thick line; and 𝑨 = {𝑟𝑗(𝜉𝑖)}
𝑖,𝑗=1

2
.   

 

 

Table 3.1 Butcher tableaux for the IRK-DG method with 𝑠 = 2.  

     (a) Radau IA (left Radau)   (b) DG-Gauss    (c) Radau IIA (right Radau) 

 0 
1

4
  −

1

4
    1

2
−

√3

6
  

1

3
  

1−√3

6
  

  1

3
  

5

12
  −

1

12
   

 2

3
  

1

4
  

5

12
    1

2
+

√3

6
  

1+√3

6
  

1

3
    1  

3

4
  

1

4
   

  1

4
  

3

4
     1

2
  

1

2
     3

4
  

1

4
   

 

The DG-Gauss method corresponding to Fig. 3.2b and Table 3.1b is, as will be discussed, third-order 

accurate. For comparison, the Gauss collocation method, which is fourth order accurate, has the same 𝑐𝑖’s 

and 𝑏𝑗’s, but {𝑎11, 𝑎12} = {
1

4
,

1

4
−

√3

6
}, and {𝑎21, 𝑎22} = {

1

4
+

√3

6
,

1

4
}; this method gains in accuracy and is 

also A-stable, but as opposed to IRK-DG, it has the disadvantage of not being L-stable (discussed later). 

Fig. 3.3 is the analogous to Fig. 3.2 except 𝑠 = 3. Again, for each fixed 𝑖, the entries for the 𝑖-th row 

of 𝑨 are represented by the large square dots on the vertical line 𝜉 = 𝜉𝑖. 

Table 3.2 shows the Butcher tableaux of the IRK-DG methods with 𝑠 = 3 where the quadrature is of 

type (a) left Radau and (b) right Radau. Again, the entries of 𝑨 match the values at the large square dots 

of Figs. 3.3a and 3.3c. Tables 3.2a yields Radau IA and Table 3.2b yields Radau IIA methods. 

Table 3.3 shows, again for 𝑠 = 3, the Butcher tableaux for (a) the IRK-DG method with Gauss 

quadrature (accuracy order 5) and, for comparison, (b) the Gauss collocation method (accuracy order 6).  

 

𝑙2 

𝜉 

𝜉1 𝜉2 

𝑟1 

𝑟2 

𝑙1 𝑙2 

𝜉1 𝜉2 

𝑟1 

𝑟2 

𝑙1 𝑢 𝑢 

𝜉 

𝑙2 

𝜉 

𝜉1 
𝜉2 

𝑟1 

𝑟2 
𝑙1 

𝑢 
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   (a) 

 
(b)  

 
(c)  

Fig. 3.3 The entries of 𝑨 for the DG method with 𝑠 = 3 represented by big square dots. The quadrature 

points 𝜉𝑖’s (small black squares) are of type (a) left Radau, (b) Gauss, and (c) right Radau. 

 

 

Table 3.2 Butcher tableaux for the IRK-DG methods with 𝑠 = 3.  

(a)  Radau IA (left Radau) (b) Radau IIA (right Radau) 

0  
1

9
  

−1−√6

18
  

−1+√6

18
   

4−√6

10
  

88−7√6

360
  

296−169√6

1800
  

−2+3√6

225
  

6−√6

10
  

1

9
  

88+7√6

360
  

88−43√6

360
   

4+√6

10
  

296+169√6

1800
  

88+7√6

360
  

−2−3√6

225
  

6+√6

10
  

1

9
  

88+43√6

360
  

88−7√6

360
   1 

16−√6

36
  

16+√6

36
  

1

9
  

 
1

9
  

16+√6

36
  

16−√6

36
    

16−√6

36
  

16+√6

36
  

1

9
  

 

 

Table 3.3 Butcher tableaux with 𝑠 = 3  

(a) DG-Gauss (order 5) (b) Gauss collocation (order 6) 

1

2
−

√15

10
  

29

180
  

8−3√15

45
  

29−6√15

180
   

1

2
−

√15

10
   

5

36
  

2

9
−

√15

15
  

5

36
−

√15

30
  

1

2
  

8+3√15

72
   

5

18
  

8−3√15

72
   

1

2
  

5

36
+

√15

24
  

2

9
  

5

36
−

√15

24
  

1

2
+

√15

10
  

29+6√15

180
  

8+3√15

45
  

29

180
   

1

2
+

√15

10
  

5

36
+

√15

30
  

2

9
+

√15

15
  

5

36
  

 
5

18
  

4

9
  

5

18
    

5

18
  

4

9
  

5

18
  

 

 

IRK-DG Method under Right Radau Quadrature 

For this case, as discussed in the proposition after (2.40), the DG method is equivalent to the collocation 

method with the right Radau points as collocation points as well as the CG method under the right Radau 

quadrature. The resulting IRK method is straightforward: the matrix 𝑨 is given by, for 1 ≤ 𝑖, 𝑗 ≤ 𝑠, 

 
𝑎𝑖,𝑗 =  𝑙𝑅,𝑗(𝜉𝑅,𝑖) = ∫ 𝑙𝑅,𝑗(𝜂)𝑑𝜂

𝜉𝑅,𝑖

0

.  

The above is also a consequence of 𝑴𝑅𝑄 = 𝑴𝑄𝑅 = 𝑰. This IRK-DG scheme is called Radau IIA in the 

literature (e.g., Hairer & Wanner 1991). 

