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Abstract: The formulation and application a hybrid h-p refinement technique method based on
output-based error estimation is considered for the prediction of compressible three-dimensional
inviscid flows. The proposed h-p refinement strategy makes use of a block-based anisotropic adap-
tive mesh refinement scheme (AMR) used in combination with a high-order central essentially
non-oscillatory (CENO) finite-volume spatial discretization scheme. The latter achieves high spa-
tial accuracy via cell-centered high-order solution reconstruction. The resulting scheme allows for
refinement of the spatial discretization procedure, in which either enhancements of the local mesh
spacing, h, or increases in the order of solution reconstruction, p, are allowed to achieve the desired
increased solution accuracy. Functional convergence rates and potential benefits of the proposed
output-based approach are examined and compared to those of standard gradient-based methods
for a candidate compressible inviscid flow problem.
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1 Introduction and Motivation

Numerical simulations that predict complex physical flows having disparate spatial scales are often associated
with high computational costs. Two common approaches employed to reduce these costs are high-order
spatial discretization methods and adaptive mesh refinement (AMR) techniques. High-order here usually
implies that the formal accuracy of the discretization method is greater than second-order accuracy (i.e.,
p > 2, where p denotes the spatial discretization order). The high-order solution accuracy is generally
achieved via the evaluation of higher solution derivatives, resulting in lower truncation errors compared
to standard lower-order methods. A number of high-order schemes have been developed over the years
and these include the Essential Non-Oscillatory (ENO) [1] family of schemes, spectral methods [2, 3, 4],
discontinuous Galerkin methods [5, 6, 7], among others. Some of the challenges presented to such high-order
schemes is the preservation of solution monotonicity, particularly in the vicinity of large solution gradients or
discontinuities as well as under-resolved solution content [8, 9]. Originally proposed by Harten, ENO schemes
perform solution reconstruction on multiple stencils and select the smoothest or most monotone stencil among
possible candidates. The Weighed ENO (WENO) schemes of Liu et al. and extended by others [10, 11, 12]
makes use of a weighting procedure for the multiple stencils to reduce computational costs of stencil selection.
The central ENO (CENO) finite-volume scheme of Ivan and Groth [8, 9, 13] employs a fixed central stencil
and applies a three-step approach. The first step evaluates the K-exact reconstruction of Barth [14] on the
single fixed stencil. This is followed by the evaluation of a so-called smoothness indicator. Lastly, in regions
deemed non-smooth, the scheme switches to a limited piecewise-linear least squares reconstruction. This
effectively preserves solution monotonicity, particularly in the vicinity of shocks and discontinuities, while
reducing complexities of ENO and WENO schemes.
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AMR techniques [15, 16, 17, 18] are another approach to reducing computational costs and are particularly
useful in numerical simulations consisting of disparate spatial scales. This technique evaluates relevant mesh
refinement criteria to yield higher local mesh resolution in regions of the computational domain deemed
to require higher spatial resolution therefore reducing the overall required mesh size for a given level of
solution accuracy. The original parallel block-based AMR techniques proposed by Groth and co-workers [19,
20, 21, 22, 13, 23] group computational cells into blocks and employed physics- or gradient-based mesh
refinement strategies that refine or coarsen at block level depending on target thresholds. Such gradient-
based techniques have been used in combination with a second-order scheme as well as high-order CENO
reconstruction schemes and have been observed to work well for many of the problems studied [24, 25, 26,
27, 28, 29, 30, 13, 23]. However, AMR refinement strategies directed by heuristic physics- or gradient-based
criteria can be challenged to efficiently attaining converged solutions of the desired accuracy. For example. for
flows involving discontinuities and shocks, such methods can potentially over-emphasize and thus over-refine
the non-smooth regions, while for flows that can be characterized as smooth, these refinement strategies do
not guarantee error reduction with increased mesh resolution [31, 32]. A more accurate strategy for directing
the mesh refinement and thereby reducing solution error is required.

Output-based error estimation methods [33, 31, 34, 35] constitute one approach to addressing the short-
comings of AMR methods identified above. A so-called adjoint or dual problem is solved to provide a
measure of the sensitivity of pre-defined engineering functionals of interest to local estimates of the func-
tional error based on the solution residual. The dual and primal solutions are reconstructed on enriched
solution spaces to evaluate the error estimates and local error indicators can then be used to flag refine-
ment regions which present the most significant contribution to the defined functional error. As a result,
output-based approaches offer more rapid convergence at reduced computational cost compared to physics-
and/or gradient-based methods. Various refinement strategies can be deployed, such as mesh (h-) refinement
p-based discretization order refinement, as well as combined hybrid or h-p refinement strategies. Babuska
and Szabo [36], Oden et al. [37], Demkowicz [38], Dolejsi [39, 40] have shown that improved functional
error convergence can be obtained by combining h and p refinement methods when compared to pure h-
refinement in finite-element methods. Recent work by Jalali and Ollivier-Gooch [41] investigated benefits of
h-p adaptation in conjunction with two-dimensional (2D) finite-volume schemes.

