
Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, July 11-15, 2022

ICCFD11-2022-0802

XCOMPUTE: Algorithms and Instruction Sequences for

CFD/FEA Multiphysics

G. J. Orr∗, R. J. Kwan∗ and M. Doudar∗

Corresponding author: graham@xplicitcomputing.com

∗ Xplicit Computing, Inc. USA

Abstract: Despite exponential growth in CPU & GPU bandwidth, many computer-aided engi-
neering (CAE) software tools still cannot fully leverage hardware across teams and systems. To
solve this de�ciency, we propose an e�cient universal computational pipeline for geometry prepa-
ration, physics de�nition, condition assignment, solver numerics, and other useful data-processing
functions common to computational �uid dynamics (CFD) and �nite element analysis (FEA). The
objects and interfaces of the XCOMPUTE pipeline are detailed here: an executable instruction
comprises an algorithm/verb bound to one or more argument(s)/noun(s) and sequenced into phys-
ical models and solvers to de�ne high-level work�ow procedures. Instructions and sequences are
dynamically assembled from human-facing building blocks to allow a variety of customizations
and optimizations. Algorithms can be de�ned by static host bytecode and/or implemented as a
device kernel as part of a compiled OpenCL program, callable from a solver program. Property-
key inputs, outputs, and constants permit algorithms to connect in an executable sequence or
be invoked individually as part of a polymorphic compute framework. Multiple networked client
and server sessions interact in real-time using the xcompute protocol, leveraging new xccommon
and xcmessages libraries. Execution modes include: interactive mode, command line shell, and
application-generated cases.

Keywords: Computer-Aided Engineering, Integrated Engineering Environment, Systems Engi-
neering, Multiphysics Simulation, Computational Fluid Dynamics, Signed Distance Field, Parallel
Computing.

1 Introduction

In the four years since ICCFD10, computational hardware performance has vastly increased, yet computer-
aided engineering (CAE) and simulation software have not experienced comparable performance gains. At
the last conference, we presented a paper [1] on the programming basis of our geometry kernel. We have
since completed the XCOMPUTE thesis and are working toward the public release of the XCOMPUTE
software.

Among some of the algorithms incorporated are the �nite element method (FEM), �nite di�erence method
(FDM), lattice-Boltzmann method (LBM), level-sets, grid-gen, mesh-gen, and even Langrangian approaches.
We demonstrate progress in accelerated steady-state and transient analyses for thermal di�usion, strain-
stress, thermo-elasticity, thermal radiation, contacts & coupling, compressible Reynolds-averaged Navier-
Stokes (RANS), compressible and incompressible large eddy simulation (LES), far-�eld quantum-electro-
dynamics, and near-�eld Maxwell electrodynamics.

In our view, it is a grand challenge to develop a uni�ed framework that implements powerful, disparate
numerical algorithms such as these and executes them concurrently across heterogeneous, distributed com-
puting resources. It is our intent to deploy this framework in a sustainable way that bene�ts a broad
community of engineers. This paper describes our solution to this challenge.

1

The goal of this paper is to help developers build well-encapsulated and interoperable modules using
simple building blocks. We believe clean inheritance models and abstracted code provide the foundation for
design, development, and improvement of integrated CAE systems. The primary characteristic of an orthog-
onal base set of systems and algorithms is that every concept is unique and presents its own characteristic
bene�ts and challenges with surrounding code and machinery. The agglomeration and arrangement of these
smaller units constitutes a complex numerical process or work�ow; such a standardization is the only way
for a performant uni�cation to minimize error and maximize return.

The rest of this paper is structured as follows. The technical and engineering management motivation
for XCOMPUTE are described in Section 2. This is followed by an architectural overview in Section 3. The
key building blocks of XCOMPUTE are described in Section 4. One of those building blocks is a system;
Section 5 describes the members of a system instance and how they interact within and across systems. The
execution modes of an xcompute process is described in Section 6, including examples of the MessagesTM

�le & wire schema in C++ and Python. Finally, a brief conclusion is given in Section 7.
The source code for Messages is provided on GitHub under a BSD-3-Clause open source license. [2, 3]

2 Problem Statement

High-performance computing perfomance has roughly doubled every year over the past few decades. For
example, the Rmax metric for LINPACK used by the Top500 survey shows a steady, exponential progression
from 59.7 giga�ops in June 1993 to 1,102 peta�ops (1.102 exa�ops) in June 2022 [4] � yielding an 18 million-
fold increase over 29 years. This dramatic increase is the result of a spectrum of technical innovations
in circuit fabrication technology, CPU architecture, clustering, vectorization, GPU-based accelerators, etc.
Software for computer-aided engineering and simulation bene�t from some of these innovations, but often
cannot keep pace with the broad spectrum of progress. As engineering becomes increasingly dependent on
computation, the capabilities of software limit engineering productivity and responsiveness of designs to new
insights. Allowing engineers to take greater advantage of these innovations increases the number of available
design iterations or the �delity of simulations.

A 2014 survey [5] of 248 manufacturers found that engineers report spending a third of their time on non-
value added work, and 20% of their time working with outdated information, often resulting in wasted e�ort
and rework. An analysis of survey responses determined that the largest contributor to non-value added
time is related to trying to �nd information, indicating that data management practices have a signi�cant
impact on engineering e�ciency.

Furthermore, a 2004 NASA study [6] found that the cost of �xing errors at later stages in a project can
become over 1,000 times more expensive than earlier stages in the product development lifecycle, revealing
that costs escalate exponentially. Increased emphasis on �nding errors early in the project lifecycle means
spending more time and a larger percentage of project costs in the de�nition phases of a project � more
than is usually allocated to the early phases.

The availability and organization of updated data are crucial to the e�ciency and ultimate success of
complex multidisciplinary engineering projects. Many challenges and bottlenecks exist in modern engineer-
ing processes, often stemming from isolated CAE tools and other disconnected software, and these issues
frequently compound, causing a cascade of subsequent errors. Sometimes, these issues may be as simple as
an improperly named �le or an ambiguous function name.

In this paper, we outline XCOMPUTE: an e�cient universal computational pipeline for geometry prepa-
ration, physics de�nition, condition assignment, solver numerics, and other useful data-processing functions
common to computational �uid dynamics (CFD) and �nite element analysis (FEA). XCOMPUTE addresses
signi�cant long-term challenges in CAE processes, spanning systems engineering, mesh generation, �uid dy-
namics, stress mechanics, electronic design, robotics, language processing, and machine learning, together in
a collaborative environment.

2

3 Architecture Overview

XCOMPUTE is a systems simulation and scienti�c computing platform developed by Xplicit Computing
that enables teams to resolve complex numerical computing problems constructed from system and algo-
rithm building blocks. XC machinery leverages contemporary C++ and OpenCL 1.2 to provide concurrent
processing and interaction leveraging CPU and GPU parallelism. Systems are managed in a recursive tree,
permitting complex ownership and information �ow. Systems improve human and machine conceptualiza-
tion of the problem domains. Each system can execute its own numerical process, typically via a solver,
which can be dispatched to CPU or GPU resources.