Note that if the quadrature points are not of right Radau type (e.g., left Radau or Gauss type), then the 

corresponding collocation method is different from the DG method using such a quadrature. 

 

𝜉 
𝑙2 

𝑙1 
𝑙2 

𝑙3 

𝜉 

𝜉1 𝜉2 𝜉3 

𝑟1 

𝑟2 

𝑟3 

𝑙1 

𝑙3 

𝜉1 𝜉2 𝜉3 

𝑟1 

𝑟2 
𝑟3 

𝑙2 

𝑙1 

𝑙3 

𝜉1 𝜉2 𝜉3 

𝑟1 
𝑟2 

𝑟3 

𝑢 𝑢 

𝜉 

𝑢 
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IRK-DG Method under Left Radau Quadrature  

For this case, with 𝑓𝐿,𝑗 = 𝑓(𝜉𝐿,𝑖, 𝑢𝐿,𝑗), 1 ≤ 𝑗 ≤ 𝑠, Eqs. (2.19) and (2.20) provide a system of 𝑠 equations 

for 𝑠 unknowns 𝑢𝐿,𝑖, 1 ≤ 𝑖 ≤ 𝑠. An elegant derivation of the corresponding IRK method using the left 

Radau quadrature can be found in LeSaint & Raviart (1974). Although not mentioned in the cited 

reference, as discussed below, the result is an IRK method identical to Radau IA.  

  

4     Accuracy 
 

The following conditions play a crucial role in the orders of accuracy of RK methods as well as the 

uniqueness of the Radau type schemes. Condition 𝐶(𝜂) and especially 𝐷(𝜁) are typically not easy to grasp. 

Using the IRK construction in the previous section, these conditions for the IRK-DG methods are relatively 

simple to interpret and easy to prove. Condition 𝐶(𝜂) amounts to a degree of precision of 𝜂 − 1 for certain 

quadratures, and 𝐷(𝜁) relates to the projection of the polynomial 𝑟𝑗 defined by (3.28) onto 𝑷𝜁−1. For more 

on these conditions applied to general IRK methods, see, e.g., Hairer & Wanner (1991). 

With quadrature points 𝜉𝑖, Butcher tableau with stage levels 𝑐𝑖 = 𝜉𝑖 (leftmost column), quadrature 

weights 𝑏𝑗 at 𝜉𝑗 (bottom row), and matrix 𝑨 = {𝑎𝑖𝑗} (upper right), 1 ≤ 𝑖, 𝑗 ≤ 𝑠, the conditions are: 

𝐵(𝑝): ∑ 𝑏𝑖𝑐𝑖
𝑞−1

𝑠

𝑖=1
=

1

𝑞
   𝑞 = 1, … , 𝑝 ; 

𝐶(𝜂): ∑ 𝑎𝑖𝑗𝑐𝑗
𝑞−1

𝑠

𝑗=1
=

𝑐𝑖
𝑞

𝑞
   𝑖 = 1, … , 𝑠,   𝑞 = 1, … , 𝜂 ; 

𝐷(𝜁): ∑ 𝑏𝑖𝑐𝑖
𝑞−1

𝑎𝑖𝑗

𝑠

𝑖=1
=

𝑏𝑗

𝑞
(1 − 𝑐𝑗

𝑞
)   𝑗 = 1, … , 𝑠,   𝑞 = 1, … , 𝜁 . 

 

Butcher’s Theorem. If the coefficients 𝑏𝑖, 𝑐𝑖, and 𝑎𝑖𝑗 of an RK method satisfy 𝐵(𝑝), 𝐶(𝜂), 𝐷(𝜁) with 

𝑝 ≤ 2𝜂 + 2 and 𝑝 ≤ 𝜂 + 𝜁 + 1, then the method is of order 𝑝. 

In other words, if conditions 𝐵(𝑝), 𝐶(𝜂), 𝐷(𝜁) hold for highest possible integer values of 𝑝, 𝜂, and 𝜁, 

then the method is of order Min(𝑝, 2𝜂 + 2, 𝜂 + 𝜁 + 1). 

 

Condition 𝐵(𝑝)  

This condition means the quadrature has a degree of precision 𝑝 − 1 or of order 𝑝, i.e., it is exact for 

any polynomial 𝑣 of degree 𝑝 − 1 or less: 

 
∫ 𝑣(𝜉)𝑑𝜉

1

0

= ∑ 𝑏𝑗𝑣(𝜉𝑗)
𝑠

𝑗=1
.  

Concerning IRK-DG, for the Radau quadratures, condition 𝐵(2𝑠 − 1) holds, and for Gauss, 𝐵(2𝑠). 