2 Scope of Present Study

In the present study, the high-order CENO finite-volume scheme of Ivan and Groth [8, 9, 13, 23] is used
along with an output-based error estimation technique for directing hybrid h-p refinement on multi-block,
body-fitted, hexahedral meshes for the solution of three-dimensional (3D) inviscid compressible flows. The
anisotropic block-based AMR scheme of Freret and Groth [28] and Freret et al. [30, 32] is applied herein to
allow h-based adaptation of the body-fitted meshes in an anisotropic fashion (i.e., in a preferred coordinate
direction). In the high-order CENO spatial discretization scheme, a high-order tricubic representation [42,
43, 32] is used to accurately represent curved boundaries to reduce potential sources of geometrical modelling
error. Newton’s method is applied to the solution of the coupled non-linear system of algebraic equations
resulting from the high-order spatial discretization scheme to obtain converged steady-state solutions to the
governing equations on a given computational grid in an efficient manner [30]. The discrete adjoint solution
is evaluated at an order of accuracy consistent with the local spatial discretization order, while solution
enrichment for error estimate and error indicator evaluation is carried out using a p-based enrichment strategy
in terms of a fifth-order (p = 5) version of the CENO finite-volume scheme. Venditti and Darmofal [44,
45] among other have previously demonstrated the evaluation of error estimates and error indicators by
h refinement, yielding so-called h-derived error estimates and indicators. This approach was successfully
applied in the context of the anisotropic block-based AMR considered here for both 3D inviscid and viscous
flows by Narechania et al. [46] and 3D inviscid flows by Ngigi et al. [47]. The h-derived error estimates
are obtained by uniformly refining the mesh and coarsening back to the original solution space while the
anisotropic error indicators are evaluated by performing anisotropic mesh refinements in each of the three
directions. However, Ngigi et al. [47] also previously implemented a p-refinement approach to evaluating so-
called p-derived error estimates and error indicators for use with the anisotropic block-based AMR scheme
of Freret et al. [30, 32]. This alternative procedure follows other similar strategies proposed previously by
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Yano and Darmofal [48], Ceze and Fidkowski [49], and Woopen et al. [50]. The direction for the anisotropic
mesh refinement is determined in this case using the anisotropic smoothness indicator of Freret et al. [13, 23].
For a number of inviscid flow cases, Ngigi et al. [47] observed previously that the proposed p-derived error
estimates provide similar performance to the h-derived approach in terms of the resulting adapted meshes
and, importantly, yield comparable functional accuracy at a significantly lower overall computational cost.
Lastly, in the proposed h-p refinement strategy, a measure based on solution smoothness is used to select
between h- and p- refinement: local h-refinement is applied in non-smooth regions while local p-refinement
is applied where the solution content is smooth.

In what follows, details of the proposed hybrid h-p refinement method are provided including descriptions
of the finite-volume scheme, anisotropic block-based AMR method, and p-driven output-based error estima-
tion procedure. The potential benefits of the proposed output-based approach are examined and compared
to those of standard gradient-based methods for a selected compressible inviscid flow problem.

3 High-Order Finite-Volume Scheme

3.1 Governing Equations and Semi-Discrete Formulation
The proposed h-p output-based refinement method is developed here for 3D inviscid compressible flows. The
conservative form for the governing equations describing these gaseous flows of interest can be expressed
using matrix-vector notation as

∂U

∂t
+ ∇⃗ · F⃗ =

∂U

∂t
+ ∇⃗ · F⃗I

(
U
)
, (1)

where U = [ρ, ρu, ρv, ρw, e]
T is the vector of conserved solution variables which can be expressed in terms

of the gas density, components of the velocity vector in the x, y and z directions, and specific total energy
denoted by ρ, u, v, w, and e, respectively. Here, F⃗ = F⃗I is the solution flux dyad comprising the so-called
hyperbolic or inviscid components of the solution fluxes, F⃗I.

Following application of the integral form of the governing equations in Eq. (1) within a standard finite-
volume method to a hexahedral computational cell or element, (i, j, k), of a structured three-dimensional
grid, with Gaussian numerical quadrature rules applied to the evaluation of volume and surface integrals,
the following semi-discrete form of the governing equations can be obtained:

dUijk

dt
= − 1

Vijk

Nf∑
l=1

NGF∑
m=1

(
ωm

(
F⃗I

)
· n ∆A

)
ijk,l,m

= Rijk

(
U
)
,

(2)

where NGF is the number of Gauss quadrature points on each of the Nf faces of the cell, ωm are the
quadrature weighting coefficients corresponding to the faces of the cell, ∆A denotes the surface area of face
l. The residual operator is denoted Rijk, Vijk is the volume of the cell (i, j, k) and n is the normal to the
face. The values of the inviscid solution fluxes, F⃗I, at each quadrature point of each face are evaluated here
using the HLLE approximate Riemann-solver [51] .

3.2 Newton’s Method for Steady Flows
Newton’s method is applied to the solution of the coupled non-linear system of algebraic equations that results
from the preceding spatial discretization procedures to obtain fully-converged steady-state solutions to the
governing equations efficiently. The particular implementation applied here follows the algorithm developed
by Groth and co-workers [52, 53, 20] which was extended by Freret et al. [30] to the high-order CENO scheme
used in conjunctions with anisotropic block-based AMR. The latter is well adapted for computations on large
multiprocessor parallel clusters.