Ideally, a CAE program is constructed using a base set of class concepts that each have a well-encapsulated
role, independent from and without knowledge of non-member classes. These classes should directly interface
to human constructs, as well as existing CAE machinery to facilitate complex concepts and collaboration on
modern hardware. The architecture should utilize inheritance and polymorphism strategically with minimal
single-use code. A single �atomic� class should be customizable to a su�cient degree as a runtime object
to express any type of noun, such as a scoped system extensively de�ned by other objects. As modules are
developed beyond the initial set of capabilities, functionalities should be expanded via the specialization of a
single type of verb; a global algorithm, intensively de�ned by itself, exclusively interfaced by others. These
characteristic objects should be bound together at runtime to yield a callable instruction with potential for
�ne and coarse-grain recursion.

XCOMPUTE's design converges on approximately 200 translation units (orthogonal class concepts) and
four fundamental software layers at the intersection of human and machine requirements. The code lever-
ages object-oriented template meta-programming, functional programming, and runtime code-generation
techniques to maximize ease of development and user modularity, improve pattern and execution regularity,
and organize meaningful object hierarchies.

XC heterogeneous applications utilize four software abstraction layers as foundation for runtime: Mes-
sages (schema) [2, 3], Common (protocol), Server/Client (application), and OpenCL/OpenGL (SIMD run-
time). (See Figure 1.) Applications are constructed using submodules underpinned by only a few standard
cross-platform libraries (such as libstdc++, libomp), thereby minimizing external dependencies, reducing
complexity, and increasing maintainability of the codebase.

Figure 1: XCOMPUTE software stack, consisting of client, server, and other applications built on and
communicating via a common protocol layer and Messages' standardized �le and wire schema.

The simulation state machine is hosted on one or more servers, typically GPU-accelerated compute
clusters, and is identi�ed by cryptographic certi�cates. Admins manage LAN and WAN access via NAT port
forwarding. Invited team members can access and manipulate the server state using the graphical xcompute-
client or other interfaces on consumer-grade hardware with the built-in xcompute protocol; applications
leverage hardware-acceleration at coarse (i.e. CPU) and �ne (i.e. GPU) levels, requiring dedicated compute
and render devices for xcompute-server and xcompute-client.

3

4 Building Blocks

4.1 Property-Key

A property-key (PK) is the composite of a property tag, followed by optional modi�er tags, enabling:

� Human and machine readable data tagging and retrieval1.

� Ideal lexicographical sorting & searching (in-session)

� Compatibility comparison by string name (out-of-session)

� Dynamic I/O for algorithms using modular substitution (in-code)

Using property-keys, applications can dynamically allocate memory for data scalars, spatial vectors, or
tensors by referencing a particular geometry's cardinality and dimensionality. Therefore, memory allocation
for varying objects is automatically handled by the bound instruction and/or sequence as part of the larger
program. Additionally, dimensional analysis of physical units is easily summed between property and modi�er
stages, enabling physical unit calculation and implementation of Buckingham π theorem [7].

In numeric applications, all property and modi�er objects are constructed with a static singleton-like
pattern; semi-unique PKs are built from these. Map ordering is determined using an overloaded less-than
(<) operator, comparing homonumerical and heteronumerical PK stages:

{Null} < {Property} < {Property,Modifier} < {Property,Modifier,Modifier}, . . .

In an application session loaded in RAM, pointers (address references) permit optimal memory usage and
comparison speed. However, when serializing data for wire transmission or �le save and load, it is ill advised
to use pointers across computing sessions; plus, those pointers cannot be compared across heterogeneous
memory spaces. Therefore, it becomes necessary to represent the PK in a more literal format; simply, each
property and modi�er name is concatenated with delimiters into a character string version and returned
as the serialized name (providing equivalent lexicographical sorting and handling, but requiring more CPU
cycles to compare characters). These string representations of PKs are used in xcompute-client as handles for
human-facing data map entries. Standard �comma� (`,') and �pipe� (`|') characters provide suitable delimiters
for concatenating and parsing PK stages between sessions. The PK name is included in Messages::Vector
as entry and �le name, and when loaded from �le or wire, the string names are parsed and property and
modi�er likenesses are found in program memory; immediately, optimized pointer-based PKs are available
for rapid data access.

Both property and modi�er objects implement distinct internal machinery, but share the following in-
trinsic attributes:

Table 1: Member attributes of property and modi�er classes include a string name, integers for measurable
dimensionality (unit exponents), and tensor rank to specify whether the property or modi�er acts as a scalar,
vector, or matrix. As required during runtime, attributes are combined into property-keys, permitting data
tagging and standardized calculation of critical runtime parameters (such as memory sizes and assigned
number of rows and columns). See Appendix A for a partial list of standard properties and modi�ers.

Attribute Type
Name Serialization string
Units Dimensional exponent, signed integer

Tensor Rank 0:scalar, 1:vector, 2:matrix

By using PKs, any degree of modi�cation may be applied to provide speci�city to any useful data entry
� the number of unique variations are essentially unbounded. If an entry already exists, a developer must

1Although claimed in U.S. Patent #11,373,019 held by Xplicit Computing Inc., academic and personal use of property-key
patterns and logic is authorized to the extent that no service or product revenues are derived from the patented techniques;
commercial use in part or whole requires a valid license from XC. Please contact info@xplicitcomputing.com for early-access
pricing and availability.

4

Figure 2: A property-key is used in a data map to lexicographically search the database for the corresponding
key. If a match is found, the entry can be returned. In numerical computing contexts, this resolves a
DeviceVector which represents data in a host array and/or device bu�er. Thus, entries are accessed in
logarithmic time using the CPU, returning any coalesced vector for SIMD operations.

consider if the intent of the algorithm is to make a new (modi�ed) PK, or whether to overwrite existing data
with the same PK. Modi�ed PKs make it implicitly clear to humans and machines which operations have
been performed on a speci�c data entry. In practice, this leads to the notion of the �key-chain� that becomes
the backbone of a complex numerical process spanning thousands of systems and thousands of data entries
per system, interoperating as a uni�ed simulation.

After a numerical process mutates desired data, it can overwrite the input data, or it can be written
into a new data entry using a modi�ed PK. Often, an algorithm speci�es the output property-key including
any wildcards to be substituted (or resolved to concrete PKs) denoted by the AnyProperty or AnyModi�er
tags. For example, a gradient algorithm should be able to operate on any �eld, and thus, have inputs =
{AnyProperty} and outputs = {AnyProperty|Gradient}. At runtime, a PK is required to specify which
data entry to substitute AnyProperty (e.g. Temperature, Pressure, Mass, Energy, etc. . .).