 

Condition 𝐶(𝜂)   

This condition means for each 𝑖, 1 ≤ 𝑖 ≤ 𝑠, the following quadrature with weights 𝑎𝑖𝑗, 1 ≤ 𝑗 ≤ 𝑠, has 

a degree of precision 𝜂 − 1: for any 𝑣 in 𝑷𝜂−1, 

 
∫ 𝑣(𝜉)𝑑𝜉

𝑐𝑖

0

= ∑ 𝑎𝑖𝑗𝑣(𝜉𝑗)
𝑠

𝑗=1
. (4.1) 

Indeed, with 𝑖 and 𝑞 fixed, by applying the quadrature rule of weights 𝑎𝑖𝑗 at quadrature points 𝜉𝑗, 1 ≤ 𝑗 ≤

𝑠,  we have the following approximation: ∫ 𝜉𝑞−1𝑑𝜉
𝑐𝑖

0
≈ ∑ 𝑎𝑖𝑗𝜉𝑗

𝑞−1𝑠
𝑗=1 . If the quadrature is exact, then 

 
∑ 𝑎𝑖𝑗𝜉𝑗

𝑞−1
𝑠

𝑗=1
=

𝑐𝑖
𝑞

𝑞
. (4.2) 

The monomials 𝜉𝑞−1, 𝑞 = 1, … , 𝜂, form a basis for 𝑷𝜂−1. Due to linearity, the fact that the above holds 

for 𝑞 = 1, … , 𝜂 is equivalent to the fact that (4.1) holds for all 𝑣 in 𝑷𝜂−1, and the claim follows.  
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Condition 𝐶(𝑠) holds for the DG method under the right Radau quadrature, 

Indeed, with such a quadrature, the DG method is equivalent to the right Radau collocation method as 

shown by the proposition before (2.41). Thus, for each 𝑖, 1 ≤ 𝑖 ≤ 𝑠, the quadrature formula 

 
∫ 𝑓ℎ(𝜂)𝑑𝜂

𝜉𝑅,𝑖

0

= ∑ 𝑓𝑅,𝑗 𝑙𝑅,𝑗(𝜉𝑅,𝑖)
𝑠

𝑗=1
= ∑ 𝑎𝑖𝑗𝑓𝑅,𝑗

𝑠

𝑗=1
 (4.3) 

is exact for any 𝑓ℎ in 𝑷𝑠−1 and the above claim of 𝐶(𝑠) follows. 

Condition 𝐶(𝑠 − 1) holds for an IRK-DG method under any quadrature of degree of precision 2𝑠 − 2 

or higher. In other words, the degree of precision of (4.1) is reduced by 1, a consequence of 𝑟𝑗 of degree 

𝑠 − 1 approximating 𝑙𝑗 of degree 𝑠 to one degree lower as discussed in (3.26)-(3.28).  

To prove condition 𝐶(𝑠 − 1), with 1 ≤ 𝑞 ≤ 𝑠 − 1, set 

 𝑣(𝜉) = 𝜉𝑞−1. (4.4) 

Note that 𝑣(𝜉) = ∑ 𝜉𝑗
𝑞−1

𝑙𝑗(𝜉)𝑠
𝑗=1  is of degree ≤ 𝑠 − 2 (in spite of each 𝑙𝑗 being of degree 𝑠 − 1). Next,  

 
𝑣̃(𝜉) = ∫ 𝑣(𝜏)𝑑𝜏

𝜉

0

=
𝜉𝑞

𝑞
= ∑ 𝜉𝑗

𝑞−1
𝑙𝑗(𝜉)

𝑠

𝑗=1
  

is of degree 𝑞 ≤ 𝑠 − 1 (in spite of each 𝑙𝑗 being of degree 𝑠). Consequently, the 𝑠 values of 𝑣̃ at the right 

Radau points, namely 𝑣̃(𝜉𝑅,𝑖), 𝑖 = 1, … , 𝑠, determine a polynomial 𝑟 identical to 𝑣̃: 

 
𝑟(𝜉) = 𝑣̃(𝜉) =

𝜉𝑞

𝑞
.  

(Here, if 𝑞 = 𝑠, i.e., 𝑣(𝜉) = 𝜉𝑠−1, then 𝑟 has degree 𝑠 − 1, 𝑣̃ has degree 𝑠, 𝑟 ≠ 𝑣̃, and the argument fails.) 

For each fixed 𝑖, by (3.26), 

 
𝑟(𝜉𝑖) = ∑ 𝑎𝑖𝑗𝜉𝑗

𝑞−1
𝑠

𝑗=1
.  

The above two equations imply, since 𝑐𝑖 = 𝜉𝑖, for 1 ≤ 𝑖 ≤ 𝑠, and 1 ≤ 𝑞 ≤ 𝑠 − 1 

 
∑ 𝑎𝑖𝑗𝑐𝑗

𝑞−1
𝑠

𝑗=1
=

𝑐𝑖
𝑞

𝑞
 .  

This completes the proof. 

 

Condition 𝐷(𝜁).  

This condition relates to the projection of 𝑟𝑗 onto 𝑷𝜁−1 as follows. For each fixed 𝑗, 𝑟𝑗 defined by (3.27) 

is of degree 𝑠 − 1. If 𝑣 is of degree 𝑠 − 1 or less, then 𝑣𝑟𝑗 is of degree 2𝑠 − 2 or less. Since the quadrature 

associated with 𝜉𝑖’s has a degree of precision 2𝑠 − 2 or higher, 

 
∫ 𝑣(𝜉) 𝑟𝑗(𝜉)𝑑𝜉

1

0

= ∑ 𝑏𝑖𝑣(𝜉𝑖)𝑟𝑗(𝜉𝑖)
𝑠

𝑖=1
= ∑ 𝑏𝑖𝑣(𝜉𝑖)𝑎𝑖𝑗

𝑠

𝑖=1
, (4.5) 

where the last equality follows since 𝑟𝑗(𝜉𝑖) = 𝑎𝑖𝑗 by (3.28). Next, similar to (4.4), but with 1 ≤ 𝑞 ≤ 𝑠, set  

𝑣(𝜉) = 𝜉𝑞−1. Then 𝑣 is of degree 𝑠 − 1 or less. Eq. (4.5) implies,  

 
(𝑟𝑗, 𝜉𝑞−1) = ∫ 𝜉𝑞−1 𝑟𝑗(𝜉)𝑑𝜉

1

0

= ∑ 𝑏𝑖𝜉𝑖
𝑞−1

𝑎𝑖𝑗

𝑠

𝑖=1
. (4.6) 

The above determines the projection of 𝑟𝑗 onto 𝑷𝑠−1 by using the quadrature associated with 𝜉𝑖’s. 