For steady-state problems, the semi-discrete form of the governing equations given in Eq. 2 reduces to

dU

dt
= R(U) = 0. (3)
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The solution of this coupled system of non-linear algebraic equations defined by Eq. (3) is then obtained via
Newton’s method by iteratively solving a sequence of linear systems solved using the iterative generalized
minimal residual (GMRES) algorithm of Saad and co-workers [54]. Convergence of the GMRES algorithm
is improved by using an additive Schwarz global preconditioner and a block incomplete lower-upper local
preconditioner. Refer to the paper by Freret et al. [30] for further details.

3.3 Central Essentially Non-Oscillatory (CENO) Finite-Volume Scheme
The high-order CENO finite-volume method of Ivan and Groth [55] and Freret et al. [13] uses a single central
stencil and thereby affords high-order accuracy at relatively lower computational cost, in contrast to other
ENO schemes [56, 10].

3.3.1 K-exact Least Squares Reconstruction

Based on the central stencil, the K-exact least-squares reconstruction [57] of any scalar solution quantity,
Uijk, within a cell with index (i, j, k) about the cell-centroid (xijk, yijk, zijk) can be expressed as

UK
ijk(q, r, s) =

K∑
p1=0

K∑
p2=0

K∑
p3=0

p1+p2+p3≤K

(q − xijk)
p1(r − yijk)

p2(s− zijk)
p3Dp1p2p3

. (4)

The constant coefficients, Dp1p2p3
, of the reconstruction polynomial are referred to as the unknown derivatives

which are evaluated via the least-squares solution of an overdetermined system of linear equations given by

Ax− c = e, (5)

where A is a coefficient matrix dependent on the reconstruction stencil geometry, c is a vector containing
the average solution data at each time step, and e is the the mean value error in each control volume. The
coefficients Dp1p2p3

are contained in the solution vector, x.
Singular value orthogonal decomposition (SVD) is used to solve the weighted least-squares problem

associated with the CENO reconstruction [58]. This approach permits the computation of a pseudo-inverse
matrix after which the solution of the least-squares problem is given by a simple matrix-vector product. The
use of a single fixed central reconstruction stencil, affords the storage and re-use of a pseudo-inverse matrix
for the reconstruction of all variables. The resulting overdetermined system provides the values of the Taylor
derivatives, Dp1p2p3

, which define the unlimited high-order reconstruction polynomial.

3.3.2 Smoothness Indicator and Monotonicity Enforcement

The CENO finite-volume scheme ensures monotonicity by evaluating a solution smoothness indicator as
described by Ivan et al [58]. It is computed as follows

S =
α

max(1− α, ϵ)

NSOS −ND

ND − 1
, (6)

where NSOS is an integer value representing the size of stencil, ND represents the degrees of freedom (the
number of unknowns) in the K-exact polynomial reconstruction, ϵ is a value to avoid division by zero, and
α is the smoothness parameter. The value of α for cell (i, j, k) and solution variable u has the form

α = 1−

∑
γ

∑
δ

∑
ζ

(uK
γδζ(X⃗γδζ)− uK

ijk(X⃗γδζ))
2

∑
γ

∑
δ

∑
ζ

(uK
γδζ(X⃗γδζ)− ūijk)

2
, (7)

where the indices (γδζ) represent the elements of the supporting reconstruction stencil for the cell (i, j, k),
uK
γδζ(X⃗γδζ) is the reconstruction polynomial belonging to cell (γ, δ, ζ) evaluated at the cell center of cell
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(a) (b) (c)

Figure 1: High-order geometry representation using serendipity-type shape functions. (a) Trilinear mapping involves
one shape function per node, resulting in 8 shape functions per cell. (b) Hybrid triquadratic mapping
where only boundary-adjacent cells have one additional node (depicted in cyan) per cell edge. (c) Hybrid
tricubic mapping inserts two nodes (depicted in green) per cell edge having 32 shape functions per cell.

(γ, δ, ζ), uK
ijk(X⃗γδζ) is the extrapolated value of the reconstruction polynomial of cell (i, j, k) obtained by

extending Uk
ijk(x, y, z) out to the cell center of (γ, δ, ζ). ūijk is the average value of cell (i, j, k).

Based on the magnitude relative to a chosen cut-off value, SC , a large value of S indicates smooth
variations while a small value of S indicates non-smooth or under-resolved solution content. In the case of
the latter, the CENO scheme switches to a limited piecewise-linear least squares reconstruction to ensure
solution monotonicity. In this study, the cut-off value of the smoothness indicator cut-off value is taken
to be SC = 1, 500 and the Venkatakrishnan limiter [59] is used in conjunction with linear least-squares
reconstruction to ensure solution monotonicity.

3.4 High-Order Geometry Representation
Typical flow problems of interest in computational fluid dynamics (CFD) can involve domains with curved
boundaries consisting of non-planar computational cells. Accurate representation of such geometries is
required for the correct and consistent evaluation of mesh quantities, such as the positions of volumetric and
face Gauss integration points used for to determine properties such as cell volumes, face areas, moments,
and centroid positions. This in turn facilitates more accurate enforcement of boundary conditions and the
evaluation of numerical fluxes and source terms. Representation of such boundaries must be consistent with
the spatial discretization order of the underlying scheme to reduce potential geometrical modeling error.
Such errors would otherwise dominate the numerical error term to effectively reduce the accuracy of the
numerical results.