New properties and modi�ers are added to the codebase as required, but transitory properties and
modi�ers can be constructed dynamically at runtime, permitting the same lexicographical optimized patterns.
The downside to dynamic properties and modi�ers is that non-standardized entries cannot be guaranteed
across computing sessions as those custom names and attributes are not standardized.

Generally, for P properties and M modi�ers, we can compute the number of unique property-keys Ck at
modi�er stage k:

Ck = P ×Mk. (1)

The total number of uniques PK's is Ctotal, computed as the sum of Ck across all used modi�ers to
arbitrary depth K � e�ectively in�nite when using unlimited number of modi�er stages:

Ctotal = P

K∑
k=0

Mk. (2)

At the time of publication, xcompute has de�ned P ∼ 90 properties, M ∼ 40 modi�ers, roughly half
with intrinsic attributes. More will be added as applications prove necessary.

Given P = 90, M = 40, and k = {0, 1, 2, 3, . . .} modi�er stages, we compute the number of possible
property-keys as Ck = {90, 3600, 144000, 5760000, . . .} and Ctotal = {90, 3690, 147690, 5907690, . . .}.

5

4.2 DeviceVector

A DeviceVector is a template container for contiguous host and device data entries, utilizing revision numbers
for synchronization. DeviceVector inherits from row major Eigen::Matrix [8]. Its members are described in
Table 2.

Table 2: The members of the DeviceVector container.

Member Description
Bu�er optional contiguous device memory that corresponds to data entry
Revision major and minor increment to track memory and value updates, respectively
bool sync() synchronization data between host and device, performing any

necessary writeToDevice() and readFromDevice() to reconcile revision numbers

4.3 Data

A Data container maps PK to vectors whose members are described in Table 3. Other related useful functions
are listed in Table 4.

Table 3: The members of the Data container.

Member Description
Name, Series, Revision, Iteration basic identifying information for the dataset
map<PropertyKey, DeviceVector> Record associative container mapping property-key entries to

corresponding values

Table 4: Useful functions.

Member Description
bool contains(PropertyKey) check whether data has a speci�c PK entry
DeviceVector get(PropertyKey) get a speci�c PK entry by reference
bool set(PropertyKey, value) set a speci�c PK entry upfront
bool operator>> (...) stream data into repeated Messages::Vector protocol bu�er
bool operator<< (...) stream data out of repeated Messages::Vector protocol bu�er
bool save(string) save multiple XCO data to �le directory
bool load(string) load multiple XCO data from �le directory

4.4 Geometry

A Geometry container allows for structured and unstructured elemental topology, specifying how nodal point
positions are connected via discrete edges, faces, or cells. Users and algorithms can specify regions of interest
as subsets of elemental topologies: groups of nodes, loops of edges, surfaces of faces, and volumes of cells.

Nearly every analysis requires a computable geometry, often starting with a boundary shape represen-
tation such as an STL �le. Creating engineering-scale volumetric meshes and grids has been an ongoing
pain point [9]; fortunately, the Signed Distance Field (SDF), is an elegant intermediate computable shape
format, able to support everything from complex volumes to wafer-thin substrates. SDF acts as a �at shape
representation that can be sampled directly by CFD numerics, permitting creation of computable discrete
topologies.

See ICCFD10-145 [1] for more information on polymorphic computable geometries; see Appendix B for
more information on the emergent Signed Distance Field.

6

4.5 Algorithm

An algorithm is an intrinsic operator (verb) � a reusable global callable function-class de�ning a procedure
to achieve a desired numeric operation.

Figure 3: An algorithm de�nes functional code which
can operate on objects including data inputs, constants,
and outputs.

An algorithm is de�ned by its procedure (as
code) and the argument types required for process-
ing. Objects are not directly bound to an algorithm,
since algorithms have a singleton-like pattern; they
are referenced and invoked as needed within other
algorithms, models, and solvers bound to instruction
and argument objects � itself seldom explicitly con-
structed or mutated. Property-key inputs and out-
puts can be speci�ed upon algorithm construction,
later interpreted by sequencing machinery to con-
nect relevant data inputs/outputs in a chain. An
algorithm's callable operator dispatches static host
bytecode, and provides an analogous method to de-
�ne dynamic OpenCL code fragments to be assem-
bled and compiled into a device program at runtime.

Both methods leverage C++ functional polymorphism to specialize algorithm behavior while maintaining
a standard interface, including:

4.5.1 Requirements

A set of object types expected as bound arguments to execute the de�ned set of routines. Types are speci�ed
upfront by the developer within an algorithm constructor which includes a string comment to describe the
object. Requirements are checked against bound arguments during solver assembly.

4.5.2 Inputs

PKs expected as provided data. Input data is assumed to be pre-allocated by an upstream process, which
might be the result of another algorithm's outputs or user's inputs.

4.5.3 Outputs

PKs produced as resultant data. If an entry does not exist, output data is automatically pre-allocated by
the solver so that algorithm results may be stored.

4.5.4 Constants

PKs expected as non-varying constants. An input can be substituted for a data constant; true constants are
rare, as often these parameters vary.

4.5.5 Functions

A set of key functions support the instantiation and use of algorithms. Some of their signatures are given in
the listing below. Important functions include: �init� initializes a set of default arguments to an instruction.
�bind � associates an instruction with required argument objects. �prepare� populates any includes, and
allocates memory required to invoke the instruction. �operator()� invokes the algorithm. �clCode� generates
OpenCL kernel source programmatically.� �
virtual bool i n i t (I n s t r u c t i o n&)
virtual bool bind (I n s t r u c t i o n&)
virtual bool prepare (I n s t r u c t i o n&)
virtual bool operator () (I n s t r u c t i o n&)
virtual bool operator () (const heterogeneous_map<Arguments>&)
virtual s t r i n g clCode (const heterogeneous_map<Arguments>&)� �

7

Below is a generic example algorithm passed a set of arguments from an instruction:� �
bool ExampleAlgorithm : : operator () (const heterogeneous_map<Arguments>& args)
{

auto& data = args . get<Data >() ;
// check to ensure data conta ins the input PK
i f (! data . conta in s (inputs [0]))

return fa l se ;
// ge t r e f e r ence s to v e c t o r i z e d data en t r i e s us ing PKs
auto& in_vec = data (inputs [0]) ;
auto& out_vec = data (outputs [0]) ;
// i t e r a t e through a l l e n t r i e s in p a r a l l e l and wr i t e to output

#pragma omp p a r a l l e l for

for (auto i =0; i<in_vec . s i z e () ; ++i)
{

out_vec [i] = some_function (in_vec [i]) ;
}
return true ;

}� �
4.6 Arguments

Arguments contain bound objects to be operated upon, often passed into an algorithm's callable function.
Arguments can be of arbitrary type, but often contain a pointer to a system, and sometimes references to
data and geometry or other bound objects if the algorithm performs some special operation on those types.
A standard overridden function signature with a type map is required to permit variadic argument patterns
while maintaining a standard function interface. If a plurality of objects of the same type are required, then
a container is implied and warranted. The optimal template container type can usually be implied by the
nature of the contained objects and use-pattern (e.g. std::set vs std::vector, etc); it is impossible to know
which types and containers will be most useful in a broad-use computing platform so it is only appropriate
that a unique mapping between types and bound objects be provided as arguments.

