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Abstract: We present a low-dissipation strategy for simulating gas-particle
compressible flows from dilute to dense concentrations. The volume-filtered
compressible Navier–Stokes equations are discretized using high-order energy
stable finite difference operators with localized shock capturing. Particle are
tracked individually in a Lagrangian manner and undergo collisions and ex-
change momentum and heat with the gas. A ghost-point immersed bound-
ary method is used to handle complex geometries on Cartesian grids. The
framework is applied to three-dimensional simulations of underexpanded jets
impinging on a granular bed under varying nozzle pressure ratios.
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1 Introduction

Particle-laden compressible flows can be found in many environmental and engineering applica-
tions, such as volcanic eruptions [3], coal dust explosions [20], pulsed detonation engines [43],
solid propellant combustion [22], and plume-surface interactions during powered descent of a
spacecraft [30, 1, 5]. Compared to its low-speed counterpart, high-speed (compressible) particle-
laden flows involve considerably different flow physics, such as the emergence of compression and
expansion waves, and sometimes bow shocks upstream of particles when the flow is supersonic.
Such flow structures produce sharp gradients in gas-phase properties that modify aerodynamic
forces acting on the particles. Thus, simulating such flows requires special attention, as most
efforts to date have focused on the incompressible regime.

Parmar et al. [39, 40] extended the equations of motion for an isolated particle in a viscous
incompressible fluid to viscous compressible flows. They show that gas-phase compressibility
affects the particle dynamics through a combination of quasi-steady and unsteady forces. De-
spite the high density ratios associated with gas-solid flows, unsteady forces (Basset history
and added mass) can exhibit leading order effects during shock-particle interactions [37, 24].
Particle-resolved simulations have recently shown that a shock wave passing through a cloud
of particles at moderate volume fractions can generate small-scale velocity fluctuations termed
pseudo-turbulent kinetic energy (PTKE) [31, 35, 36, 32, 44]. In such situations, particles create
a nozzling effect that chokes the flow due to abrupt changes in volume fraction [49]. Shallcross
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et al. [44] developed a model for PTKE that arises during shock-particle interactions, which
was shown to be critical for capturing this choking behavior in simulations based on averaged
equations. The purpose of this work is to introduce a numerical framework for employing such
models.

Numerically simulating compressible gas-particle flows can be handled in several ways. Parti-
cle resolved direct numerical simulations (PR-DNS) apply sub-particle grid resolution such that
the a direct solution to the conservation equations can be obtained with appropriate boundary
conditions enforced at the surface of each particle (e.g., [29, 35, 19, 48]). Despite its accuracy,
the high computational demand limits the number of particles to O(103). Eulerian–Lagrangian
(EL) methods typically apply grid spacing larger than the particle diameter, such that interphase
coupling is handled through source terms while particle collisions are directly captured [25, 6].
EL methods rely on subgrid-scale models often developed from PR-DNS. Due to the reduced
computational cost, EL simulations are capable of handling O(108) particles (e.g., see [4]). An
alternative approach is to model the particle phase as another fluid phase, referred as the two-
fluid or Eulerian-Eulerian (EE) model [1, 12]. While EE does not have a limitation on the
number of particles, it relies heavily on constitutive models for the solid phase.

In this work, we present an EL framework tailored for compressible turbulent flows laden
with solid particles. The gas-phase equations are discretized using high-order energy stable finite
difference operators on structured grids. Localized artificial diffusivity is employed for shock
capturing. Special care is taken when coupling these methods with immersed boundaries when
handling complex geometries. A soft-sphere collision model is employed for particle collisions.
The framework is applied to simulations of an underexpanded jet impinging on a bed of solid
particles. The effect of nozzle pressure ratio on crater morphology is studied.