Serendipity-type shape functions can be used to map the geometrical properties of the computational
cells in the physical space to a regular Cartesian space [43, 42] in which the reference hexahedral element
[43] defines shape functions at prescribed node positions within the domain. Similar approaches have been
adopted in other high-order finite-volume schemes of Ollivier-Gooch et al. [60, 61], Costa et al. [62] and
Freret et al. [32]. For trilinear representations, shape functions are defined only on the element vertices as
illustrated in Figure 1(a). The triquadratic mapping of Figure 1(b) inserts an additional node at the middle
of each edge for a total of 20 shape functions per cell, while the tricubic mappings of Figure 1(c) adds two
additional nodes along each edge for a total of 32 shape functions per cell. Freret et al. [32] demonstrated
triquadratic and tricubic formulations to achieve 4th-order accurate geometry representation.

In this work, a hybrid mapping approach based on the serendipity-type shape functions has been adopted.
This consists of a tricubic mapping for the boundary-adjacent cells (those adjacent to curved boundaries)
and a trilinear mapping for the cells that are not adjacent to the boundaries. This hybrid approach achieves
high-order accurate geometry description while reducing the associated computational costs of achieving
high-order accuracy.
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Figure 2: 3D binary tree and the corresponding blocks after several refinements

Non uniform block 

ID

ghost cells

ID cell at the 
boundary block

Figure 3: Example of non-uniform block showing solution content and mesh refinement level storage of adjacent
neighbour blocks.

4 Anisotropic Block-Based Adaptive Mesh Refinement

AMR allows for localized grid resolution to improve solution accuracy at a lower cost. The block-based
AMR approach as developed by Groth and co-workers [24, 63, 29, 64, 27, 26, 22] is applicable to body-fitted
multiblock grids. Computational cells are grouped into blocks with mesh refinement being performed at block
level and this readily facilitates parallel implementation of finite-volume solution methods for the solution
of a range of flow problems, including the modelling of reactive flows [29, 65, 66, 64]. For the anisotropic
extension of this approach of Freret et al. [30, 23], a hierarchical binary tree, as depicted in Figure 2, is
used to track grid refinement in preferred directions as dictated by appropriate refinement criteria. This
hierarchical data structure is used to track unstructured grid block connectivity and is generally lighter than
conventional unstructured meshing techniques, having lower information storage requirements. Ghost cells
lying on the periphery of the grid blocks are stored in so-called non-uniform block structures [22, 30, 23], which
contain directly both the solution content and mesh information associated with adjacent neighbour blocks,
which may be at different levels of refinement. The non-uniform block approach readily enables anisotropic
refinement of the multi-block grid, eliminates the need for solution flux corrections and the prolongation
and restriction of solution content otherwise required at block interfaces with grid resolution changes, and
generally simplifies the parallel implementation of the AMR procedure, particularly for high-order spatial
discretization.
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5 Output-Based Error Estimation

In the output-based error estimation approach developed and applied herein, the primal solution to the
steady-state governing equations is required for a given computational grid along with the evaluation of a
specified functional of interest for the given mesh. A linear system of equations is then established from
the definition of the steady-state solution residual and its Jacobian which relates the derivatives of the
functional to the discrete adjoint (dual variables). The discrete adjoint provides a measure of sensitivity of
the functional to perturbations in the solution residual. The primal and dual solutions are then enriched via
solution reconstruction using the CENO finite-volume scheme at order (K = 4) to obtain an estimate of the
functional error as well as evaluate local error indicators that are then used to flag locally grid blocks for
refinement. In this study, the smoothness indicator as described in Section 3.3.2 is used to identify smooth
regions within the flagged blocks. Flagged solution/grid blocks deemed smooth are marked for p-refinement
while those containing non-smooth content are flagged for h-refinement.

5.1 Discrete Adjoint Equation
Given a coarse mesh, H, and spatial discretization order, P, the primal solution UH,P on the coarse space,
ΩH,P , is required, where the parameter, P, refers to the order of the spatial discretization scheme, and H
describes the resolution level of the given computational grid. The solution on the course mesh, H, with
resolution, P, and denoted by UH,P is obtained by solving Eq. (1) which are expressed in a semi-discrete
form within the finite-volume method as

dUH,P

dt
= RH,P(UH,P) = 0 (8)

An engineering quantity of interest, J , which can be expressed as J = J(UH,P) is evaluated based on solution
UH,P . A discrete adjoint problem can then be defined as[

∂RH,P

∂UH,P

]T
ΨH,P =

(
∂JH,P

∂UH,P

)T

. (9)

where ΨH,P is the solution to the discrete adjoint equation, (∂JH,P/∂UH,P) is the functional derivative, and
RH,P(UH,P) is the primal solution residual. The residual Jacobian can be expressed as

∂Ri,j,k

∂UJ

= − 1

Vi,j,k

Nf∑
l=1

NGF∑
m=1

[(
A−1 ∂F⃗I

∂UJ

A

)
∆A

]
i,j,k

, (10)

where UJ refers to the cell-average solution in cell J in the reconstruction stencil of cell (i, j, k), A is a
rotation matrix that rotates only the momentum vector to a local coordinate direction aligned with the
outward normal of the cell face, leaving the mass and energy fluxes unchanged, NGF represents the number
of Gauss quadrature points on the face f , and ∆A is the face area.