4.7 Instruction

An instruction is an executable instance comprising an algorithm bound to arguments as part of a compute
program.

Figure 4: Instructions bind algorithms and arguments
into a temporary callable that often operates on data
inputs yielding data outputs.

An instruction performs the operation of bind-
ing objects together in a temporary callable instance
that can be invoked with a managed sequence. In-
puts and outputs can be functionally queried, re-
turning underlying PK inputs and outputs with rel-
evant AnyProperty and AnyModi�er substitutions
(necessitating a property-key as an algorithm re-
quirement). An instruction may be invoked indi-
vidually with its callable operator, to be called from
a sequence (and/or solver). This calling structure
permits instructions to call either host functions
or device kernel functions as part of a larger com-
pute program. Any algorithmic preparation or post-
processing can be included in optional before and
after sequences, which can be compiled and run in siloed (hierarchical) or �attened (shared) execution
modes.

� Algorithm - a pointer to the algorithm that de�nes the instruction behavior.

� Arguments - objects bound at runtime prior to solver compilation and execution.

� Kernel - an optional device program pointing to a speci�c kernel function.

� Before Sequence - optional algorithms that must be run before this instruction

8

� After Sequence - optional algorithms that must be run after this instruction

The C++ signatures of some important functions are given below:� �
bool operator ()
set<PropertyKey> get Inputs ()
set<PropertyKey> getOutputs ()
s i ze_t SIMD()
s t r i n g prepareKerne lSource (. . .)
s t r i n g get Inc ludeSource ()
s t r i n g getBodySource ()
bool bui ldKerne l (Program&)
bool setKernelArguments ()
bool hasRequiredObjects ()� �

The device kernel can be called from a sequence (and device program) in lieu of host bytecode:� �
for (auto& in s t r u c t i o n : sequence)
{

// i n t e r n a l l y c a l l s e i t h e r hos t bytecode ,
// or invokes kerne l−>launch () i f a v a i l a b l e
i f (! i n s t r u c t i o n ())

break ;
}� �
4.8 Model

A model is a collection of algorithms de�ning calculation rules to achieve a desired mechanism.
Model typically speci�es spatial scheme, while Solver speci�es the temporal integration method. Explicit

�ux-based methods are interoperable as we can accumulate contributions to conserve Degrees-of-Freedom
(DOF). Implicit matrix methods cannot be combined as they require a linear assembly stage. These model
members are listed in Table 5. Other useful functions are listed in Table 6.

Table 5: Model members.

Members Description
Degrees-of-Freedom Independent variables to be solved, often representing transported

quantities or proxy; explicit �ux-based methods typically transport
conserved intrinsic quantities (strong form); implicit matrix methods
typically transport non-conserved measurable proxy (weak form)

Calculation Rules Mapping of PKs to set of algorithms with said PK outputs
Compatible Conditions Region-speci�c algorithms to provide closure to system space-time

boundaries
Compatible Solvers Numerical methods that complement the integration strategy of the

physical model

Table 6: Useful model functions.

Member Description
bool canCalculate(set<PropertyKey>) Check whether the speci�ed output can be calculated

given the algorithms in the model
Sequence getSequence(set<PropertyKey>) Get an ordered list of instructions that represent the

algorithmic path starting from constants and inputs
to achieve speci�ed outputs

9

4.9 Physics

Physics is a type of model. It can contain one or more models and superposed sub-models.
All algorithms are unbound until a physics model is connected to a system, binding members to arguments

to yield an executable instruction sequence. Thus, physical models de�ne desired numerical behavior, but
they are independent of the objects yet to be bound for processing.

Consider the application of a general Cauchy (Dirichlet-Neumann) problem in a classical digital computer,
where some numerical process (e.g. PDE) is represented by discrete operator T applied to the state de�ned
by K degree-of-freedom Φ = ϕ1, ϕ2, . . . , ϕK quantities to yield some discrete change ∆Φ or state Φ in
geometric domain Ω, and boundary conditions Φo(δΩ) and any additional arguments...

(∆)Φ(Ω) = T (Φ(Ω),Φo(δΩ), . . .). (3)

The (change of) state in the domain is equal to the transformation that occurs upon the state within
the domain given some set of prescribed conditions (or mediating links to other systems) on the boundaries.
The far-left (∆) expression is to indicate generality for explicit and implicit schemes.

T can be conceived as the collection of algorithms that collectively operate as the physical model and
numerical method � processing upon states and prescribed conditions to transport through nodes and/or
elements. This transformation can be linear or nonlinear. This description serves to illustrate commonalities
between disparate methods and the importance of regularity and modularity across numerical platforms;
complex behavior can result from the combination of contributions from smaller well-de�ned (individually
validated) sub-processes Tm with their own instruction sequences of algorithms A, bound to its state Φ(Ω),
conditions Φo(δΩ), and arguments...

T =
∑

Tm, (4)

where Tm = {Abegin, . . . , Aend}(Φ(Ω),Φo(δΩ), . . .).

4.10 Sequence

A sequence is an executable container of instructions that assists in object binding and solver preparation
(see Figure 5).

Figure 5: A sequence (left) consists of one or more instructions bound to their respective algorithms and
objects. Such sequences can be used independently, or embedded in the solver as the main iterative processor
(right). A solver can optionally include a preprocessor and postprocessors, which are also solvers (containing
sequences). Often, objects are bound at a high level through a sequence or solver, but object binding at the
instruction level is also useful for �ne-grain control. [1]

Algorithms are hardcoded and immutable in static bytecode, but with the help of runtime containers,

10

unique high-level behavior can be achieved via custom sequences to comprise physical models and numerical
methods (aka. �solvers�). Together, the physical model and solver transform the PDE into a discrete ODE,
typically integrating in spatial and temporal dimensions, respectively. Given a su�cient numerical-physical
stability (e.g. CFL criterion), information is exchanged throughout the domain in space-time and a solution
converges to some acceptable criteria.

