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Abstract: The computation of permeability for porous media through fluid simulation techniques
is an intensive and a tedious process. Surrogate modeling of physical simulations offer a sig-
nificantly cheaper alternative to computing permeability using numerical techniques. The main
objective of this work is to develop a supervised learning model that approximates the physical
simulations involving a single gaseous species through a porous material and capture the length-
scale dependency of the material’s permeability. This length-scale dependency can be integrated
into multiphase computational fluid dynamics (CFD) solvers to better simulate the physics of gas
transport inside the material instead of assuming a constant value for the property. An analytical
function is developed, which relates the permeability of a porous material with the thermodynamic
conditions and length-scale of the microstructure. The analytical function is realized using support
vector regression (SVR), which is found to be a robust technique in order to capture the complex
relationship between temperature, average pressure, and length-scale of the microstructure. The
predicted values are found to have a maximum relative error of about 20 percent with the majority
of the relative errors being less than 7 percent. The analytical function is validated against a
range of inputs beyond the scope of trained values to justify the use of the developed supervised
learning model. The capability of the developed model to capture the length-scale dependency on
permeability is emphasized by noting the difference in predicted permeability and it’s accuracy for
data points at either edges of the training domain.

Keywords: Effective permeability, Non-continuum flows, Direct simulation Monte Carlo (DSMC),
Porous media, Surrogate modeling

1 Introduction
Understanding the thermal-fluid processes in porous media is scientifically attractive because of their appli-
cations in catalysis [1], adsorption and separation [2], energy [3], environment [4], high-end technologies [5],
extracting shale gas [6], and molecular sieves [7]. The flow of gases and liquids through complex pores is
dictated by an important property called permeability. Permeability is also relevant to spacecraft systems,
when they enter the atmosphere of a planet.

Spacecrafts experience extreme aerothermal environments during re-entry because of hypersonic speeds.
Thermal protection systems (TPS) act as a protective layer against the extreme heat flux developed on
the surface of the spacecraft in such conditions. Specifically, ablative TPS materials are used to mitigate
the heat loads during atmospheric re-entry through different processes such as absorption, heat rejection,
and sacrificial removal of hot material [8]. Hence, TPS materials are an integral part of space missions and
the study of their performance is an active on-going field of research. Carbon composites are low-density
materials used as TPS that consist of a network of carbon fibers and phenolic resin. The carbon-fiber
network in the matrix is referred to as FiberForm ,which has an overall porosity (ϕ) of approximately 0.9,
and when this carbon fiber network is impregnated with a phenolic resin, it is called phenolic impregnated
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carbon ablator (PICA), which has a porosity of approximately 0.8. Because of its high porosity, gases in
the boundary layer are able to penetrate into the microstructure causing gas-phase and gas-surface reactions
inside the material [9]. The gas-surface interactions in the TPS materials offer unique technical challenges
because the flow inside the pores of the TPS composite occurs in the non-continuum regime. Permeability
is an important property of a TPS material because it governs the transport of gases through a porous
material. When the flow of gases occur in the continuum regime, permeability is only a function of the
geometrical configuration of the pores. However, permeability also depends on pressure and temperature
when gas transport occurs in the non-continuum regime. Well known correction factors have been applied
over the years to compute the permeability of TPS materials in non-continuum regime with the most notable
being the Klinkenberg formulation [10, 11].

Numerical simulations offer a unique, time and cost-effective alternative to recreate atmosphere re-entry
conditions for the study of thermal-fluid behavior inside TPS materials. Computational flow solvers, referred
to as material response solvers, have been historically used to simulate the aerothermal response of TPS
materials subjected to hypersonic environments. To compute flow through TPS materials, the combined
solid-gas momentum transport equations need to be solved. Numerous methods to solve these momentum
transport equations have been proposed. These methods either formulate the momentum transport equations
as surface models or one-dimensional volume averaged models [12, 10], and more recently as two/three-
dimensional volume-averaged models [13, 11, 14, 15, 16, 17, 18, 19]. All these volume averaged approaches
require model closure for momentum transport, specifically the material permeability. In extreme re-entry
conditions at high altitudes, the pore size of the microstructure approaches the mean free path of the gaseous
species, which leads to the flow inside the carbon composite being in the slip or transitional flow regime.
This phenomenon has been verified in the analysis of Stardust trajectory [20]. Hence, analytical relations
derived either in the continuum or in the free-molecular regime will be invalid to compute the permeability
for re-entry conditions.