2 Numerics

2.1 Volume-Filtered Gas-Phase Equations

Volume filtering the viscous compressible Navier–Stokes equations (excluding the volume oc-
cupied by particles) yields a set of gas-phase equations at a scale larger than individual parti-
cles [44]. The volume-filtered equations can be expressed compactly as

∂Q

∂t
+

∂

∂xi

[
α
(
F I
i − F V

i

)]
= S, (1)

where Q = [αρ, αρui, αρE]T is the vector of conserved variables, F V and F I are the viscous
and inviscid fluxes, respectively, and S contains source terms that account for two-way coupling
and acceleration due to gravity, gi, given by

F I
i =


ρui

ρu1ui + pδi1
ρu2ui + pδi2
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ui(ρE + p)
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∂α
∂xi

+ F1 + g1
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∂α
∂xi

+ F2 + g2
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∂α
∂xi

+ F3 + g3
(τij − pδij)

∂
∂xi

(αpup,j) + qi
∂α
∂xi

+ up,iFi +Q

 .

The conserved variables include the the gas-phase volume fraction α, density ρ, velocity ui (in
direction i), and total energy E. The particle volume fraction is αp = 1−α. Pressure is related
to energy according to p = (γ − 1)(ρE − ρuiui/2), where γ = 1.4 is the ratio of specific heats.
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The viscous stress tensor and heat flux are given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+

(
β − 2

3
µ

)
∂uk
∂xk

δij and qi = −κ
∂T

∂xi
, (2)

where κ is the thermal conductivity, T is the temperature obtained from the ideal gas law, µ
is the dynamic (shear) viscosity that has a power law dependence on temperature, and β is
the bulk viscosity. Finally, Fi and Qi appearing in S are the interphase momentum and heat
exchange terms, respectively, that will be defined in Sec. 2.6.

2.2 High-order Energy Stable Discretization

The gas-phase equations are discretized using high-order finite difference operators that admit
low artificial dissipation. Kinetic energy preservation is achieved using a skew-symmetric-type
splitting of the inviscid flux [42], extended to account for the volume fraction. This provides
nonlinear stability at low Mach number. The convective fluxes appearing in (1) are expressed
in split form as

∂αρuiφ

∂xi
=

1

2

∂αρuiφ

∂xi
+

1

2
φ
∂αρui
∂xi

+ αρui
∂φ

∂xi
, (3)

where φ is a generic transported scalar, which is unity for the continuity equation, uj for the
momentum equation, and E+ p/ρ for the total energy equation. Spatial derivatives are approx-
imated using narrow-stencil finite difference operators Di that satisfy the summation-by-parts
(SBP) property [45]

PD + (PD)T = diag [−1, 0, . . . , 0, 1]T , (4)

where P is a symmetric positive-definite matrix and D ∈ RN×N . This leads to 2s-order centered-
difference stencils at interior points and s-order accurate biased stencils near boundaries, with
s+ 1 global accuracy. The sixth-order interior formulation (s = 3) is considered in the present
work. To evaluate second and mixed derivatives, first derivative operators are applied consecu-
tively, necessitating the use of artificial dissipation to damp the highest wavenumber components
supported by the grid. High-order accurate SBP dissipation operators are used that provide ar-
tificial viscosity based on a 2s-order derivative [27].

The SBP scheme is combined with the simultaneous approximation treatment (SAT) at the
domain boundaries to facilitate an energy estimate [7, 34]. This is achieved by enforcing the
desired boundary conditions in a weak sense by adding a penalty term to the right-hand-side of
the governing equations. Non-reflecting characteristic boundary conditions and no-penetration
free-slip walls are considered in the present work. Following the notation in Svärd et al. [47],
Svärd and Nordström [46], the SAT treatment for far-field boundary conditions applied to the
left boundary in one direction (with analogous treatment applied to the right boundary and the
other two directions), is given by