Thus, condition 𝐷(𝜁) means for all 𝑗, the projection of 𝑟𝑗 onto 𝑷𝜁−1 is given exactly by the quadrature 

associated with 𝜉𝑖’s. We can now show the following. 

Condition 𝐷(𝑠 − 1) holds for an IRK-DG method under any quadrature of degree of precision 2𝑠 − 2 

or higher. The condition resulting in 𝐷(𝑠) will be discussed following the completion of this proof. 
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Indeed, the key to the proof is to replace 𝑟𝑗 by 𝑙𝑗 in the left-hand side above. With 1 ≤ 𝑞 ≤ 𝑠 − 1, or 

𝑞 − 1 ≤ 𝑠 − 2, we focus on the projection of 𝑟𝑗 onto 𝑷𝑠−2. By employing the 𝑠-point right Radau 

quadrature, and since 𝑙𝑗 − 𝑟𝑗 vanishes at the right Radau points (𝑟𝑗 interpolates 𝑙𝑗 at the right Radau points), 

 (𝑙𝑗 − 𝑟𝑗, 𝜉𝑞−1) = 0.  (4.7) 

That is, 𝑙𝑗  and 𝑟𝑗 have the same projection onto 𝑷𝑠−2: 

 
∫ 𝜉𝑞−1 𝑟𝑗(𝜉)𝑑𝜉

1

0

= ∫ 𝜉𝑞−1 𝑙𝑗(𝜉)𝑑𝜉
1

0

. (4.8) 

Concerning the right-hand side above, by integration by parts, 

 
∫ 𝜉𝑞−1 𝑙𝑗(𝜉)𝑑𝜉

1

0

=
1

𝑞
[𝜉𝑞 𝑙𝑗]

0

1
−

1

𝑞
∫ 𝜉𝑞 𝑙𝑗(𝜉)𝑑𝜉

1

0

. (4.9) 

For the last term above, since 𝑙𝑗(𝜉𝑖) = 𝛿𝑖𝑗, and 𝜉𝑗 = 𝑐𝑗, by applying the quadrature, 

 
∫ 𝜉𝑞 𝑙𝑗(𝜉)𝑑𝜉

1

0

= 𝑏𝑗𝑐𝑗
𝑞

.  

Substituting the above into (4.9), we obtain 

 
∫ 𝜉𝑞−1 𝑙𝑗(𝜉)𝑑𝜉

1

0

=
𝑏𝑗

𝑞
(1 − 𝑐𝑗

𝑞
).  

Finally, by (4.8), (4.6), and the above, for 1 ≤ 𝑞 ≤ 𝑠 − 1, 

 
∑ 𝑏𝑖𝑐𝑖

𝑞−1
𝑎𝑖𝑗

𝑠

𝑖=1
=

𝑏𝑗

𝑞
(1 − 𝑐𝑗

𝑞
). (4.10) 

This completes the proof. 

Condition 𝐷(𝑠) holds for the DG method under the left Radau quadrature.  

Indeed, we wish to show (4.10) for 1 ≤ 𝑞 ≤ 𝑠. To this end, since 𝑞 − 1 ≤ 𝑠 − 1, for the projection of 

𝑟𝑗 onto 𝑷𝑠−1, consider (𝑟𝑗, 𝜉𝑞−1). We have, by using the quadrature, which is of left Radau type here, 

 
(𝑟𝑗, 𝜉𝑞−1) = ∫ 𝜉𝑞−1 𝑟𝑗(𝜉)𝑑𝜉

1

0

= ∑ 𝑏𝑖𝑐𝑖
𝑞−1

𝑎𝑖𝑗

𝑠

𝑖=1
. (4.11) 

To prove (4.10) for 1 ≤ 𝑞 ≤ 𝑠, first, consider the case 𝑗 = 1. Since 𝑙1 = 𝑙𝐿,1, by (2.21), 𝑙1 = −𝑔′/𝑠2. 

Consequently, 𝑙1 = constant − 𝑔/𝑠2. Next, since  𝑙1(0) = 0, and 𝑔(0) = 1, 

 
 𝑙1 =

1 − 𝑔

𝑠2
. (4.12) 

At the right Radau points, 𝑔(𝜉𝑅,𝑖) = 0, 𝑖 = 1, … , 𝑠; therefore,  𝑙1(𝜉𝑅,𝑖) = 1/𝑠2. Thus, 𝑟1 defined by 

 𝑙1(𝜉𝑅,𝑖), 1 ≤ 𝑖 ≤ 𝑠, is a constant function: 𝑟1(𝜉) = 1/𝑠2. As a result, for 1 ≤ 𝑖 ≤ 𝑠, 

 
𝑎𝑖1 = 𝑟1(𝜉𝑖) =

1

𝑠2
= 𝑏1.  