The current state-of-the-art approach is to formulate permeability in the Klinkenberg formulation, which
contains two constants, Ko and b. To obtain the constants, the direct simulation Monte Carlo (DSMC)
method is used because it is accurate in both the continuum and non-continuum regime. The permeability
computed by DSMC [21] acts as an input to the material response code to capture gas transport. The
state-of-the-art DSMC technique utilized in the current work has been successfully verified to compute
permeability of porous materials especially in the non-continuum regime by several groups [22, 23, 24]
including current authors [25, 21, 26]. However, the constants involved in the Klinkenberg formulation
needs to be determined for every combination of pressure, temperature, and length-scale, which leads to an
abundance of repeated numerical simulations and a computationally intensive process of generating a look-
up table when permeability as a parameter is required to evaluate macroscale material response. Further,
the computational time and resources required to run DSMC simulations increases exponentially at higher
pressures because of higher mesh resolution that is required to accurately compute material permeability. It is
imperative to find ways to reduce the overall computational time involved in solving this multi-dimensional
problem. A way to accomplish this would be to develop a supervised learning model that is capable of
capturing the inherent relationship between an output parameter and a set of input parameters. Specifically,
in this article, we make use of a regression technique based on support vector machines (SVM) called support
vector regression (SVR). SVR uses the extensive database realized by repetitive DSMC simulations to train a
supervised learning model capable of predicting the permeability of the TPS material subject to the specified
set of input parameters (length-scale, pressure, and temperature). Unlike other sophisticated deep learning
models, which have been used to predict permeability of porous materials [27, 28], the SVM approach can
be easily integrated into a material response code to satisfy the closure problem. The analytical function
developed by SVR eliminates the need for lookup tables and facilitates the computation of Jacobian matrices
required in implicit material response solvers without the need for interpolation. Further, a single relationship
captures the dependencies of the constants encountered in the Klinkenberg formulation with the input
parameters, which saves considerable amount of computational time and effort. Along with temperature
and pressure, the dependency of permeability on the length-scale of the TPS material is heavily emphasized
in this work to improve the current state of the material response codes, which assume an independence
of permeability with respect to length-scales. The porous nature of carbon-fiber TPS materials such as
FiberForm, results in a considerable variation of their properties with respect to the size of the microstructure
until a minimum representative element volume (REV) is reached. The surrogate model is designed to use
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both thermodynamic and material features as inputs to predict permeability of porous materials.

2 Methods
In-house python scripts are developed to automate the entire workflow involved in generating training and
validating points for a wide range of inputs. The in-house python scripts leveraged the already developed
and validated microstructure generation code (Fibergen) by Stern et al. [25] and the DSMC solver developed
by Sandia National Laboratories [29] to determine the permeability with minimal human intervention.

2.1 Fibergen: A synthetic microstructure generating code
Fibergen is the in-house microstructure generation code used to generate the desired volumes. Note that the
algorithm and its architecture have been explained and validated in detail in previous publications [21, 25, 26].
The key features used in this study are described here for completeness. Fibergen uses the domain dimensions,
nominal fiber orientation, target bulk porosity, nominal fiber radius, and the variances of all the parameters
to generate a volume filled with synthetic cylindrical fibers. In order for Fibergen to replicate the FiberForm
microstructure, the fibers need to have a radius of 5 µm and a standard deviation of 0.1 µm [30]. The fiber
diameters are then sampled using a Gaussian distribution using the specified mean and variance. Because of
the manufacturing method to generate FiberForm, its microstructure is orthotropic in nature since fibers are
pressed into billets in only one direction. Therefore, the fibers have a bias to be oriented in a plane parallel
to the compression plane affecting their angle of orientation. Following the conclusion from a previously
conducted parametric study [21], the angle of elevation is allowed to vary between ±25o, which is sampled
from a uniform distribution.

The current version of Fibergen allows the user to chose a convergence type based on the target bulk
porosity or the target sample density of the volume. Independently of the convergence type chosen, the
main algorithm of Fibergen is identical until the test for convergence step. The code chooses a random point
inside the domain, an elevation angle, and a random angle of orientation in the plane of fiber generation. A
fiber is generated inside the domain with a radius sampled from the Gaussian distribution and the algorithm
checks if the fiber intersects another fiber or in contact with a boundary of the domain. If either condition
is found to be true, the fiber is then removed and a set of three new values are generated. This procedure
is repeated until the set convergence criteria is satisfied. Fibergen can export the volumes in two different
formats which are stereolithography (STL) and voxels. The voxel format can be leveraged to add resin in the
fibrous network to replicate a PICA-like microstructure, although, in this article we will only use the STL
format and create volumes targeting FiberForm. In Fig. 1, multiple volumes generated with Fibergen can
be seen for different cube lengths and porosity. The porosity of these volumes change with respect to their
size. The REV for FiberForm can be estimated to be between 200×200×200 µm3 and 300×300×300 µm3

since the porosity of microstructures shown in Figs. 1(a) and 1(c) start to reach a constant value.

2.2 Sparta: DSMC Solver
The open-source DSMC solver Stochastic Parallel Rarefied-gas Time-accurate Analyzer (SPARTA) with in-
house modifications, explained previously in Ref. [26], coupled with Fibergen to generate the microstructures
is used to perform the numerical simulations. The DSMC solver uses a stochastic approach to simulate the
Boltzmann equation and is able to simulate all relevant physics such as convection, multi-component diffusion,
gas-phase and gas–surface chemistry. DSMC is valid for all regimes from free-molecular to continuum using
the same set of collision model parameters [25, 21, 31]. DSMC has the ability of decoupling the flow mesh
from the surface mesh, which makes it ideal to study properties in complex microstructures such as those
observed in TPS materials. A detailed description of the DSMC solver and its relevance to computing
material permeability can be found in Refs. [21, 25].