Care must be taken to ensure the the evaluation of the adjoint variables is at an order of accuracy matching
that of the underlying spatial discretization scheme to facilitate accurate evaluation of error estimates. In
this study, the adjoint evaluation is based on the full non-linearized Jacobian residual that is consistent with
the order of the underlying spatial discretization scheme. Two key steps are important for this. First, the
left and right solution states must be reconstructed to an order of accuracy matching that of the underlying
spatial discretization scheme, and, second, the contributions of solution content associated with elements
in the reconstruction stencil must be accounted for. For this, the hyperbolic flux component, FI , can be
expressed as a function of the conserved solution variables to the left (interior) and right (exterior) of a cell
face

F⃗I = F⃗I(U⃗L, U⃗R) , (11)
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and the hyperbolic flux Jacobian can then be written as follows

∂F⃗I

∂UJ

=

(
∂F⃗I

∂UL

)(
∂UL

∂UJ

)
+

(
∂F⃗I

∂UR

)(
∂UR

∂UJ

)
, (12)

where UL is the reconstructed solution value at the quadrature point on the left side of the cell interface, UR

is the reconstructed solution value to the right of the cell interface, ∂F⃗I/∂UL is the flux Jacobian with respect
to the reconstructed left solution value, ∂F⃗I/∂UR is the flux Jacobian with respect to the reconstructed
right solution value, UJ is the cell average solution of reconstruction stencil member J , ∂UL/∂ŪJ is the
reconstructed left state Jacobian with respect to UJ , and ∂UR/∂ŪJ is the reconstructed right state Jacobian
with respect to UJ . The flux and solution vector Jacobians needed to form the adjoint matrix system are
evaluated using the Adept automated differentiation (AD) software library of Hogan [67].

Once the residual Jacobian, ∂RH,P/∂UH,P , and functional derivative with respect to the conserved
variables, ∂JH,P/∂UH,P , have been constructed, the linear system of Eq (9) is solved using a GMRES solver
from the Trilinos software library [68].

5.2 Evaluation of p-derived Error Estimates and Indicators for
Directing Anisotropic AMR

As mentioned previously, p-derived error estimates and indicators are used herein for directing the anisotropic
AMR. In particular, the fifth-order version of the CENO finite-volume scheme is used as the fine-space
residual operator to obtain the error estimates which are then used to flag regions in the computational
domain for refinement or coarsening based on specified thresholds. The functional error, δJ , is given by

δJ = JH,p(U
P
H,p)− JH,p(UH,p) , (13)

where UP
H,p and UH,p are the reconstructed and fine space primal solution vectors, respectively, JH,p(U

P
H,p)

is the reconstructed functional on the finer computational space, ΩP
H,p, and JH,p(UH,p) is the exact fine space

value of the functional. As the direct evaluation of the latter is undesirable due to the higher evaluation
cost, the functional error is instead approximated [69] as follows

δJ ≈ (ΨP
H,p)

TRH,p(U
P
H,p)︸ ︷︷ ︸

computable correction

+(RΨ
H,p(Ψ

P
H,p))

T (UH,p −UP
H,p)︸ ︷︷ ︸

error in computable correction

, (14)

where ΨP
H,p is the reconstructed discrete adjoint solution, RH,p(U

P
H,p) is the reconstructed primal solution

residual. The dot product of these two terms is called the computable correction. The error in the computable
correction is given by the inner product of the reconstructed adjoint residual, RΨ

H,p(Ψ
P
H,p), and a vector

defined as the difference in the exact fine-space and reconstructed primal solution.
The error indicator in this work is based on the error in the computable correction (ECC) as described by

Becker and Rannacher [70] and Venditti and Darmofal [34] that combines the contributions of the adjoint and
primal residuals. Giles and Pierce [31] have shown that the ECC form leads to greater functional accuracy
by factoring in both the primal and adjoint solution residuals. The p-derived ECC error indicator is thus
evaluated here as

EKH,P
=
1

2

[∣∣∣[ΨP
H,p −ΨH,P

][
RH,p(U

P
H,p)

]∣∣∣+ ∣∣∣[UP
H,p −UH,P

][
RΨ

H,p(Ψ
P
H,p)

]∣∣∣] . (15)

Since the local error indicators are evaluated on a cell basis, blocks are flagged for refinement or coarsening
based on maximum values for all the cells they contain.

5.3 Refinement Strategies
The output-based error estimates of the previous section are subsequently used to flag those regions of the
computational domain that are contributing significantly to the numerical error in the predicted functional
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value. Reducing the numerical error in these regions is necessary to realize the benefits of the output-based
error refinement technique. The three possible adaptive strategies based on the error estimates will be
considered here for reducing the overall estimated error in the functional:

1. h-refinement: The mesh resolution is modified locally. Since the effective mesh spacing is locally
reduced, the discretized form of the governing equations approach their continuous form, and numerical
accuracy is improved.

2. p-refinement: The underlying order of the spatial discretization scheme is modified locally. In this
process higher-order spatial derivatives are calculated and used to evaluate more accurate reconstructed
solution values in the evaluation of inviscid and viscous fluxes at the cell interfaces. As indicated in
Section 3.3, a means of ensuring solution monotonicity must be implemented, as has been done in the
CENO finite-volume method of Ivan and Groth [71] and extended by Freret et al [30]. As described
by researchers as Yano et al [72], Ceze and Fidkowski [73] among many others, the benefits of a
p-refinement approach depends on the availability of an optimal mesh such that features which can
prevent the formal achievement of high-order accuracy are avoided. Thus, p-refinement is often required
to work in tandem with h-refinement to realize the full benefits of the approach for many practical
applications.