Let's �rst consider the following code snippet, which depicts a simple runtime sequence that is populated
with two instructions and executed from front-to-back:� �
sequence . push_back (I n s t r u c t i o n (&SecondAlgorithm , someSystem , . . .)) ;
sequence . push_front (I n s t r u c t i o n (&FirstAlgor i thm , someSystem , . . .)) ;
// . . .
sequence . execute () ;� �

In order to change physical behavior during runtime, T must be functionally changed, which is not
possible for static binaries created with modern compilers unless virtualization is employed. We essentially
must abstract a virtual computing machine inside of software to permit the customization of instruction
sequences during runtime. This way, developers and users can create new complex functionalities with
building blocks. To facilitate this, when an instruction is constructed, it references an algorithm that de�nes
the behavior in code. The instruction also binds arguments such as a system, data, and geometry by
reference prior to execution. The state proceeds through the sequence as input and output property-keys for
each algorithm, forming compute pipeline T. Within each algorithm's usable executable function (�callable
operator�), instruction arguments can be accessed. Consider the following code to access a bound system:� �
auto someSystem = in s t r u c t i o n . args . get<std : : shared_ptr<System> >()� �

In this example, the system's shared pointer typeid enables lexicographical map look-up by desired type,
dereferencing a numerical system (e.g. some simulated component), which has data, geometry, physics,
and conditions. Some algorithms such as conditions require a separate bound Data to house those desired
boundary values separate from the system's data. Most algorithms will only have 2-3 required argument
objects. Once an object has been inserted into an instruction's argument type-map, it can be accessed from
within the algorithm's callable operator. In the rare situation when more than one speci�c type is mandated
for an algorithm, a Standard Library container is warranted, with careful consideration given to the type,
depending on the problem statement. It is recommended to minimize the number of argument requirements,
making the modular interface and intended objects' purpose clear to developers and maintaining generality
where possible, such as in the following algorithms overridden callable operator:� �
virtual bool Algorithm : : operator () (I n s t r u c t i o n&){// s t a t i c c++ func t ion here . . . }� �

In order for software users to alter the de�nition of a physical model or solver, T must be updated. To
mimic dynamic dispatch on device, a standardized callable function signature is required to create and call
optimized functions for given argument types. If the numerical program is written in a static language like
C or C++, then the application must be stopped and re-compiled against source code. If the method is
expressed in code that can leverage just-in-time (JIT) compilation such as OpenCL, then the application
need not be stopped; code is assembled providing an opportunity to include structural and functional runtime
optimizations. This process is automated, following virtual function overrides and returning code fragments
for each algorithm.� �
virtual std : : s t r i n g Algorithm : : code (I n s t r u c t i o n&){

/* dynamic openc l code−gen here . . . */}� �
4.11 Solver

A solver is an executable sequence and heterogeneous compute program manager. The solver base class
is useful to assemble custom complex scripts at runtime. Derived variations override the build function to
populate its sequences given a numerical method as shown in Table 7.

Most compute programs are heterogeneous, comprising a mixture of host- and device-capable algorithms
managed by each system's solver. Because compiled host binaries cannot change while running, end-users

11

Table 7: List of some of the available solvers.

Members Description
Explicit solvers Solve-Tree, Runge-Kutta (FDM, FVM), Stream-Collide (LBM)
Implicit solvers Linear-Steady (FEM), Linear-Euler (FEM), Linear-Newmark (FEM)

must rede�ne instruction sequences to achieve custom work�ows. Given a numerical process de�ned by
a Solver (populated with physics and conditions), instructions are de�ned as algorithms bound to some
arguments. Device-capable algorithms are processed using specialized mutable C-like code (for a single
thread within a SIMD work group), compiled by and targeting an OpenCL ICD runtime driver, enabling
compute programs to emulate C++ dynamic-dispatch (enabling optimizations per bound speci�c type)
across available devices. During solver execution, the host invokes device function kernels while managing
device bu�er synchronization. When argument types change, the solver must match the arguments for the
corresponding device kernel program.

Solvers achieve high-level executability using the members in Table 8. Other useful solver functions are
given in Table 10. The parts of the device program are given in Table 9.

Table 8: List of solver members.

Members Description
Main Sequence iterative loop
Preprocessor Solver optional, once
Postprocessor Solver optional, once

Table 9: Device Programs

Members Description
Program_id OpenCL handle
Source string of OpenCL code de�ning function kernels to be compiled

into a device program
Kernel compiled device executable resulting from program source and

bindings

Table 10: Other useful solver functions.

Members Description
virtual bool build() populate instruction sequence(s)
bool execute() prepare and run this solver and pre/post sequence

4.12 System

A system is an extrinsic object (noun) � a scoped numerical domain with abstract or physical form and
behavior, representing components, assemblies, or �elds. Only a single type/kind of system exists in a
computing sense � for all systems are human constructs; boundaries must be argued for most utility (plus,
all variations can't be compiled into the software a-priori!). Generic systems are de�ned (and specialized) by
speci�c runtime assignments (�state� � such as geometry, physics, boundary conditions, numerical solvers,
and anything else that de�nes an abstract or physical system). A system can also supervene and manage
any number of subsystems in a parent-child (uni-directional) relational tree hierarchy; spatial and temporal
subspaces each have an assignable host and device resources, allowing a complex problem to be parallelized
on SIMD hardware at more reasonable scales. Many of the members that de�ne a system contain (or are)

12

Figure 6: Systems are managed in a recursive tree, permitting complex ownership and information �ow.
Systems improve human and machine conceptualization of the problem domains. Each system can execute
its own numerical process (typically via a solver), which can be dispatched to CPU or GPU resources.

algorithms which operate on systems and their members, and so, the de�nition of something is a (recursive)
composite of declarative and procedural elements, permitting near-in�nite complexity as a whole, or the
desired level of �delity as a human-machine representation of engineering concepts and processes.

5 System Members

This section provides an overview of the members that are de�ned within a system instance and how these
high-level objects interact within and across systems. Generally, any given system may utilize the following
attributes to implement an abstract or physical concept:

5.1 Data

Data are scalars and vectors for singular and nodal values stored in a convenient format accessed as
system.data(PK). In addition to numeric values, a given system's data de�nes its name, owner, and permis-
sions; such attributes are intrinsic to data but can be utilized by parent objects. The dimensions of data
entries are determined by the number of nodes in the system. If a geometry exists, the number of rows
is equal to the number of nodes (or elements), while the number of columns is dictated by the number of
components associated with the given PK and spatial dimensionality.

5.2 Geometry

Geometry is an optional pointer (address reference) to a local geometry, which is transformed to a global
space instance using a model matrix. This permits a geometry to be shared between one or more systems
and greatly reduces memory consumption with large numbers of duplicates or patterns. The global model
matrix is computed as the recursive product of parent local matrices, providing linear complexity scaling for
refresh starting at the root system and performing similar breadth-�rst recursive refresh to all subsystems.
Geometries can be shared across systems and managed by the server application.

5.3 Physics

Physics is an optional pointer (address reference) to a physical model, which contributes algorithms to the
System's solver in preparation for execution. As a model is de�ned to be a collection of algorithms to achieve
an approximate result, physics is de�ned as the composition of models, itself a type of model. In the same
way geometries can be patterned, physics can be referenced and managed at a higher level, eliminating
duplication of setup steps. Most physical models utilize algorithms to de�ne a system's spatial transport
and state; similar method families may be combined.