Sparta uses a multi-level Cartesian mesh to track and collide particles. The microstructure generated by
Fibergen is directly read by the DSMC solver where it is identified using a set of triangles, similar to an STL
format, or a set of voxels that can be converted to a closed surface using the marching cube algorithm [32, 33].
The triangles are then sorted (sorting is not necessary for marching cube) and the cut-cell technique is used
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(a) 296 µm cube length with ϕ = 0.8774. (b) 249 µm cube length with ϕ = 0.8719.

(c) 204 µm cube length with ϕ = 0.8596. (d) 153 µm cube length with ϕ = 0.8309.

(e) 104 µm cube length with ϕ = 0.7749. (f) 53 µm cube length with ϕ = 0.6534.

Figure 1: Multiple volumes generated with Fibergen with different length-scales. Porosity for each volume
is computed using Eqn. ?? and used as input to generate the microstructure.

to compute the flow volume in each cell, where the standard ray-tracing approach is used to move the
simulation particles.

The simulation setup has been discussed in one of our previous publication [26]. Figure 2 shows the
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layout of the set up, which mainly consists of the microstructure placed in the centre of the domain with
equal extends in the flow direction equivalent to at least one time the volume length, while symmetric
boundary conditions are applied in the span-wise directions (y and z). Temperature (Tin) and pressure
(Pin) are specified for the upstream boundary while inlet velocity (u) is obtained using a zeroth order
extrapolation. For the downstream boundary, the pressure outlet (Pout) is specified and the remaining
macroscopic properties are computed using the methods of characteristics of Nance et al. [34] and Fang and
Liou [35] using information from the interior solution. The relevant equations used to obtain the boundary
conditions can be found in Refs. [25, 34, 35] and have been validated in Ref. [21]. To make the solver more
stable, one of the in-house enhancements is to use a sub-relaxation averaging approach when computing
quantities from the interior cells.

Figure 2: Flow set up to compute permeability using the DSMC technique.

The simulations are run for a single gaseous species (Ar) until steady state is reached and mean flow
quantities are obtained such as density, velocity, pressure, and temperature. The permeability force is
computed as described by Marschall and Milos [36] (Eqn. 1).

F ≡ µṁTRL

AM∆P
= K0(Pavg + b) (1)

In Eqn. 1, F (N) is the permeability force, µ (Pa·s) is the viscosity, ṁ (kg·s−1) is the mass flow rate, T (K)
is the temperature, R (J·K−1·mol−1) is the universal gas constant, L (m) is the length of the sample, A
(m2) is the area, M (kg·mol−1) is the molecular mass, ∆P (Pa) is the pressure difference across the sample,
K0 (m2) is the permeability in the continuum limit, and b (Pa) is the Klinkenberg constant. The physical
meaning and derivation of Eqn. 1 can be found in Refs. [21, 9]. A power-law viscosity model is used with
the form of Eqn. 2:

µ =
15

√
πmkTref

2(5− 2ω)(7− 2ω)πd2ref

(
T

Tref

)ω

(2)

In Eqn. (2), k is the Boltzmann constant, Tref is a reference temperature of 273.15 K, dref is the reference
diameter with a value of 4.17×10−10 m for Ar, and ω is the variable hard sphere (VHS) exponent with a
value of 0.81 for Ar. The Klinkenberg expression for effective permeability can be computed as shown in
Eqn. 3.
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Keff = K0

(
1 +

b

P

)
(3)

In Eqn. 3, Keff (m2) is the effective permeability of the sample. Note that Eqn. 3 can be obtained by
dividing Eqn. 1 by Pavg. This relation is used to check if mass conservation is satisfied a posteriori, since
DSMC does not directly enforce mass conservation. Alternatively, Darcy’s law can also be used to compute
the permeability (KDarcy). The Darcy’s law is shown in Eqn. 4:

KDarcy =
−µU

▽P
(4)

In Eqn. 4, KDarcy (m2) is material permeability, µ (Pa·s) is viscosity obtained from Eqn. 2, ▽P (Pa·m−1) is
the pressure gradient in the microstructure, and U (m·s−1) is the superficial velocity and can be computed
from the flow field inside the pores of the sample (Eqn. 5):

U =
1

V

∫
Vf

udv (5)

In Eqn. 5,V (m3) is the total volume of the material, Vf (m3) is the volume of fluid, u (m·s−1) is the local
fluid velocity within the pores, and dv (m3) is the differential fluid volume element. The comparison of
results from Eqns. 3 and 4 is demonstrated in Sec. 3.1.

2.3 Support vector regression (SVR)
Figure 3 depicts the major steps involved in the development of a supervised learning model. A supervised
learning model can be realized with something as simple as curve fitting or a more complex deep learning
algorithm, which makes use of the data points available from the sampling stage to predict the values at
the unknown region of the domain. Due to the nature of the problem involved in this work, a curve fitting
regression model with a suitable kernel function is chosen as the starting point to realize the supervised
learning model. Most common supervised models either use quadratic or n-th order polynomial for curve
fitting following the regression process [37, 38]. However, regression models are uni-modal approaches that
are best suited for simple analytical functions and fail to model the variability involved in physical processes.
Most engineering applications involve multi modal functions, which require sophisticated surrogate models
like SVR to approximate the process. In this work, SVR is chosen above other models owing to its robustness
and flexibility to capture variability in the sampling data.