3. Hybrid h-p refinement: A combined approach in which the mesh is flagged for refinement in non-
smooth regions and flagged for p-refinement where the flow is smooth. As has been mentioned for
the p-refinement approach, it is important to identify regions that are under-resolved, non-smooth, or
have discontinuities. Hybrid h-p approaches have been considered in discontinuous Galerkin and finite-
element methods by researchers such as Babuska and Szabo [36], Oden et al. [37], Demkowicz [38],
Dolejsi [39, 40], Yano et. al [72], and Ceze and Fidkowski [73] among many others. Such an approach
has also been recently considered for 2D finite-volume schemes by Jalali and Ollivier-Gooch [41].

5.4 Anisotropy Detection for Mesh Refinement
As the local p-derived error error estimates are isotropic in nature, in order to perform anisotropic mesh
refinement using p-derived error estimates and criteria, there is need for a measure of directional preference
that may exist due to features of the flow physics. Various methods that measure directional bias in the
flow quantities can be used for this purpose. For example, a Hessian-based strategy similar to the strategies
previously considered by Peraire et al. [74], Venditti and Darmofal [44], and Fidkowski and Darmofal [75]
can be used. This involves the evaluation of the Hessian of a suitable scalar (such as the Mach number).
The principle directions of the largest eigenvalues of the Hessian are then used to determine preferential
refinement directions.

In this work, the anisotropic smoothness indicator Sγ of Freret et al. [30, 23] following from Eq. (6) is
instead used to detect anisotropic features and flag blocks for refinement in the preferred logical coordinate
directions. This anisotropic smoothness indicator takes the form

Sγ =
αγ

max ((1− αγ), ϵ)
(16)

where αγ is determined as follows

αγ = 1−

∑
δ

∑
ξ

(
uK
γ,δ,ξ(r⃗γ,δ,ξ)− uK

i,j,k(r⃗γ,δ,ξ)
)2

∑
δ

∑
ξ

(
uK
γ,δ,ξ(r⃗γ,δ,ξ)− ūi,j,k

)2 , (17)

where uK
γ,δ,ξ(r⃗γ,δ,ξ) is the reconstructed solution of cell (γ, δ, ξ) evaluated at r⃗γ,δ,ξ, uK

ijk(r⃗γ,δ,ξ) is the re-
constructed solution of cell (i, j, k) evaluated at r⃗γ,δ,ξ, and ūi,j,k is the average solution of cell (i, j, k). The
evaluation of Sγ is restricted through αγ to the neighboring cells aligned with the computational cell, (i, j, k),
in the γ direction, thus providing a smoothness indicator for that particular direction only. Depending on a
specified smooth/non-smooth cutoff value, Sc, the solution may then be flagged as smooth for values greater
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than Sc, and non-smooth for values less than Sc. The coordinate direction having the largest measure of
non-smoothness determines the preferred direction for refinement. In this study, values of Sc = 2, 500 and
ϵ = 10−3 were used.

6 Numerical Results for Transonic Ringleb Flow

The Ringleb flow is a steady, isentropic, compressible, and irrotational flow associated with expanding flow
between two streamlines. The resulting flow field is smooth and continuous and analytical solutions can be
found for a range of conditions [76, 77]. For this reason, Ringleb flow is a suitable test case to verify the
accuracy and convergence rates of spatial discretization schemes applied to the solution of the Euler equations
governing inviscid compressible gaseous flows. A transonic variant of Ringleb’s flow has been chosen for this
study. The computational domain is defined by the streamlines that correspond to kmin = 0.5 and kmax = 1.2
for the lower and upper streamline boundaries. Subsonic inflow is imposed at the upper inflow boundary
of the Ringleb streamtube for which q = 0.3 and the outflow from the domain is supersonic. To avoid
issues with the application of boundary conditions, the exact boundary values obtained from the available
analytical solutions are imposed along all of the boundaries of the Ringleb flow domain. While the flow is
two-dimensional, 3D solutions for this case can be obtained by extruding the computational domain in the
third z-direction and applying inlet and boundary conditions set such that the flow remains two-dimensional.

6.1 Accuracy Assessment for Primal Solution Error
As an initial step, an accuracy assessment was performed to verify the convergence behavior of the L1 error
norm in the predicted pressure obtained when using both the standard second-order limited piecewise least-
squares reconstruction and high-order CENO finite-volume schemes applied to the Ringleb flow of interest.
Steady-state solutions were computed on a sequence of six uniformly refined meshes, i.e., meshes consisting
of 1, 4, 16, 64, 256 and 1,024 grid blocks, with each block containing 8×8×4 (= 256) cells. For the converged
solution, the error norm in pressure was evaluated using the expression

L1V =
1

VT

∑
i,j,k

∫∫∫
Vi,j,k

∣∣∣pKi,j,k(x, y, z)− pexact(x, y, z)
∣∣∣ dv , (18)

where pKi,j,k(x, y, z) is the K-exact reconstruction of the pressure variable evaluated at a position (x, y, z),
and pexact(x, y, z) is the analytical value of the pressure at the same point.

Figure 4: Comparison of pressure error norm convergence for 2nd order least-squares and CENO finite-volume
schemes of order P = {1, 2, 3, 4, 5}.
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Figure 5: Density contours on final mesh after 5 uniform refinements resulting in 1,024 blocks (262,144 cells).