∂Q

∂t
= R(Q) + σIP−1E1A

+
(
Q̂− Q̂b

)
− σV P−1E1

(
F V − F V

b

)
, (5)

where R(Q) is the right-hand side of the compressible flow equations, σI and σV are inviscid and
viscous penalty parameters, respectively. E1 = [1, 0, . . . , 0]T ensures the penalty is only applied
at the domain boundary, and A+ is the Roe matrix that selects the incoming characteristics.
Setting σI ≤ −1/2 and σV = −1 ensures numerical stability (with opposite signs for the
right boundary) [47]. The boundary data are supplied through a stationary target solution
in the vector Q̂b(x) and F V

b (Qb). The specific form used to enforce far-field non-reflecting
characteristic boundary conditions and no-penetration free-slip walls are given in Vishnampet
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Ganapathi Subramanian [50]. When α > 0, we find using Q̂ = Q/α is needed for the inviscid
terms and when evaluating A+. In addition, an absorbing sponge region [14] is applied at the
domain boundary to prevent unphysical acoustic reflections by adding a damping term of the
form Ψ(x) [Q(x, t)−Qb(x)] to the right-hand side of the conservation equations.

The equations are advanced in time using a standard fourth-order Runge–Kutta scheme,
resulting in the usual Courant–Friedrichs–Lewy (CFL) restrictions on the simulation time step
∆t. The CFL is taken as the maximum between the acoustic CFL, CFLa = max (|u|+ c)∆t/∆
and the viscous CFL, CFLv = max (2µ, β, κ)∆t/∆2, where ∆ is the local grid spacing and
c =

√
γp/ρ is the local sound speed.

2.3 Shock Capturing

Localized artificial diffusivity is used as a means of shock capturing following the ‘LAD-D2-0’
formulation in Kawai et al. [21]. Here, the bulk viscosity and thermal conductivity appearing in
Eq. (2) are augmented according to β = βf + β∗ and κ = κf + κ∗, where the subscript f and
asterisks denote fluid and artificial transport coefficients, respectively. The artificial dissipation
terms take the form

β∗ = Cβρfsw|∇4θ|∆6, κ∗ = Cκ
ρc

T
|∇4e|∆5, (6)

where θ = ∇ · u, e = (γ − 1)−1p/ρ, Cβ = 1, and Cκ = 0.01. The overbar denotes a trun-
cated 9-point Gaussian filter [9]. Fourth derivatives are approximated via a sixth-order compact
(Padè) finite-difference operator [23]. To limit the artificial bulk viscosity to regions of high
compression (shocks), we employ a similar sensor originally proposed by Ducros et al. [11] and
later improved by Hendrickson et al. [18], given by fsw = min

(
4
3H(−θ)× θ2

θ2+Ω2+ϵ
, 1
)
, where

H is the Heaviside function, ϵ − 10−32 is a small positive constant to prevent division by zero,
and Ω = max (|∇ × u|, 0.05c/∆) is a frequency scale that ensures the sensor tends to zero where
vorticity is negligible.

2.4 Immersed Boundary Method

A ghost-point immersed boundary method (IBM) is employed to handle complex geometries (like
the nozzle in Sec. 3) on Cartesian grids, as shown in Fig. 1. The origin of this approach can be
traced to Mohd-Yusof [33], which was extended to compressible flows by Chaudhuri et al. [8]. A
signed distance levelset function I is used to distinguish interior (solid) and exterior (fluid) grid
points (i.e., I < 0 within the solid, I > 0 outside). Values of the conserved variables at ghost
points residing within the solid are assigned after each Runge–Kutta sub-iteration. A normal
vector outward from the surface, n = ∇I, is defined to locate the image of the corresponding
ghost point in the fluid domain. Because image points do not align with grid points, fluid
quantities are interpolated to image points via an inverse distance weighting scheme proposed
by Chaudhuri et al. [8]. The number of layers of ghost points grows with increasing order of
accuracy of the scheme. For the sixth-order interior finite difference stencil used herein, this
requires 3 layers of grid points for first derivatives. However, for second derivatives, the number
of layers are further extended.

Neumann boundary conditions are imposed for temperature and pressure by assigning the
value of the ghost point equal to its image point. Dirichlet boundary conditions are enforced for
velocity (i.e., no-slip). This is traditionally handled by assigning the velocity at the ghost point
a value equal and opposite to the velocity at the image point. This was found to be numerically
unstable for the high-order low dissipative scheme used in the present work. Instead, all ghost-
points are assigned values of zero velocity.
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Figure 1: Schematic of the ghost point immersed boundary method with two layers of ghost
points.