Support vector machine (SVM) analysis is a popular machine learning tool for classification and regres-
sion, first identified by Vladimir Vapnik and his colleagues in 1992 [40]. SVM regression or SVR is considered
a non-parametric technique because of its reliance on kernel functions. The objective is to find a function
f(x) that deviates from yn (training data value) by a value no greater than ϵ for each training point xi,
and at the same time indifferent to over-fit and under-fit. SVR further builds upon the surface objective
mentioned above by including a soft margin (slack variable) in cases where the chosen kernel function is
ill-equipped to handle the variability that is found in the sampling data. The slack variable (ζ) enables SVR
to handle complex physics encountered in physical processes by providing additional tolerance to capture
the hidden relationship between the parameters.

The general formulation of a typical SVR problem involves the determination of support vectors (xi) and
dual co-efficients (α − α∗) by solving the first minimization problem. The underlying equation involved is
given by Eqn. 6, which is constrained by Eqns. 7 and 8. A universal intercept is evaluated by solving the
second minimization problem shown in Eqn. 9 constrained by Eqn. 10 in order to fit the sampling points
within acceptable tolerance (|ϵ + ζi|). Qij in Eqn. 6 is an n × n positive semi-definite matrix consisting
of kernel functions (G(xi)

TG(xj)), yT is the output vector associated with each training data and e is a
vector of ones which facilitates the summation of slack variables defined for every training point. The dual
minimization problem is setup to reduce the impact of slack variables on the overall performance of the
supervised learning model.
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Figure 3: Flow chart depicting various stages of supervised learning modeling [39].

min

[
1

2
(α− α∗)TQ(α− α∗) + ϵeT (α+ α∗)− yT (α− α∗)

]
(6)

subject to [
eT (α− α∗) = 0

]
(7)

[
0 ≤ αi, α

∗
i ≤ C, i = 1, 2, ..., n

]
(8)

min
[
|yi −G(xi)− b| ≤ |ϵ+ ζi|] (9)

subject to
ζi ≥ 0, i = 1, 2, ...n (10)

SVR is formulated such that it involves a regularization parameter (C), which ultimately decides the
rigidity of the predictive model. A high value of C implies greater penalty during the formulation of SVR
and hence a more rigid model. On the contrary, a lower value of C allows the predictive model to be more
flexible. A high value of C is generally recommended if the sampling points include a very low amount of
variability since it brings down the overall error associated with the model. However, problems involving a
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large amount of data are generally trained with low values of C to avoid over-fit. In such cases, the domain
must be re-sampled strategically in order to bring down the overall error.

In the present work, a high value of C is chosen initially to train the surrogate model. The regularization
parameter is further fine tuned by trial and error approach to obtain a supervised learning model capable
of fairly accurate predictions beyond the scope of training points. A maximum relative error of 15% in the
training and test data is an encouraging sign in validating the supervised learning model. The trained model
is then validated against the test data generated beyond the scope of the sampling data to ensure that the
predictive model is not affected by over-fit. The validation process with respective plots will be covered in
greater detail in the results section.

SVR is implemented in python using sklearn library [41] for different sets of sampling points to strike a
balance between underfit and overfit. The predictive function after implementing SVR on a set of training
vectors xi with corresponding values yi is given by Eqn. 11.

f(x) = Σn
i (αi − α∗

i )G(xi, x) + b (11)

where xi is the support vector obtained from training, n is the number of support vectors, (αi − α∗
i ) are

the dual coefficients, x is the input vector, G(xi, x) is the kernel function, and b is the intercept.
By evaluating the support vectors, dual coefficient and the intercept, an analytical function can be con-

structed for the chosen kernel function which relates the variables in the support vectors with its correspond-
ing output. In this work, Gaussian function given by Eqn. 12 is used as the kernel function. Equation 12
involves an additional hyper-parameter (γ) which influences the error associated with each sampling point.

G = exp(−γ||xi − x||2) (12)

3 Results
For all results presented in this article, a nominal pressure difference of 100 Pa is used between the inlet and
outlet boundaries. A nominal pressure difference of 100 Pa has been proven to be sufficient to capture the
permeability in porous media using the DSMC technique from previous work [26, 21]. For example, if the
average pressure (Pavg) is 500 Pa, then Pin and Pout are set to 550 and 450 Pa, respectively. All simulations
are carried out with Argon (Ar) as the gaseous species for simplicity. After the flow is allowed to reach
steady state given the boundary conditions, Pavg and ∆P are extracted from the flow between the inlet
and outlet faces of the microstructure. Note that this values will not be identical to the values specified at
the boundaries of the domains, but will be close in magnitude to them. The results from the simulations
are used to perform all the necessary post-processing analysis such as calculating the values for Keff and
KDarcy.