Consequently, for 1 ≤ 𝑞 ≤ 𝑠, 

 
∑ 𝑏𝑖𝑐𝑖

𝑞−1
𝑎𝑖1

𝑠

𝑖=1
= 𝑏1 ∑ 𝑏𝑖𝑐𝑖

𝑞−1
𝑠

𝑖=1
= 𝑏1 ∫ 𝜉𝑞−1𝑑𝜉

1

0

=
𝑏1

𝑞
. (4.13) 

That is, (4.10) holds with 1 ≤ 𝑞 ≤ 𝑠 for 𝑗 = 1.  

For 𝑗 ≥ 2, again with 1 ≤ 𝑞 ≤ 𝑠, by applying integration by parts to (𝜉𝑞−1, 𝑟𝑗), 

 
∫ 𝜉𝑞−1 𝑟𝑗(𝜉)𝑑𝜉

1

0

=
1

𝑞
[𝜉𝑞 𝑟𝑗]

0

1
−

1

𝑞
∫ 𝜉𝑞 𝑟𝑗

′(𝜉)𝑑𝜉
1

0

. (4.14) 

Since the quadrature points are the left Radau points, 𝑟𝑗(1) = 𝑙𝐿,𝑗(1) = 𝑏𝐿,𝑗 = 𝑏𝑗. Thus, 
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 [𝜉𝑞 𝑟𝑗]
0

1
= 𝑏𝑗 .  (4.15) 

Next, note that 𝑙𝐿,𝑗 − 𝑟𝑗 is of degree 𝑠 and vanishes at the right Radau points; therefore, 𝑙𝐿,𝑗 − 𝑟𝑗 = 𝑐𝑔 for 

some constant 𝑐. Since 𝑔′ vanishes at all left Radau points except at 𝜉 = 0, we have, for  2 ≤ 𝑖 ≤ 𝑠, 

 𝑟𝑗
′(𝜉𝐿,𝑖) = 𝑙𝐿,𝑗

′ (𝜉𝐿,𝑖) = 𝑙𝐿,𝑗(𝜉𝐿,𝑖) = 𝛿𝑖𝑗 .   

By applying the left Radau quadrature to the last term of (4.14), the above implies, for 1 ≤ 𝑞 ≤ 𝑠, 

 
∫ 𝜉𝑞 𝑟𝑗

′(𝜉)𝑑𝜉
1

0

= ∑ 𝑏𝐿,𝑖𝜉𝐿,𝑖
𝑞

𝑟𝑗
′(𝜉𝐿,𝑖)

𝑠

𝑖=1
= ∑ 𝑏𝐿,𝑖𝜉𝐿,𝑖

𝑞
𝛿𝑖𝑗

𝑠

𝑖=1
= 𝑏𝐿,𝑗𝜉𝐿,𝑗

𝑞
= 𝑏𝑗𝜉𝑗

𝑞
. (4.16) 

Using (4.15) and (4.16), Eq. (4.14) implies 

 
∫ 𝜉𝑞−1 𝑟𝑗(𝜉)𝑑𝜉

1

0

=
𝑏𝑗

𝑞
−

𝑏𝑗𝜉𝑗
𝑞

𝑞
=

𝑏𝑗

𝑞
(1 − 𝜉𝑗

𝑞
).  

By (4.6) and the above, for 1 ≤ 𝑞 ≤ 𝑠, 

 
∑ 𝑏𝑖𝜉𝑖

𝑞−1
𝑎𝑖𝑗

𝑠

𝑖=1
=

𝑏𝑗

𝑠
(1 − 𝜉𝑗

𝑞
). (4.17) 

That is, (4.10) with 1 ≤ 𝑞 ≤ 𝑠 holds for 𝑗 ≥ 2. This, together with (4.13), completes the proof. 

 

Conditions 𝐵(𝑝), 𝐶(𝜂), and 𝐷(𝜁) for IRK-DG Method 

The above argument shows that the following table of conditions holds for the IRK-DG method. 

 

Table 4.1 

Quadrature IRK-DG method 𝐵(𝑝) 𝐶(𝜂) 𝐷(𝜁) 

Left Radau Radau IA 𝐵(2𝑠 − 1) 𝐶(𝑠 − 1) 𝐷(𝑠) 

Right Radau Radau IIA 𝐵(2𝑠 − 1) 𝐶(𝑠) 𝐷(𝑠 − 1) 

Gauss DG-Gauss 𝐵(2𝑠) 𝐶(𝑠 − 1) 𝐷(𝑠 − 1) 

 

By Butcher’s theorem, the orders of accuracy are: for Radau IA,  

 Min(𝑝, 2𝜂 + 2, 𝜂 + 𝜁 + 1) = Min(2𝑠 − 1, 2𝑠, 2𝑠) = 2𝑠 − 1;  

for Radau IIA,  

 Min(𝑝, 2𝜂 + 2, 𝜂 + 𝜁 + 1) = Min(2𝑠 − 1, 2𝑠 + 2, 2𝑠) = 2𝑠 − 1;  

and, for DG with a quadrature of degree of precision 2𝑠 − 2 or higher as in our assumption (𝑝 ≥ 2𝑠 − 1), 

 Min(𝑝, 2𝜂 + 2, 𝜂 + 𝜁 + 1) = Min(𝑝, 2𝑠, 2𝑠 − 1) = 2𝑠 − 1.  