Figure 4 depicts the resulting convergence rates of the L1 pressure error norm. The convergence results
depicted in the figure confirm that the limited piecewise linear least squares reconstruction scheme achieves
second-order accuracy, while the high-order CENO finite-volume scheme provides an order of spatial accuracy
equal to K+1, as expected. Additionally, Figure 5 depicts the predicted density contours obtained after 5
uniform refinements resulting in 1,024 blocks (262,144 cells). It is worth noting that the pressure error norm
in the case of CENO K = 4 is ≈ 10−5 while that for the K = 0 scheme is ≈ 103. The final pressure error
norm for the second-order reconstruction scheme is ≈ 1. Moreover, the convergence order is recovered for
fifth-order CENO scheme, which is used in the evaluation of the p-derived error estimates and error indicators
in the proposed output-based refinement approach.

6.2 Uniform and Adaptive h-Refinement
The proposed output-based strategy based on the CENO finite-volume scheme was then first applied to
the transonic Ringleb flow problem by considering mesh refinement alone for varying orders of spatial dis-
cretization, P = {1, 2, 3, 4}. Straightforward uniform refinement, gradient-based AMR, and output-based
AMR approaches were all considered in the case with the uniform refinement approach serving as a reference
baseline result.

For this study, the functional of interest was defined as the absolute error in the pressure evaluated along

(a) (b)

Figure 6: Initial mesh and selected solution contours. (a) Initial mesh consisting of 8 blocks (4,608 cells). (c)
y-momentum adjoint contours on final uniform mesh containing 2,048 blocks (1,179,648 cells).
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(a) (b) (c) (d)

Figure 7: Final meshes obtained using gradient-based refinement strategies for various discretization orders.
(a) Using first-order CENO (P = 1). After 6 refinements, the mesh has 1,412 blocks (813,312 cells),
actual error of 1.45× 100, and error estimate of 3.39× 10−1.
(b) Using second-order CENO (P = 2). After 6 refinements, the mesh has 1,600 blocks (921,600 cells),
actual error of 4.95× 10−3, and error estimate of 5.65× 10−4.
(c) Using third-order CENO (P = 3). After 6 refinements, the mesh has 1,600 blocks (813,312 cells),
actual error of 1.78× 10−3, and error estimate of 5.13× 10−4.
(d) Using fourth-order CENO (P = 4). After 5 refinements, the mesh has 459 blocks (264,384 cells),
actual error of 9.14× 10−5, and error estimate of 1.08× 10−5.

the outer streamline boundary of the Ringleb flow for values of y in the range of 0 ≤ y ≤ 2 as follows

J(U) =
1

AT

∫∫ ∣∣∣pa − pe

∣∣∣ da , (19)

where AT refers to the cell face area within the specified y range on the outer boundary, pa is the predicted
pressure, pe is the analytical value of the pressure, and where Gaussian quadrature was used to evaluate
the integral associated with the functional. The predicted sensitivity of this functional to perturbations in
y-momentum is depicted by the corresponding adjoint solution contours given in Figure 6 along with the
initial computational mesh.

The refinement criteria adopted in the h-based AMR gradient-based approach applied to the Ringleb
flow problem was based on the magnitude of the flow density gradient. The final meshes obtained using this

(a) (b) (c) (d)

Figure 8: Select meshes obtained using output-based refinement strategies for various discretization orders, such
that an equivalent actual error and error estimate is obtained.
(a) Using first-order CENO (P = 1). After 9 refinements, the mesh has 1,182 blocks (680,832 cells),
actual error of 1.73× 100, and error estimate of 3.54× 10−1.
(b) Using second-order CENO (P = 2). After 5 refinements, the mesh has 710 blocks (408,960 cells),
actual error of 2.34× 10−4, and error estimate of 2.01× 10−5.
(c) Using third-order CENO (P = 3). After 3 refinements, the mesh has 80 blocks (46,080 cells), actual
error of 4.62× 10−4, and error estimate of 2.15× 10−4.
(d) Using fourth-order CENO (P = 4). After 2 refinements, the mesh has 38 blocks (21,888 cells), actual
error of 2.37× 10−5, and error estimate of 1.70× 10−5.
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(a) (b)

(c) (d)

Figure 9: Functional convergence of pressure error and error estimate using uniform refinement, gradient-based and
output-based refinement strategies for various discretization orders. (a) Using first-order CENO (P = 1).
(b) Using second-order CENO (P = 2). (c) Using third-order CENO (P = 3). (d) Using fourth-order
CENO (P = 4).

approach for various orders of P are depicted in Figure 7. The convergence of the actual error and the error
estimate is depicted in Figure 9 (a-d). It is evident that the application of gradient-based AMR does not
yield significantly improved results when compared to straightforward uniform refinement of the mesh. As
a matter of fact, the gradient-based approach would seem to perform worse than uniform refinement. This
can be attributed to over-refinement of regions that do not contribute to improved functional accuracy. The
meshes depicted in Figures 7 confirm this, where the bulk of refinement is focused in the vicinity of the
sonic region adjacent to the inner streamline or left boundary.

Conversely, the output-based AMR approach was found to outperform both the uniform and gradient-
based strategies. As can be seen in Figures 8(a-d), the regions marked for mesh refinement were those
evaluated to have significant contribution to functional accuracy. In this case, these aforementioned regions
were those in the vicinity of the right boundary. For an equivalent mesh count, the output-based approach
achieves actual error and error estimates that are approximately two orders of magnitude lower than the
gradient-based approach as shown in Figure 9.