3.1 Convergence test and comparison of permeabilities
A numerical convergence test for DSMC simulations is initially performed with a microstructural volume of
300 µm3 generated using the Fibergen code at 500 K with an average pressure of 2,000 Pa to find optimal cell
resolution (∆x), timestep (∆t), and number of timesteps required to reach steady state and compute average
flow properties. The microstructure size, temperature, and average pressure is chosen for the convergence
test since it is the most computationally intensive case in the training domain, ensuring that the rest of the
cases converge to the desired accuracy. The number of timesteps are divided equally between the timesteps to
reach steady state and the timesteps to collect the statistics to compute mean flow quantities. If a simulation
is run for 30,000 timesteps, the first 15,000 timesteps is used to reach steady state, and the remaining 15,000
steps are used to calculate mean flow quantities.

The results from the convergence test can be seen in Table 1. All values of KDarcy are compared against
the baseline case of ∆x

λ = 0.50, ∆t
τ = 1/20, and number of timesteps=10,000. A convergence test is initially

performed by varying the number of timesteps from 10,000 to 50,000. The change in permeability with
increased statistics for mean flow quantities is only 0.87%. A convergence test in timestep is performed by
performing a simulation with a timestep of ∆t

τ = 1/25. The number of timesteps is adjusted to keep the
total time of the simulation equivalent to the baseline case. A difference of 1.61% against the baseline case
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is observed as the timestep is lowered. Finally, a simulation is performed with ∆x
λ of 0.33 and the percent

difference against the baseline is found to be 1.87%. From this analysis, a cell resolution of ∆x
λ = 0.33,

timestep of ∆t
τ = 1/20, and number of timesteps=10,000 are chosen for all cases presented in the following

sections. Care must be taken with the timestep and number of steps taken to reach steady state. The
simulations are performed by initializing particles in the domain and allowing collisions with replacement
that allows a much higher timestep to be used, as well as significantly reduces the number of steps required
to reach steady state. This effect is discussed at length in our previous publication [26].

Table 1: Convergence of DSMC simulations using the microstructure obtained from Fibergen with a volume
of 300 µm3 at 500 K and 2000 Pa.

∆x
λ

∆t
τ

Number of
timesteps

KDarcy

(m2)
Percent
difference

0.50 1/20 10,000 1.53E-10 0.00%
0.50 1/20 30,000 1.52E-10 0.73%
0.50 1/20 50,000 1.52E-10 0.87%
0.50 1/25 25,000 1.51E-10 1.61%
0.33 1/20 10,000 1.56E-10 1.87%

In our previous publication [42], the equivalence of Keff (Eqn. 3) and KDarcy (4) is demonstrated.
This is accomplished by performing simulations at three different average pressures at a given temperature,
and repeating the set of simulations for three different temperatures. The results from this comparison
can be seen in Table 2. The surface is obtained from a X-ray computed tomography (XRCT) scan of
FiberFrom with a volume of 399.52×399.52×399, 52 µm3 and Ar is used as the gaseous species transporting
through the microstructure. For each set of temperature and pressure, the permeability is computed with
both Eqns. 3 and 4. As explained in our previous publication [42], this is an important equivalency to
demonstrate because the derivation for the permeability force (Eqn. 1) does not consider Darcy’s law, but
material response solvers use this law for the momentum transport. In addition, the equivalence of Keff and
KDarcy further demonstrates that the DSMC solver is valid for all flow regimes. As observed from Table 2,
the maximum error observed between Keff and KDarcy for the different pairs of temperature and pressure
is 2.34%, which demonstrates good agreement between the two methods for calculating permeability. For
the remainder of the article, we have directly calculated KDarcy and refer to it as the permeability (K) of
the microstructure. The numerical convergence of the simulations and the equivalency of Keff and KDarcy

demonstrates the ability of the DSMC technique to generate reliable true data to build a supervised learning
model to predict permeability of porous materials.

Table 2: Equivalence of permeability (KDarcy) and permeability force (Keff ). Percent difference is calculated
as |KDarcy−KForce|

KDarcy
× 100.

T (K) Pavg (Pa) F (N) Keff

(m2)
KDarcy

(m2)

Percent
Differ-
ence

300 300 1.53E-07 5.09E-10 5.05E-10 0.97%
300 900 1.84E-07 2.04E-10 2.09E-10 2.34%
300 1500 2.20E-07 1.47E-10 1.51E-10 2.43%
900 300 5.91E-07 1.97E-09 1.94E-09 1.64%
900 900 6.20E-07 6.89E-10 6.82E-10 1.04%
900 1500 6.52E-07 4.35E-10 4.35E-10 0.05%
1500 300 1.14E-06 3.80E-09 3.73E-09 1.90%
1500 900 1.15E-06 1.28E-09 1.26E-09 1.58%
1500 1500 1.17E-06 7.83E-10 7.75E-10 1.00%

9



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

ICCFD11-2022-0803

3.2 Training the SVR model
The permeability of the material is captured by developing a learning function that depends on three input
parameters. The input parameters are the length of the sample, average temperature, and average pressure.
To build a supervised learning model, the training data for the machine learning model needs to be generated,
which is referred to as sampling. In the LHS sampling approach, a point in the multi-dimensional space
is chosen that corresponds to a given pressure and temperature. The chosen pressure and temperature are
considered the input average pressure and temperature in the DSMC simulations. The pressure boundary
conditions are set such that the pressure gradient across the sample is 100 Pa with the mean of the upstream
and downstream pressure equaling the chosen input pressure. The input length is used to compute a value
for porosity, which is used as in input into the Fibergen code to generate the microstructure of the porous
TPS material.