That is, all IRK-DG methods with solution of degree 𝑠 − 1 are accurate to order 2𝑠 − 1. 

 

Uniqueness of Matrix 𝑨 by Condition 𝐶(𝑠) for IRK Method with Right Radau Quadrature  

If 𝑐𝑖’s are the right Radau points, 𝑐𝑖 = 𝜉𝑅,𝑖, and 𝑏𝑗’s are the right Radau quadrature weights, 𝑏𝑗 = 𝑏𝑅,𝑗, 

1 ≤ 𝑖, 𝑗 ≤ 𝑠, then condition 𝐶(𝑠) uniquely determines 𝑨. Consequently, 𝐶(𝑠) implies 𝐷(𝑠 − 1). 

Indeed, with 𝑐𝑖 = 𝜉𝑅,𝑖, let the corresponding Lagrange polynomials be 𝑙𝑖 = 𝑙𝑅,𝑖, 1 ≤ 𝑖 ≤ 𝑠, and set 

𝑙𝑗(𝜉) = ∫ 𝑙𝑗(𝜂)𝑑𝜂
𝜉

0
. By (4.3), the matrix {𝑙𝑗(𝑐𝑖)}

𝑖,𝑗=1

𝑠
 satisfies condition 𝐶(𝑠). 

Next, let {𝐴𝑖𝑗}
𝑖,𝑗=1

𝑠
 be a matrix satisfying condition 𝐶(𝑠). By (4.1), the following quadrature has a 

degree of precision 𝑠 − 1: for any 𝑣 in 𝑷𝑠−1, 

 
∫ 𝑣(𝜂)𝑑𝜂

𝑐𝑖

0

= ∑ 𝑣(𝑐𝑗)𝐴𝑖𝑗

𝑠

𝑗=1
. (4.18) 
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Uniqueness of 𝑨 follows if we can show that 𝐴𝑖𝑗 = 𝑙𝑗(𝑐𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑠.  

To this end, with a fixed 𝑗, set 𝑣 = 𝑙𝑗 in the above and, since 𝑙𝑗(𝑐𝑚) = 𝛿𝑗𝑚, we obtain 

 
∫ 𝑙𝑗(𝜂)𝑑𝜂

𝑐𝑖

0

= ∑ 𝑙𝑗(𝑐𝑚)𝐴𝑖𝑚

𝑠

𝑚=1
= 𝐴𝑖𝑗 . (4.19) 

Next, by the definition of 𝑙𝑗, ∫ 𝑙𝑗(𝜂)𝑑𝜂
𝑐𝑖

0
= 𝑙𝑗(𝑐𝑖). This fact and the above imply, for 1 ≤ 𝑖, 𝑚 ≤ 𝑠, 

 𝐴𝑖𝑗 = 𝑙𝑗(𝑐𝑖).  

This completes the proof.  

An IRK method using the right Radau quadrature is uniquely determined by condition 𝐶(𝑠). That is, 

such a method is identical to the IRK-DG scheme under the same quadrature as well as the IRK method 

for the right Radau collocation scheme. Consequently, condition 𝐷(𝑠 − 1) holds. The method is called 

Radau IIA in the literature (e.g., Hairer & Wanner 1991). 

 

Uniqueness of Matrix 𝑨 by Condition 𝐷(𝑠) for IRK Method with Left Radau Quadrature 

If 𝑐𝑖’s are the left Radau points, 𝑐𝑖 = 𝜉𝐿,𝑖, and 𝑏𝑗’s are the corresponding quadrature weights, 𝑏𝑗 = 𝑏𝐿,𝑗, 

1 ≤ 𝑖, 𝑗 ≤ 𝑠, then condition 𝐷(𝑠) uniquely determines 𝑨. Consequently, 𝐷(𝑠) implies 𝐶(𝑠 − 1).  

For the proof, with 𝑟𝑗 defined by (3.27), using the left Radau quadrature, for 𝑞 ≤ 𝑠, 

 
(𝑟𝑗, 𝜉𝑞−1) = ∑ 𝑏𝑖𝑐𝑖

𝑞−1
𝑎𝑖𝑗

𝑠

𝑖=1
=

𝑏𝑗

𝑞
(1 − 𝑐𝑗

𝑞
).  

Next, let {𝐴𝑖,𝑗} be an 𝑠 × 𝑠 matrix that satisfy condition 𝐷(𝑠): for 1 ≤ 𝑗, 𝑞 ≤ 𝑠, 

 
∑ 𝑏𝑖𝑐𝑖

𝑞−1
𝐴𝑖𝑗

𝑠

𝑖=1
=

𝑏𝑗

𝑞
(1 − 𝑐𝑗

𝑞
).  

Let 𝑅𝑗 be a polynomial of degree 𝑠 − 1 defined by 𝑅𝑗(𝜉𝑖) = 𝐴𝑖𝑗. Then, for a fixed 𝑗, by using the (left 

Radau) quadrature, 

 
(𝑅𝑗, 𝜉𝑞−1) = ∑ 𝑏𝑖𝜉𝑖

𝑞−1
𝐴𝑖𝑗

𝑠

𝑖=1
=

𝑏𝑗

𝑞
(1 − 𝑐𝑗

𝑞
).  