Applying the ghost point IBM to geometries with sharp corners presents further challenges [8,
2]. Boukharfane et al. [2] proposed solving an additional set of equations using the stencils
from all sides of the corner (3 sides in three dimensions) to prescribe values at ghost-points.
Alternatively, Chaudhuri et al. [8] proposed storing multiple arrays of ghost-points to use them
according the flux direction, however this is an expensive approach to evaluate derivatives and
is potentially memory intensive. We propose a simple and efficient alternative by applying the
same truncated Gaussian filter used during shock capturing in Eq. (6) to the conserved variables
at the interior points. The filter smears out discontinuities near corners while values away from
discontinuities remain relatively unchanged (see Fig. 2). It was also found that filtering interior
points avoids spurious oscillations and promotes stability.

Figure 2: Left: pressure field in the vicinity of the nozzle lip. Right: pressure field after
application of the truncated Gaussian filter applied to interior (solid) points. Contour of zero
levelset (white line).

It is important to note that in the presence of strong discontinuities, the artificial diffusivity
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terms used for shock capturing (6) may induce a severe time-step restriction. To avoid intro-
ducing unphysical discontinuities near the immersed interface, β∗ and κ∗ are defined at every
grid point within the domain (interior and exterior), but values inside the solid (I < 0) are not
used when computing CFLv.

2.5 Lagrangian Particle Tracking

The equation of motion for an individual particle in a compressible flow has been recently derived
[39, 40]. In this work, we neglect the unsteady force contributions, as closed-form expressions
for α < 1 do not yet exist, and the particle equations reduce to

dx
(i)
p

dt
= v(i)

p (7)

mp
dv

(i)
p

dt
= Vp∇ · (τ − pI) + F

(i)
drag + F

(i)
lift + F

(i)
col +mpg, (8)

where x
(i)
p and v

(i)
p are the position and velocity of particle i, respectively, mp is the mass of the

particle and Vp is its volume. F (i)
drag, F

(i)
lift, and F

(i)
col are force contributions due to drag, lift, and

collisions, respectively. The quasi-steady drag force is given by

F
(i)
drag

mp
=

Fd

τp
α
(
u− v(i)

p

)
, (9)

where τp = ρpd
2
p/(18µ) is the Stokes response time and Fd = Fd(αp,Rep) is the non-dimensional

drag correlation of Gidaspow [15] and Rep = αρ|u− v
(i)
p |dp/µ is the particle Reynolds number.

It should be noted that while many drag correlations with Mach number corrections (e.g.,
[17, 26, 38]), no drag laws currently exist for finite Mach number and volume fraction (i.e.,
Fd(αp,Rep,Map)). This is currently being developed by the authors. The Saffman lift force is
modeled according to [28]

F
(i)
lift =

9.69
√
ρµ

πρpdp

(u− v
(i)
p )× ω√
|ω|

, (10)

where ω = ∇×u is the gas-phase vorticity. The force due to particle collisions, F (i)
col, is accounted

for using the soft-sphere collision model proposed by Cundall and Strack [10]. Collisions are
treated as inelastic with coefficient of restitution e = 0.85 and resolved over 30 timesteps [6].
To avoid excessive overlap between particles, the simulation timestep is restricted such that
particles do not travel more than one-tenth of their diameter per time step. Particle rotation is
taken into account according to

Ip
dω

(i)
p

dt
= M

(i)
col, (11)

where Ip = mpdp/10 is moment of inertia of particle and M
(i)
col is torque that arises from

tangential collisions [6] and using coefficient of friction µf = 0.4 to imitate sand particles and
soil properties on Mars.

The evolution of particle temperature is given by

mpCp,p
dT

(i)
p

dt
= q

(i)
inter, (12)
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where Cp,p is heat capacity of the particle, T (i)
p is its temperature, and q

(i)
inter is the interphase

heat exchange given by

q
(i)
inter =

6VpκNu

d2p

(
T − T (i)

p

)
, (13)

where the Nusselt number Nu is modeled using the correlation of Gunn [16]. It should be noted
that here both phases are advanced in time simultaneously using the standard fourth-order
Runge–Kutta scheme.