LHS sampling is employed to generate 150 samples of training data. LHS method ensures that the
samples are distributed uniformly along the sampling domain given their parameter bounds. The maximum
and minimum values for the length of the sample, temperature, and pressure is set to 50-300 µm, 500-2,000
K, and 500-2,000 Pa, respectively. All simulations are performed with the parameters discussed in Sec. 3.1
and permeability is computed using Eqns. 4 and 5. All simulations are performed with Ar as the gaseous
species. After the simulations are completed, the average temperature and average pressure are updated
from the flow bounded by the microstructure and the computed permeability is used as the training data
for the prediction model as discussed in Sec. 2.3. The training data points are then used to check the
accuracy of the prediction model by using the same length of the sample, updated average temperature and
updated average pressure as the inputs for the prediction model and comparing the predicted permeability
against the value obtained from the simulations. The results from this comparison can be seen in Fig. 4,
where the spheres in Fig. 4(a) are colored to represent the relative error at that point and Fig. 4(b) shows
a histogram of the relative error distribution for all the training points, following the same color scheme.
The error is computed by comparing the permeability obtained from the DSMC simulations (true data) and
the permeability predicted by the SVR model at the given data point (predicted value). The relative error
is computed as |DSMC value−predicted value|

DSMC value . From Fig. 4(b), it can be seen that 83% of the training points
have a relative error below 7% with only one point being above 11%, demonstrating overall good agreement
against the training data with a root mean square error (RMSE) of 0.0497.

3.3 Testing and validating the SVR model
To further validate the model, 48 more sampling points are generated following the same procedure used to
generate the training data. These 48 new points are then used as inputs in the SVR model and the predicted
permeability is compared with the computed value from the simulation. This comparison is shown in Fig. 5
and it helps evaluate the performance of the predictor model for data different than its training data since
the predictor function is expected to perform well when comparing to the training data. For this new set of
data, the RMSE is 0.0627, which is slightly higher than that for the training data , but 83% of the point have
a relative error that is less than 10%, with only one point above 13%. The low relative errors demonstrates
that the trained model is performing with a good level of accuracy with data inside its training scope.

To study the relationship between relative error and both average pressure and temperature, a slice of
the training domain is taken for a cube length of 200 µm. Keeping the cube length constant, 12 new points
are generated with pressures ranging from 300 Pa to 1,500 Pa with 300 Pa increments and an extra point at
2,000 Pa and temperature ranging from 300 K to 1,500 K with 300 K increments. These 12 new points are
then compared against the predictor function following the same process as for the training and testing data
and the results from the comparison are used to generate a relative error contour plot shown in Fig.6(a).
From Fig. 6(a), it can seen that the majority of the domain has a relative error below 10% and maximum
errors are concentrated at the corners of the domain for the combination of high pressure, low temperature
and low pressure, high temperature. To better evaluate the relative error in the boundaries of the training
domain, two more length-scales are selected to generate similar contour plots for 46 µm and 300 µm depicted
in Figs. 6(b) and 6(c), respectively. Note that the length-scales selected to plot Figs. 6(b) and 6(c) are the
lower and upper limits of the training data with respect to length-scale. The main purpose of this comparison
is to evaluate the relative error at the boundary of the training domain. As expected, the higher relative
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(a) Relative error with training points used to develop the
SVR model.

(b) Histogram of the relative error for the 150 training points.

Figure 4: Relative error distribution of the predictive model on the trained data points for Fibergen with
Ar as the gaseous species. Each data point corresponds to a length-scale, pressure, and temperature that is
used to compute permeability.

errors can be seen closer to the corners of the domain because of a lack of sampling points in the corner of
the domain when using LHS to generate the training points.

To better depict the dependency of the relative error with respect to temperature and average pressure,
Figs. 7(a) and 7(b) are plotted for constant temperatures and average pressures, respectively. In Fig. 7(a),
three constant temperatures are selected and the relative error is plotted against a range of average pressures
going from 250 Pa to about 2000 Pa. Following the same configuration, Fig. 7(b) is plotted at four constant
average pressures against the relative error for a range of temperatures going from 300 K to 2000 K. As seen
in both figures, the lower relative errors in the domain tend to be in the middle range of both temperature
and and average pressure since the number of sampling points is higher in those regions. On the other
hand, as already explained, the highest error is close to the boundaries of the training data due to the
lack of points to train the model in those specific areas. Figure 7(c) is created to depict the relative error
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(a) Relative error with training points used to develop the
SVR model.

(b) Histogram of the relative error for the 48 training points.

Figure 5: Relative error distribution for the predicted values against the result from the simulations of the
testing data points for Fibergen with Ar as the gaseous species.

distribution with respect to length-scale. In Fig. 7(c), three sets of temperatures and average pressures are
plotted for different length-scale in a range of 50 µm to 300 µm against the relative error at each point. A
similar distribution can be seen where the maximum relative error is in the corner of the domain. The highest
relative error is observed close to one of the corners of the training domain for a cube length, temperature
and average pressure of 300 µm, 294 K and 305 Pa, respectively. A higher error can be expected in that
region as compared to other regions in the training domain since it is close to the bounds of the three input
parameters for the model.