Since 𝑅𝑗 and 𝑟𝑗 are of degree 𝑠 − 1 and they have the same projection onto 𝑷𝑠−1, 𝑅𝑗 = 𝑟𝑗. Consequently, 

for 1 ≤ 𝑖, 𝑗 ≤ 𝑠,  𝑅𝑗(𝜉𝑖) = 𝑟𝑗(𝜉𝑖), or 

 𝐴𝑖𝑗 = 𝑎𝑖𝑗 .  

This completes the proof.  

Therefore, an IRK method using the left Radau quadrature is uniquely determined by condition 𝐷(𝑠). 

Such a method is thus identical to the IRK-DG scheme under the left Radau quadrature and, as a result, 

condition 𝐶(𝑠 − 1) holds. The method is called Radau IA in the literature (e.g., Hairer & Wanner 1991). 

 

5     Numerical Examples of DG Solutions 
 

Two simple examples show the behavior of the DG solutions 𝑢ℎ and 𝑈. 

For the first example, the ODE on [0, 1] is given by 

 
𝑢′(𝑥) = 𝑓(𝑥) = 𝜋 cos(𝜋𝑥 +

𝜋

6
) ,        𝑢(0) =

1

2
.  

With step size ℎ = 1, we wish to obtain the DG solutions 𝑢ℎ and 𝑈  using the left Radau, Gauss, and right 

Radau quadratures for each of the two cases 𝑘 = 1 and 𝑘 = 2. The exact solution is obvious:  

 𝑢exact(𝑥) = sin (𝜋𝑥 +
𝜋

6
).  
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The DG solution 𝑢𝑛+1 = 𝑢ℎ(1) = 𝑈(1) reduces to the solution by the quadrature formula as shown below. 

Consequently, the Gauss quadrature produces a result accurate to one order higher than the two Radau 

quadratures. This gain in accuracy, however, does not hold in the second example. 

For the quadratures employed, the projection of 𝑓 reduces to interpolation, i.e., with quadrature points 

𝜉𝑖, 1 ≤ 𝑖 ≤ 𝑘 + 1, 𝑓ℎ is defined by 𝑓(𝜉𝑖): 𝑓ℎ = 𝒫𝑘(𝑓) = ∑ 𝑓(𝜉𝑖)𝑙𝑖
𝑘+1
𝑖=1 . The solution 𝑈 is given by (2.34):  

 
𝑈(𝜉) =

1

2
+ ∫ 𝑓ℎ(𝜂)𝑑𝜂

𝜉

0

=
1

2
+ ∑ 𝑓(𝜉𝑖)

𝑘+1

𝑖=1
∫ 𝑙𝑖(𝜂)𝑑𝜂

𝜉

0

.  

At the end of the step, 

 
𝑈(1) =

1

2
+ ∫ 𝑓ℎ(𝜂)𝑑𝜂

1

0

=
1

2
+ ∑ 𝑏𝑖𝑓(𝜉𝑖)

𝑘+1

𝑖=1
.  

That is, the DG solution 𝑈 reduces to the quadrature formula. As for 𝑢ℎ, it is defined by 𝑈(𝜉𝑅,𝑖) at the 

right Radau points 𝜉𝑅,𝑖,  1 ≤ 𝑖 ≤ 𝑘 + 1.  

Fig. 5.1 shows, on [0, 1], the graphs of the exact 𝑓 (thin red curve) and, for the case 𝑘 = 1, the linear 

𝑓ℎ (thick blue line) defined by the values at the two quadrature points (red square dots) of type (a) left 

Radau, (b) Gauss, and (c) right Radau. 

Fig. 5.2 shows the graphs of the exact solution 𝑢exact (thin red curve) and, for 𝑘 = 1, the quadratic DG 

solution 𝑈 (thick blue curve) as well as the linear DG solution 𝑢ℎ (dot-dashed green curve); again, the 

quadrature points are of type (a) left Radau, (b) Gauss, and (c) right Radau. Here, each continuous curve 

is the integral of the corresponding counterpart in Fig. 5.1 with 𝑢(0) = 1/2. For 1 ≤ 𝑖 ≤ 𝑘 + 1, the 

solutions 𝑢𝑛,𝑖 at the quadrature points by the IRK-DG method are shown as the large green square dots on 

the line 𝑢ℎ. Note that the solution at 𝜉 = 1 in (b) is most accurate, a fact consistent with the Gauss 

quadrature being more accurate by one order compared with the Radau quadratures.  

Fig. 5.3 is analogous to Fig. 5.1 but with 𝑘 = 2, and the same is true for Fig. 5.4 relative to Fig. 5.2.  

 

 

 
(a) 

 
(b)  

 
(c) 

Fig. 5.1 The graphs of 𝑓exact (red curve) and, for 𝑘 = 1, the linear 𝑓ℎ (thick blue line) defined by the values 

at the two quadrature points (red square dots) of type (a) left Radau, (b) Gauss, and (c) right Radau. 

 

 

 
(a) 

 
(b)  

 
(c) 

Fig. 5.2 The graphs of 𝑢exact (red curve) and, for 𝑘 = 1, the quadratic 𝑈 (thick blue curve) and the linear 

𝑢ℎ (dot-dashed green line); the quadrature points are of type: (a) left Radau, (b) Gauss, and (c) right Radau. 