2.6 Two-Way Coupling

Fluid quantities (velocity, temperature, volume fraction, etc.) are transferred to each particle
via trilinear interpolation. Particle information (drag, heat exchange, volume fraction, etc.) is
sent back to the Eulerian grid using the two-step filtering approach proposed by Capecelatro
and Desjardins [6]. The volume fraction is computed according to

α(x, t) = 1−
Np∑
1

G
(
|x− x(i)

p |
)
Vp, (14)

where G is a Gaussian filter kernel with a characteristic length δf = 4dp and Np is the total
number of particles. The momentum exchange term is given by

F = −
Np∑
i=1

G
(
|x− x(i)

p |
)(

F
(i)
drag + F

(i)
lift

)
. (15)

Similarly, work due to momentum exchange appearing in the energy equation (2.1) is given by

up · F = −
Np∑
i=1

G
(
|x− x(i)

p |
)(

F
(i)
drag + F

(i)
lift

)
· v(i)

p . (16)

Similarly, the interphase heat exchange term appearing in the energy equation (1) is given by

Q = −
Np∑
i=1

G
(
|x− x(i)

p |
)
q
(i)
inter. (17)

2.7 Stability Criterion

In the absence of two-way coupling, the simulation timestep is restricted by the acoustic and
viscous time scales according to the typical CFL conditions discussed in the previous sections.
However, in the presence of particles with two-way coupling, the interphase source terms can im-
pose an additional time-step restriction. In low-pressure conditions these terms become numeri-
cally stiff [41]. For simplicity, neglecting non-conservative terms and gravity in S , the interphase
exchange terms appearing in (2.1) can be expressed in vector form as S = [0,F1,F2,F3,up ·F ]T .
Neglecting lift forces for simplicity F can be written as

F =

 (u− up)18αµ(1− α)Fd/d
2
p

(v − vp)18αµ(1− α)Fd/d
2
p

(w − wp)18αµ(1− α)Fd/d
2
p

 . (18)
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Differentiating with respect to the state variables, and assuming Fd is independent of state
variables, the Jacobian matrix is

∂S/∂Q =



0 0 0 0 0

0
18µ(1− α)Fd

ρd2p
0 0 0

0 0
18µ(1− α)Fd

ρd2p
0 0

0 0 0
18µ(1− α)Fd

ρd2p
0

0
18µ(1− α)upFd

ρd2p

18µ(1− α)vpF

ρd2p

18µ(1− α)wpF

ρd2p
0


. (19)

The corresponding Eigenvalues are λd = [0, 0, τ−1
d , τ−1

d , τ−1
d ], where τ−1

d = 18µ(1− α)Fd/(ρd
2
p).

Implicit treatment of the interphase exchange terms is in general challenging due to its La-
grangian nature. Therefore, we retain an explicit treatment and ensure the time step is suffi-
ciently small. For the fourth-order Runge–Kutta scheme used here, this requires ∆t < 2.75 τd.

3 Underexpanded Jet Impinging on a Granular Bed

3.1 Simulation Setup

The framework is applied to a three-dimensional simulation of an under-expanded jet impinging
on a bed of settled particles (see Fig. 3). The nozzle geometry is modeled as a converging
section based on a hyperbolic tangent function with an initial straight section [52]. The nozzle
has diameter D and is placed H = 3.75D above the bed of particles. The domain of size
6D × 40D × 40D is discretized on a Cartesian grid of size 247 × 883 × 883 with uniform grid
spacing in the streamwise direction and stretching is applied in the spanwise directions (∆z =
∆ymin = ∆xmin = D/40 and ∆ymax = ∆xmax = D/8). An auxiliary simulation was performed
to settle the particles and achieve the random close-packing limit to a desired bed height of
1.3D and a bed diameter of 12D. The particles are monodisperse with diameter dp = 0.0157D.
Additionally, the peripheral particles of the bed are enforced to stay in place to imitate an
infinitely long boundary. The ambient pressure p∞ and density ρ∞ are chosen to be 101325 N/m2

and 1.2 kg/m3, respectively, and density ratio ρp/ρ∞ = 2.08× 103.