13

5.4 Conditions

Conditions are a sequence of algorithms applied to temporal and spatial boundaries to provide numerical clo-
sure. Initial conditions are typically applied to systems as part of a preprocessor, while boundary conditions
are applied to regions repeatedly within the main solver sequence. Conditions are bound to instructions and
inserted into the sequence; upon building a solver the algorithms are consolidated into the proper execution
sequence. Explicit methods often assert conditions on system.data entries, while implicit methods typically
manipulate the system.adjacency matrix and/or state.

5.5 Links and Contacts

Links and contacts are a sequence of algorithms applied to couple abstract and spatial boundaries in lieu
of conditions. Links and contacts implement an underlying duplexed coupling algorithm, permitting in-
formation to �ow between boundaries in adjacent systems. Coupling is essentially a dynamic variation of
static conditions, whereby directional �ow control and di�erent sampling approaches enable coupling to be
customized to the speci�c con�guration. Links are user-de�ned couplings, while contacts are automatically
determined based on spatial proximity and overlap.

5.6 Materials

Materials are optional data that de�ne the intrinsic physical properties of a given substance to be referenced
in one or more regions or as defaults for the system. Materials are implemented as the mapping between
assigned regions and corresponding data sets managed by global Constants.materials. Typically, material
properties are applied to regions that have the same dimensionality of the system; a 2D domain applies
material properties to surfaces, while a 3D domain applies material properties to volumes. If materials
are not speci�ed, the system reverts to defaults de�ned in system.physics. Explicit schemes tend to apply
material properties to nodes, while implicit schemes tend to apply material properties to elements, though
this tends to be dependent on the speci�c numerical method.

5.7 Solvers

Solvers are a list of numerical methods to be executed as part of a work�ow. Typically, there is a single
system per solver instance; solvers are bound and executed against their owning system. A solver usually
de�nes a self-contained numerical process such as mesh generation, �nite volume, or �nite element methods
using a main iterative sequence plus optional recursive preprocessor and postprocessor stages. A solver
contains faculties to compile a master sequence, assemble OpenCL code fragments, and generate a device
compute program. One or more solvers can be listed to de�ne a system's work�ow.

5.8 Subsystems

Subsystems are a container of child systems used to further resolve a numerical domain into constituent
parts, constructing a supervening tree hierarchy to change the computational complexity of the problem to
abstractions more suitable for human and machine interaction at each level of �delity and numeric parallelism.
A given subsystem has direct access to its children but does not have direct access to its parent; a one-way
organization allows systems to be replicated and emplaced under new systems as desired.

6 Execution Modes

There are three known ways to de�ne and execute an xcompute process: shell command line interpreter,
Protobuf-generated I/O, and interactive server-client protocol. Execution of the process can be customized
by one or more con�guration �les.

14

6.1 Con�guration

To set default application runtime parameters (such as favored device, max iterations, convergence criteria,
input/output preferences) each xcompute session can load a simple human-editable *.cfg �le at launch and/or
throughout runtime. Di�erent applications (e.g. server vs client) have one or two con�guration �les that serve
characteristic purposes. In all cases, the application expects at least one con�g �le in the local execution or
install path. If one is not provided, warnings are generated and defaults may lead to unexpected or unde�ned
behavior. Con�gurations can be serialized using Messages::Variables.

Server-side con�g contains compute resource defaults and service parameters such as port numbers.
Client-side con�g contains interface library locations, stylesheet locations, and user-facing defaults.

6.2 Shell Interpreter

A command line interface for XCOMPUTE is under development. While an interactive client facilitates
more exploration of a problem, repetitive analysis of a problem is also required, where a simple scripted
interface may be preferable to the interactive client for batched studies.

The shell interpreter would allow a problem to be expressed on the command line. Geometries would
be inputted from external �les; boundary conditions can then be applied to surfaces. The described system
could then be submitted for execution.

Several external �le formats are expected as potential inputs to the command:

� CSV for data and conditions

� VTU for external visualization tools

� MSH for gmsh import and export

� STL for discrete surface representation

� SDF for signed distance �eld (compressed)

6.3 Protobuf-Generated I/O

To share numerical information across computing sessions, Xplicit Computing created the MessagesTM �le
and wire schema, based on Google's Protocol Bu�er mechanism, known commonly as Protobuf. Its purpose
is to allow engineers and scientists to e�ciently and seamlessly share numerical computing data across
computing platforms and programming languages. Messages language bindings provide an easy way to
utilize existing work�ow tools to generate case �les for use in the xcompute environment.

Messages provides �exible encoding/decoding similar to XML and JSON but faster and denser. A
machine-generated Messages library contains utilities to �atten and reconstruct object-oriented and vec-
torized data structures encountered in numerical simulation setup, expression, and results (e.g. systems
engineering, CFD, FEA, EDA, and geometry processing).

Protobuf is a platform agnostic serialization mechanism for structured data. The Messages schema
is de�ned by .proto �les that are passed into the protoc Protobuf compiler to generate high-performance
binary-encoded accessors for various languages. Xplicit Computing's applications are built on these generated
bindings, and end-users can also apply those same standards to their own custom integration for an integrated
work�ow with high continuity and performance.

The Messages schema is de�ned by the .proto �les listed in Table 11.

Table 11: XC Messages Schema and �les

Filename Description
vector.proto XCO numeric data object arrays using packed arena allocation
spatial.proto XCG geometry/topology of elements and regions discretization
concept.proto XCS system case setup, models, parameters, associations
meta.proto XCM metadata and user-graphics media for a speci�c system

15

The bindings supported by protoc include C++, Java, Python, and others. Additionally, Google and
third-parties provide plug-ins to protoc for over 30 languages.

In the case of XCOMPUTE, Messages .proto �les are compiled into C++ source code, which are com-
piled into object code modules, which are collected and archived into library libxcmessages. This library is
linked with libxccommon and other xcompute object modules to produce the primary xcompute-server and
xcompute-client executable applications.

To ease the process of adopting Messages into other projects, Xplicit Computing publishes a developer's
guide �Introduction to Messages� [3] which provides C++ and Python code examples of how serialization and
deserialization (parsing) are done, how values are assigned into Messages and how they are retrieved after
deserialization. The source code for Messages is provided on GitHub under a BSD-3-Clause open source
license so that users can easily incorporate Messages in their project [2].