 

 

𝑢ℎ  

𝑈 

𝑢ℎ  
𝑢ℎ  

𝑈 

𝑈 
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(a) 

 
(b)  

 
(c) 

Fig. 5.3 The graphs of 𝑓exact (red curve) and, for 𝑘 = 2, the quadratic 𝑓ℎ (thick blue curve) defined by the 

values at three quadrature points (red square dots) of type (a) left Radau, (b) Gauss, and (c) right Radau. 

 

 

  
(a) 

  
(b)  

  
(c) 

Fig. 5.4 The graphs of 𝑢exact (red curve) and, for 𝑘 = 2, the cubic 𝑈 (thick blue curve), and quadratic 𝑢ℎ 

(dot-dashed green curve); the quadrature points are of type (a) left Radau, (b) Gauss, and (c) right Radau. 

 

 

For the second and final example, the ODE on [0, 1] is 𝑢′ = 𝜆𝑢. We employ two different values for 

𝜆, 2𝜋𝒾/3 and 𝜋𝒾/3, which is equivalent to halving the step size; here, 𝒾 is the imaginary number. The 

initial condition is 𝑢(0) = 1. The exact solution is 𝑢exact(𝜉) = 𝑒𝜆𝜉. We wish to obtain the DG solutions 

𝑢ℎ and 𝑈 with ℎ = 1 for both 𝑘 = 1 and 𝑘 = 2. 

For this problem, if 𝑣 is of degree 𝑘, then 𝑢ℎ
′ 𝑣, 𝑢ℎ𝑣′, and 𝑢ℎ𝑣 are of degree 2𝑘 or less. Therefore, 

provided the quadrature has a degree of precision 2𝑘 or higher, by either the weak form (2.2) or the strong 

form (2.3), the DG solution is independent of the quadrature employed.  

Fig. 5.5 shows the graphs of 𝑢exact (red dashed curve) and the DG solutions 𝑢ℎ (dot-dashed green line) 

and 𝑈 (continuous blue curve) for the case 𝑘 = 1 where 𝜆 equals (a) 2𝜋𝒾/3 and (b) 𝜋𝒾/3.  

 

 

 

  

(a)  (b)  

Fig. 5.5 The graphs of 𝑢exact (red dashed curve) and the DG solutions 𝑢ℎ (dot-dashed green line) and 𝑈 

(continuous blue curve) for the case 𝑘 = 1 where (a) 𝜆 = 2𝜋𝒾/3 and (b) 𝜆 = 𝜋𝒾/3.  

 

𝑢ℎ  

𝑈 

𝑢ℎ  
𝑢ℎ  

𝑈 

𝑈 

𝑈 

 

𝑈 

𝑢ℎ  

 

𝑢ℎ  

𝑢exact 

𝑢exact 
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Fig. 5.6 is analogous to Fig. 5.5 but with 𝑘 = 2.  

Note the significant improvement in accuracy by halving the step size (𝜆 from 2𝜋𝒾/3 to 𝜋𝒾/3) or by 

increasing the degree of approximation (𝑘 from 1 to 2). 

 

 

 

 

 

(a)  (b)  

Fig. 5.6 The graphs of 𝑢exact (red dashed curve) and the DG solutions 𝑢ℎ (dot-dashed green line) and 𝑈 

(continuous blue curve) for the case 𝑘 = 2 where (a) 𝜆 = 2𝜋𝒾/3 and (b) 𝜆 = 𝜋𝒾/3. 

 

The error in the DG solution 𝑢ℎ(1) is 

 Er = |𝑢exact(1) − 𝑢ℎ(1)|.     

In the piecewise linear case of Fig. 5.5, for 𝜆 = 2𝜋𝒾/3, the error is Er1 ≈ 0.1720; for 𝜆 = 𝜋𝒾/3, Er2 ≈
0.01520 resulting in Er1/Er2 ≈ 11.3. The next halving of the step size (𝜆 = 𝜋𝒾/6) results in Er2/Er3 ≈
14.9 and then 15.7 approaching a ratio of 16 = 24. Thus, the error reduction is consistent with the fact 

that the piecewise linear DG method for ODE is third-order accurate. Similarly, the piecewise parabolic 

DG solution is fifth-order accurate. We omit the details. 

  

6     Conclusions and Discussion 
 

In summary, we studied the numerical solutions for ODE by the DG method from a perspective different 

from those in the literature. Our focus was on constructing the solution by first deriving the DG method in 

differential form. The derivation is made possible by a polynomial called the correction function, which 

approximates the jump at the beginning of each step. The correction function facilitates the construction 

of the IRK-DG schemes under different quadratures. The IRK-DG construction in turn clarifies the 

meaning and facilitates the proofs of various 𝐵(𝑝), 𝐶(𝜂), and 𝐷(𝜁) conditions, which play a crucial role 

in the order of accuracy of the schemes as well as the uniqueness of the Radau type methods. Numerical 

examples were provided. In all, the correction function plays a central role and clarifies the relations among 

the DG and related schemes. 

The current approach can potentially be employed to simplify the time discretization of the space-time 

DG methods (e.g., Johnson et al. 1984, Van der Vegt & Van der Ven 2002, Murman et al. 2016). Iterative 

procedures amenable to modern supercomputers for the IRK as well as other high-order time stepping 

methods are currently an active area of research (Wang et al. 2013, Slotnick et al. 2014). 
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