Based on the relative errors for all points inside the training domain, the predictive model does not exhibit
under-fitting. In machine-learning under-fit happens when the the model is not able to low relative errors
inside its training domain and this can happen for two reasons: The model parameters explained in Sec. 2.3
are not set correctly or there are not enough training in the training domain for the model to accurately
capture the behavior of the target process. To arrive at a balance between under-fit and over-fit, the model
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(a) L = 200 µm and ϕ = 0.8591.

(b) L = 46 µm and ϕ = 0.6496. (c) L = 300 µm and ϕ = 0.8776.

Figure 6: Relative error distribution for 3 different cube lengths with respect to pressure and temperature.

needs to be tested for points outside its training range which is 300 K to 2,000 K for temperature, 250 Pa
to 2,000 Pa for average pressure, and 50 µm to 500 µm for length-scale of the microstructure.

To accomplish this, a comparison with two points out of the training range can be seen in Table 3. From
Table 3, it can be seen that the maximum relative error between simulated and predicted permeability for
the two points out of the training range is 8.85% for the case with temperature and average pressure of
1,500 K and 4,000 Pa, respectively. Note that 4,000 Pa is twice the upper bound for the average pressure
in the training data and, therefore, a relative error of 8.85% demonstrates that the prediction model has
the capability of maintaining a good level of accuracy outside its training range. The prediction model is
then compared against two even higher pressure cases, 10,000 and 15,000 Pa with a temperature of 1,500 K
temperature and a length-scale of 200 µm. The maximum error is observed for a mean pressure of 10,000
Pa with an error of 24.85%. Although an error of 24.85% is high, a value of 10,000 Pa is five times higher
than the upper limit of the training data. Therefore, an error of ∼25% can be considered to be reasonably
accurate.

An REV of 300 µm3 is necessary for permeability to be invariant to the size of the microstructure. The
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(a) Relative error with respect to Pavg for L = 200 µm and
ϕ = 0.8591.

(b) Relative error with respect to Tavg for L = 200 µm and
ϕ = 0.8591.

(c) Relative error with respect to cube length for a set of tem-
peratures and average pressures.

Figure 7: Relative error plotted against average pressure, temperature and cube length.

Table 3: Testing the model with data outside its training range for 200 µm cube length microstructure.
Relative error is calculated as |Keff−Kpredicted|

Keff
× 100.

T (K) Pavg (Pa) Keff

(m2) Kpredicted (m2) Relative
Error

1,500 3,500 2.65E-10 2.84E-10 7.27%
1,500 4,000 2.37E-10 2.58E-10 8.85%

permeability at an REV of 300 µm3 and 100 µm3 at various pressures and temperature have been listed in
Table 4 to demonstrate the importance of capturing the length-scale dependency when computing values for
permeability. Table 4 is constructed by following the same distribution of temperature and average pressure
that is used in Fig. 6(a), where pressure varies from 300 Pa to 1,500 Pa with 300 Pa increments and an
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additional data at 2,000 Pa. Temperature is varied from 300 K to 1,500 K with 300 K increments. The
permeability values are computed from the supervised learning model described in Eqn. 13. It is observed
that the change in permeability is at least 40% as the length of the REV is modified. Permeability is used as
a closure term for momentum transport in material response simulations. Typically, mesh sizes in material
response solvers are in the order of 100 µm3. Using permeability values computed at converged REVs will
introduce errors in the material response simulations.

Table 4: Comparison of permeability for 100 µm and 300 µm length-scales. K100 and K300 are the perme-
ability values for the 100 µm cube length and the 300 µm cube length, respectively. Absolute difference is
calculated as |K100−K300|

K300
× 100.

T (K) Pavg (Pa) K100

(m2)
K300

(m2)

Absolute
Differ-
ence

300 300 3.03E-10 5.36E-10 43.59%
300 900 9.97E-11 1.86E-10 46.42%
300 1500 6.36E-11 1.21E-10 47.25%
300 2000 5.06E-11 9.65E-11 47.58%
900 300 1.05E-09 1.83E-09 42.30%
900 900 3.41E-10 6.21E-10 45.18%
900 1500 2.12E-10 3.93E-10 46.04%
900 2000 1.66E-10 3.10E-10 46.38%
1500 300 1.93E-09 3.28E-09 41.28%
1500 900 6.26E-10 1.12E-09 44.17%
1500 1500 3.88E-10 7.06E-10 45.04%
1500 2000 3.02E-10 5.53E-10 45.39%