6.3 Uniform and Adaptive p-Refinement
For a fixed mesh size, the effect of uniform p-refinement on the convergence of the actual error and error
estimate can be obtained from the results shown in Figure 9. In addition, the proposed output-based scheme
was then used to perform adaptive p refinement. The selected mesh size consisted of 32 blocks (18,432 cells)
as shown in Figure 10(a), while the locally p-adapted blocks are indicated in Figure 10 (c).

For the uniform p refinement approach, as the value of P increases, both the actual error and error
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(a) (b) (c)

Figure 10: Selected contours for mesh with adaptive p-refinement.
(a) fixed mesh of 32 blocks (18,432 cells).
(b) error indicator highlighting regions contributing most to functional error.
(c) local p-levels in blocks that were flagged for adaptive p-refinement.

estimates are of increasingly higher accuracy and display faster convergence rates. For example, given a mesh
size of approximately 1.2 million cells (≈ 530 degrees of freedom per direction), fourth-order accurate CENO
yields functional error and error estimates that are 7 orders of magnitude lower than the first-order accurate

(a) (b)

Figure 11: Convergence of error estimate and actual error using uniform p-refinement and adaptive p-refinement on
a fixed mesh of 32 blocks (18,432 cells).
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method. Another key benefit of order refinement that can be observed a lower mesh count is required to
achieve a given level of functional accuracy. From this figure, it can be seen that using fourth-order CENO
(P = 4) uses 0.05 times a smaller mesh than second-order CENO (P = 2) to achieve similar functional
accuracy and error estimate. The adaptive p-refinement approach can be seen to result in errors that are
fairly close to those obtained using a uniform p-refinement approach, as can be seen in the convergence
results are shown in Figures 11 (a-b).

6.4 Adaptive h-p Refinement
Lastly, a combined h-p refinement strategy was then applied to the transonic Ringleb flow problem following
the evaluation of the error convergence with uniform and adaptive p refinement. Starting with an underlying
discretization of order P = 2, the adjoint solution was computed to determine blocks to be flagged for refine-
ment. Based on the smoothness indicator, flagged blocks deemed to have smooth solution were prescribed
p-refinement, whereas those deemed to be non-smooth were set for h-refinement. Figure 12 highlights some
selected computational grids showing P levels and mesh refinement. Furthermore, the effect of h-p refine-

(a) (b) (c)

Figure 12: Selected grids showing the mesh and order refinement levels in hybrid h-p-refinement.
(a) Initial block of 8 blocks (4,608 cells) at P = 2.
(b) Grid after 2 cycles of h-p refinement, resulting in 14 blocks (8,064 cells) and local values of P = {2, 3}.
(c) Grid after 5 cycles of h-p refinement, resulting in 95 blocks (96,192 cells) and local values of P =
{2, 3, 4}.

(a) (b)

Figure 13: Comparison of adaptive h refinement and hybrid h-p refinement for convergence of (a) actual error and
(b) error estimate for output-based technique.
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ment can be compared to h refinement for various levels of P and this as depicted in Figure 13. From this
figure, it was observed that h-p approach trends towards a convergence between P = 3 and P = 4.

7 Conclusions and Future Work

A novel hybrid h-p refinement technique method based on output-based error estimation has been consid-
ered and applied to the prediction of compressible inviscid gaseous flows governed by the Euler equations.
The proposed h-p refinement strategy makes use of an anisotropic AMR valid for 3D, multi-block, body-
fitted, hexahedral meshes, and is used in combination with a high-order CENO finite-volume scheme. An
efficient Newton method is applied to obtain steady-state solutions to the governing equations on a given
computational grid. Functional error estimates and p-derived refinement indicators are calculated to identify
regions for increased solution accuracy. The solution smoothness indicator of the CENO scheme is used to
select between h- and p-refinement, where local h-refinement is applied in non-smooth regions while local
p-refinement is applied in smooth regions. Variants of the smoothness indicator are also used to direct the
application of h refinement in an anisotropic manner.

The proposed output-based scheme has been applied to a transonic Ringleb flow problem for which
there exists an analytical solution. For this Ringleb flow case, the standard gradient-based AMR strategy
was shown not produce well converged estimates of the functional as the mesh refinement was focused on
regions that did not significantly contribute to the accuracy of the functional. Of particular note was that
uniform refinement yielded more suitable results compared to the gradient-based approach. The output-
based error estimation for directing the AMR was found to offer performance benefits when compared to
physics-based methods, even in the absence of discontinuities and sharp gradients. While the combined
hybrid h-p algorithm was not fully explored, the use of mesh refinement in conjunction with varying orders
of spatial discretization scheme was investigated. It was shown for the smooth case in consideration that
use of a higher-order scheme resulted in more rapid functional convergence with corresponding lower error
estimates. Moreover, the required mesh size for achieving a given level of accuracy was often much lower than
that required by a lower-order discretization scheme. The effect of adaptive p-refinement was investigated
and found to yield results similar to that of uniform p-refinement applied to the entire domain. Follow-on
research will consider the application and evaluation of the proposed output-based error estimation and
anisotropic AMR schemes with hybrid h-p refinement to a wider range of problems.
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