The example below shows the C++ binding of Messages. The protoc-generated header �le �vector.pb.h�
is included. The name of the message container is set to a property-key. Values are interleaved in groups of
three for a 3d domain.� �
#include " vec to r . pb . h"
Messages : : Vector64 msg ; // f i r s t , c r ea t e an empty message conta iner
msg . set_name (" Pos i t i on | Value") ; // s e t the name f i e l d with a s t r i n g
msg . set_components (3) ; // or however many vec tor dimensions , i e . 3 f o r xyz
msg . add_values (pos . x) ; // push back x value , e . g . from some glm : : dvec
msg . add_values (pos . y) ; // push back y va lue
msg . add_values (pos . z) ; // push back z va lue� �

The same is achieved in Python by:� �
import vector_pb2 as vec to r
msg = vecto r . Vector64 () # crea te an empty message conta iner
msg . name = "Pos i t i on | Value"
msg . components = 3
msg . va lue s . append (pos . x)
msg . va lue s . append (pos . y)
msg . va lue s . append (pos . z)� �

The protoc-generated language bindings provide a path for integration with existing scienti�c and en-
gineering software tools and scripts, and thus a means of augmenting existing work�ows. Values could be
been appended by way of a serial or parallel loop. Furthermore, higher level functions could be de�ned to
simplify the code even further.

The Python code below describes a thermal model with two boundary conditions, and references xcompute
internal machinery to run a �nite element simulation. The modules �concept_pb2� and �vector_pb2� are
part of the Python language binding generated by protoc (versions 2 and 3):� �
import concept_pb2 as concept
import vector_pb2 as vec to r

system = concept . System () # i n i t i a l i z e a system de s c r i p t i on

model = concept . Model ()
model . name = "Thermal D i f f u s i on Model"
system . models . append (model)

add a temperature d i r i c h l e t cond i t i on to sur face 1
system . cond i t i on s . append (fe_temperature (s u r f a c e =1,

propkeys={"Temperature" : 300}))

add a convect ion rob in cond i t i on to sur face 2
system . cond i t i on s . append (fe_convect ion (su r f a c e =2,

propkeys={"Temperature | Reference " : 1000 , "HeatTransfer | C o e f f i c i e n t " : 1 . 0 }))� �
An additional module of about 50 lines of Python code are referenced to convert the boundary conditions

into suitable Messages serialization. The result can be saved as a �le and later read by the xcompute-server
to prepare the simulation. Note that the serialization here is produced with Python, but the xcompute-server
deserialization utilizes C++. This lays the groundwork for a series of cases to study the underlying problem
of interest.

16

6.4 xc::io (Server-Client)

Numerical throughput is typically limited by available processing power, local working memory, or com-
munication bandwidth between devices or hosts, and cache-coherency considerations. Although processing
power continues to climb, transport between host and devices remains a primary expense moving towards
heterogeneous architectures. In a large-scale distributed environment, this data locality impediment is ex-
acerbated due to limited network bandwidth (as compared to local RAM or PCIe). In order to approach
theoretical throughput within the hardware and compatibility across CAE software contexts, an e�ective
systems-of-systems conceptualization (or decomposition) is required for e�cient message construction and
transport on top of an open schema.

In conjunction with theMessages library, the xcompute protocol provides for e�cient sharing of structured
numerical data between servers and clients or between servers and servers. Upon changes to a numerical
system, a server application pushes a Messages::Meta manifest (de�ned in meta.proto) to each connected
client as an outline of the numerical domain and data available to be requested for each system. Connected
clients receive these meta messages into the respective metaobject's bu�er, and if it doesn't exist, creates
a new metaobject for a corresponding system's global unique id. Within the following client refresh cycle,
each relevant metaobject iterates through its members comparing revision numbers against those in the
meta-bu�er, and as required, updating said members by calling blocking get/pull requests from the server
by id. Client-side user events invoke any number of non-blocking do/command functions on the server to
manipulate the simulation state machine, and a�ected systems push meta messages to post changes.

To minimize unintended exposure of work product and intellectual property, the governing numerical
system setup is expressly not de�ned in meta messages, but rather in respective server-side messages de�ned
in Messages Protobuf concept.proto and spatial.proto �les. Attributes are requested and ful�lled a la carte
from the meta manifest, and numerical data is mostly transmitted over networks for requested attributes
as encoded arrays of single-precision �oats. Administrators can specify users' permissions for import and
export privileges to control project data. For each system, data attributes are managed by the property-key
as Messages::Vector32 or Messages::Vector64 for accelerated I/O and �exible use. These vector types are
de�ned in a fourth vector.proto optimized for packed arena allocation of array-like attributes.

6.4.1 XCOMPUTE transport protocol (XCTP)

To facilitate network communication, the xcompute transport protocol (XCTP) over TCP/IP is introduced,
with the service name `xcompute' on IANA-reserved port 11235 [11]. Either server- or client-side, a message
is either ingress or egress, and contains the necessary metadata to describe its payload. The message payload
may be a Protobuf message or a data primitive (e.g., std::string, int, and IEEE-754 �oat and double).

XCTP version 1.0 has two layers; �rst, a header describing each message's payload, and second, a header
providing a description of one or more concatenated messages in a packet, as shown below.

� Message: [Message Header] {payload}

� Packet: [Packet Header] {Message1, ..., MessageN}

A Message Header comprises a quintuple of:

Table 12: Message Header

Field Description
type: enumeration describing the payload type, such as a function

name, whether is it an actionable payload, or the data-type
length: byte-length of the message
container-type: type of container as an enumeration, such as fundamental (eg.

built-in type), aggregate (eg. vector, set, protobuf data-type,
etc), or null

container-element: unique container-element index, nullable
container-size: aggregate element count

17

A Packet Header comprises an septuple of:

Table 13: Packet Header

Field Description
packet-length: cumulative byte-length of the header and message(s)
protocol-version: version of the XCTP transport being relayed
session-id: monotonically increasing identi�er describing the connection

state
sequence-nbr: monotonically increasing unique identi�er of the packet
message-count: the count of messages in the packet-payload
date-time: UTC send time of the packet out the wire
thd-id: thread-id identifying the issuing thread of this packet (only rele-

vant client-side)

Combined, these �elds given in Table 12 and 13 make for a self-describing protocol �t for TCP and UDP
multicast communication.

7 Conclusion

In this paper, we outlined XCOMPUTE, a uni�ed framework that utilizes numerical algorithms to solve
multiphysics problems across heterogeneous, distributed computing resources. We presented the architec-
ture, de�nitions, objects, code, and execution modes incorporated within XCOMPUTE, including concepts,
logic, and examples. These modular building blocks provide a foundation for the design, development and
improvement of next-generation integrated CAE systems.

We also released the Messages �le & wire schema as an open-source tool to allow e�cient sharing of
numerical computing data across platforms and programming languages. We showed how existing work�ows
can use Messages to generate case �les for the xcompute environment.

Queries about XCOMPUTE software availability and license terms can be sent to:
info@xplicitcomputing.com

Acknowledgements

This is paper bene�ted greatly from comments and critical review by other members of the Xplicit Computing
team. In particular, our thanks go to F. Oz, D. Indictor, S. Suresh, and J. J. Maxwell.