3.4 Predictive model for FiberForm with length-scale dependency
The final analytical expression developed by the supervised learning model to evaluate the permeability
of the TPS material is given by Eq. 13 in conjunction with Table 5, which represent the elements of the
support vectors (xi). As evident from Table 5, six support vectors with their respective dual coefficients
(α−α∗) are found to be sufficient to maintain the prediction errors within an acceptable range as explained in
section 3.3. The simplicity of the analytical expression with six terms points towards an exponential reduction
in the computational time required to predict the permeability when compared to DSMC simulations. The
final expression given by Eq. 13 is a function of length-scale (L), pressure (P), and temperature (T). The
term X represents the input vector containing the input parameters in logarithmic scale required to predict
permeability. For example, if the permeability of a TPS material at 500 Pa and 1,000 K with a length-scale of
100 µm needs to be evaluated, then the corresponding input vector for Eq. 13 is X = {ln(L), ln(T ), ln(P )} =
{4.605, 6.907, 6.215} resulting in a permeability of 6.966×10−10 m2. As explained in the previous sections,
the single relationship given by Eq. 13 is capable of completely eliminating the need to find the constants
involved in Klinkenberg correction for each combination of inputs. The capability of the supervised learning
model to solve the multi-dimensional problem by utilising a very small number of support vectors indicates
a linear relationship of the length-scale with permeability when the REV is below the target size.

K = exp
[
−19.94950563 + Σ6

i=1(αi − α∗
i )exp(−0.015||xi −X||2)

]
(13)

Another key feature to highlight in both original and extended length-scale model is the ability to converge
to the permeability in the continuum limit (Ko) as the pressure average is increased for a given temperature.
This behavior can be seen in Fig. 8 for two different length scales, 75 µm and 200 µm, and it follows the
expected trends from Eqn. 3. Note in Eqn. 3, if Pavg approaches infinity then Keff approaches Ko.
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Table 5: Support vectors and dual coefficients used to compute the effective permeability of FiberForm using
Eqn. 13.

ln(L) ln(T) ln(P) αi − α∗
i

4.16846 6.9222 7.48814 63.894
4.20277 6.79578 5.63757 41.792
5.70364 5.75391 6.65682 -24.648
5.22808 5.90183 7.20845 56.174
4.33733 6.54071 7.03018 -160.000
5.08209 7.46652 6.01977 22.788

(a) Permeability with respect to Pavg for L = 75 µm and
ϕ = 0.7277.

(b) Permeability with respect to Pavg for L = 200 µm and
ϕ = 0.8591.

Figure 8: Predicted permeability for extended range of length-scales against pressure average for different
sets of temperatures.
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4 Conclusion
The permeability of a TPS material was calculated using the DSMC technique through a digital microstruc-
ture generated with Fibergen. A function relating the porosity of FiberForm and the sample length was
derived to use as input in the Fibergen algorithm to study the dependence of length-scale on the permeabil-
ity of the microstructure. By noting the good agreement of Keff and KDarcy, Darcy’s law was verified and
the capability of DSMC simulations to accurately model the permeability through porous media in all flow
regimes was validated. Grid and time independent study were performed to determine the optimal values for
mesh and time resolution. The ability of the DSMC simulations to reproduce similar results was considered
as the major criteria for grid and time independent study. A good agreement of results from simulations
using XRCT scans of FiberForm and the digital microstructure obtained from Fibergen was presented and
discussed in great detail in our previous work [42]. The validation of digital microstructure generated from
Fibergen with respect to the simulations using XRCT scans allowed us to use the synthetic microstructure
generation code for training the supervised learning model. Fibergen enabled us to significantly reduce
the supervised learning model set-up and training time since it was seamlessly integrated into the in-house
python scripts developed to automate the data generation process. LHS sampling was integral in ensuring a
uniform spread of training data which is essential to develop a robust and flexible supervised learning model.

The results from the DSMC simulations evaluated for the data points in the domain were used as
training points to develop a supervised learning model based on support vector machine to predict the
REV dependence on the permeability of porous media for a wide range of length sample, temperature, and
average pressure. The model was trained to target permeability of FiberForm, and it was found to be fairly
accurate with a relative RMSE of 0.0627 and maximum error of ∼ 25% on the edge of the training domain.
Two extra runs were conducted to study the performance of the model on the external domain close to its
training data. A similar spread of values for relative error and RMSE was obtained for extra runs which
helped in validating the capability of the supervised learning model to remain indifferent to over-fit and
under-fit. The second run of data points specifically consisted of length-scales at either edge of the chosen
training range to underscore the effect of length-scale on permeability. To accurately capture the plateau
in permeability after the 300 µm length-scale, a new set of points with extended length-scale domain were
generated. With the extended number of samples and larger range for the length-scale, both the plateau and
the relative error for the model were improved. The extended length-scale model is currently being tested
and optimized to produce the lowest relative error possible while maintaining the plateau and the final model
will be published in a future article.

The model allows the prediction of the permeability of FiberForm for an arbitrary length-scale, tem-
perature and average pressure while exponentially saving time and computational power when compared to
high fidelity simulations like the DSMC technique. In addition to this, the analytical function derived in
this article allows for a simple integration into a material response code to serve the purpose of augmenting
the underlying CFD problem, which uses permeability as a closure parameter in the momentum transport
equation for flows through porous materials. To conclude, the analytical function developed through SVR
satisfied the primary goal of developing an alternative time and cost-efficient way to compute the permeability
of a TPS material given its length-scale for a range of pressures and temperatures.
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