Figure 3: Simulation setup.

A two-dimensional snapshot of the grid and boundary conditions is shown in the Fig. 3. The
top and spanwise boundaries are non-reflecting to allow acoustic disturbances to leave while the
bottom boundary is treated as no-slip and adiabatic. Within the nozzle, inlet conditions (i.e.,
pressure, temperature, and velocity) are prescribed based on isentropic relations. This allows for
sonic conditions (i.e., Ma ≡ U/c = 1 with U velocity of the jet) at the nozzle exit. The pressure
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at the inlet represents the tank pressure and is chosen to achieve a desired nozzle pressure ratio
(NPR). The NPR correlates with the degree of underexpansion and variations in the structure
of the jet [13]. In this work, the NPR is set to 4.08 and 6.12 such that at higher NPR, a finite
size Mach disk is observed making the jet look qualitatively different. The jet Reynolds number,
ReD ≡ ρUD/µ = 1.38× 106 for NPR = 4.08 and ReD = 2.06× 106 for NPR = 6.12.

3.2 Results

Owing to the different characteristics of the jet at two different pressure ratios, we observe
entirely different crater shapes at time, tD/U ≈ 68. Figure 4 shows a constant surface of
αp = 0.4 to visualize the particle bed and resulting crater along with the two-dimensional slice
of the local gas-phase Mach number. The crater morphology is distinctly different between the
two pressure rations. A “U”-shaped crater is observed at lower NPR while at higher NPR, a
“W”-shaped crater is observed due to presence of a Mach disk. The particle jet in the center of
the crater resembles a Worthington jet observed in gas-liquid flows [51].

Figure 4: Instantaneous snapshots of the underexpanded jet impinging on a bed of particle at
tD/U ≈ 68 with NPR= 4.08 (left) and NPR= 6.12 (right). Gas-phase Mach number shown in
red/yellow. Iso-surface of αp = 0.4 (brown) defining the bed and crater morphology.

To better understand the input/output relationship between NPR and crater shape, Fig. 5
shows a comparison the pressure field at tD/U ≈ 27. It is noticeable that pressure field just
above the top layer of particles are distinct. At low NPR, high pressure is focused in the
stagnation zone, causing particles to evacuate radially outward, giving rise to the “U”-shaped
crater. At higher NPR, the formation of a Mach disk causes a bifurcation in pressure, resulting
in low pressure at the axes and the build up of particles.
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Figure 5: Instantaneous snapshots of the gas-phase pressure field (blue) at tD/U ≈ 27 with
NPR= 4.08 (left) and NPR= 6.12 (right). Ma = 1 contour (white line). Particles are colored
by their velocity magnitude with lighter shade representing higher velocities and vice-versa.

4 Conclusions

We present a high-order low-dissipation numerical framework tailored for particle-laden com-
pressible flows. Detailed are provided for the coupling between the high-order discretization,
shock capturing, immersed boundaries, and Lagrangian particle tracking. The ghost point im-
mersed boundary method is modified to account for complex geometries in the presence of strong
discontinuities. We also present the additional CFL stability criterion that needs to be satis-
fied when two-way coupling is enabled. The added stability criterion does not add any further
restrictions beyond the usual acoustic time step except under low densities (∼ 1% of Earth’s
atmosphere). The framework is applied to simulations of underexpanded jets impinging on the
settled particles at two different pressure ratios. It is found that the pressure distribution on
the surface of the particle bed is significantly different between the two nozzle pressure ratios,
resulting in distinctively different cratering.

The framework presented herein provides a basis to implement improved subgrid-scale mod-
els. Many challenges still exist. For example, it remains unclear how to properly reconstruct
fluid quantities at the particle location in the presence of strong discontinuities like shocks when
evaluating drag and lift. New models are also needed for the forces acting on particles valid for
a wide range of Reynolds numbers, Mach numbers, and volume fractions.
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