18

Appendix A

Properties (partial list)

AnyProperty, Position, Angle, Area, Length, SignedDistance, Volume, Curvature, Element, Feature, Quality,
Acceleration, Displacement, Mass, Moment, Momentum, Traction, Velocity, Energy, Pressure, Temperature,
Enthalpy, Entropy, CFL, Cp, Cv, Gamma, SpeedOfSound, Time, Stress, HeatTransfer, Poisson, Modulus,
SmallStrain, Conductivity, Expansion, YoungsModulus, Distribution, Probability, Di�usion, Viscosity, Vor-
ticity, Voltage, Charge, Permittivity, Permeability, Emissivity, Absorptivity, Aluminum, Beryllium, Boron,
Carbon, Electron, Fluorine, Helium, Hydrogen, Lithium, Magnesium, Neon, Neutron, Nitrogen, Nitric, Ni-
trous, Oxygen, Sodium, Copper...

Modi�ers (partial list)

AnyModi�er, Coe�cient, Count, Density, Net, Size, Approx, Exact, Limit, Residual, Scratch, Equilibrium,
Ratio, Reference, Standard, Total, Stagnation, Critical, Static, Dynamic, Molar, Turbulent, Electrical, Ther-
mal, Adjacency, Assembly, Normal, Tangent, Filtered, Gaussian, Magnitude, Max, Mean, Median, Min,
Mode, RMS, Standard, Deviation, Sum, Curl, Di�erence, Divergence, DT, DX, DY, DZ, Flux, Gradient,
Integral, Shear, Compressive, Tensile, Torsional, Speed, Anion, Carbide, Cation, Chloride, Diatom, Dioxide,
Fluoride, Hydride, Hydroxide, Monoxide, Nitride, Oxide. . .

19

Appendix B

Emergence of the Signed Distance Field (SDF)

Given some computational domain, to solve the SDF we compute and store the radial distance to boundary
δΩ at discrete positions x[n] to minimize scalar �eld φ[n] = min||x(δΩ)− x[n]|| which intrinsically has slope
magnitude of 1 = |∆φ| with gradient de�ned to be outward normal to the implicit boundary [12, 13]. SDF
initialization complexity for F faces is approximately proportional to Nshell log(F), so to save on computa-
tional costs, the hyperbolic characteristics of the eikonal equation permits the boundary SDF narrowband of
Nshell nodes to be solved exactly and extended approximately using fast-marching or equivalent. Extension
typically proceeds two orders of magnitude faster than initialization.

The SDF �eld can be sampled for spatial-physics wall functions, gradients, curvature, and other SDF-
derived di�erential geometry quantities [12]. It can be used to generate unstructured meshes or structured
grids, each requiring special procedures to properly interpret elements in regions in close proximity to bound-
aries; resulting elements near or on boundaries of computable grids and meshes will be erroneously deleted (or
marked invalid) preventing the ability to apply conditions. Such subtleties span the gap between academic
and working capabilities on the topic.

Although it is possible to solve SDF on meshes, spatial sampling against unstructured geometries incurs
complexity that is uncompetitive with constant time sampling on structured grids. The declarative nature
of unstructured element topologies requires 20-50 times more memory than a procedural structured grid [1].
Therefore, within the scope of xcompute we assume that sampling occurs against grids to minimize memory
footprint and accelerate computations. In practice, these background grids might not be useful to end-users,
so the application should show or hide such support geometries as �t.

Creating a structured grid requires a few parameters: nodal resolution, spatial domain extents, and
whether or not to expose regions to users (which defaults to false for background grids to save resources). A
grid can be constructed with a smooth metric grading, approximating a desired total node count. Conversely
for structured grids, it is more useful to explicitly specify the I-J-K dimensions to control anisotropicity.
Given a structured grid, any other geometry can easily and e�ciently sample the background to �rst-order
accuracy in constant time by quantizing the position into a I-J-K location code and computing the node-
element weightings from the remainder. Since the SDF is typically linearly-varying, the sampling matches
accuracy of the underlying �eld and returns accurate interpolations of SDF values, which is critical near zero
where the boundary is de�ned by default.

For SDF to be useful to existing work�ows, a method exists to convert explicit topologies (such as from
an STL �le) into implicit �elds. The numerical complexity to initialize SDF around discrete surfaces restricts
naive implementations to small problems [9, 13]. To scale to millions of elements, the collection of simplexes
surrounding each reference face must be identi�ed and then trimmed into a narrowband shell. Each node
must then search for the minimum distance to the closest face using an octree to approximate far faces. This
proceeds quickly in parallel implementations, but robustly determining the SDF sign (for inside-outside)
requires an expensive winding number calculation; steradians are accumulated for each narrowband node in
a parallel stack queue, dominating the SDF initialization wall time (and thus the interest in reusing SDF
shells). Once the SDF value and sign are correctly determined for the narrowband, the SDF is said to have
been initialized and can be extended to the majority of nodes in the grid using a fast-marching method.

A rich variety of operations are available for implicit SDF shapes, including: sampling, boolean operations,
blending, contouring, thinning & thickening. Some of these procedures are required while preparing meshes
and grids. The intrinsic properties of SDF and its derivatives allow spatial-physical algorithms to make
better informed decisions and projections. Given any position on an SDF �eld and its gradient, one can
estimate the vector to the closest surface in a few clock cycles in constant-time within �rst-order accuracy.
Per-Olof Persson's work brie�y outlines general procedures to utilize SDF in conjunction with other �eld
data to directly optimize shapes against physics [12, 13].

The SDF narrowband and hyperbolic solution can be exploited with index-based compression schemes;
datagram size is proportional to the number of unique narrowband values while extension values are dis-
carded, ignored, or assigned a �ducial value. Simple shapes have extreme compression ratios, while the
compression size for complex shapes are proportional to the product of topological dimensionality, relative
surface area, and resolution. Tolerance handling is also important; information quantizing and loss are

20

not permitted in the SDF datagram �oating-point data. Once an SDF datagram has been received, it is
uncompressed, evaluated into a structured grid, and expanded into a full SDF �eld for use.

References

[1] G. J. Orr. Uni�ed Geometries for Dynamic HPC Modeling, 2018.
[2] Xplicit Computing. Messages. https://github.com/XplicitComputing/messages, 2022.
[3] Xplicit Computing. Introduction to Messages. https://github.com/XplicitComputing/messages/

blob/master/doc/xcmessages.pdf, 2022.
[4] Top500. Top #1 Systems. https://top500.org/resources/top-systems, 2022.
[5] Tech-Clarity. Tech-Clarity Perspective: Reducing Non-Value Added Work in Engineering. https:

//tech-clarity.com/documents/Tech-Clarity-Perspective-DDAa.pdf, 2014.
[6] Bill Haskins, Jonette Stecklein, Brandon Dick, Gregory Moroney, Randy Lovell, and James Dabney. 8.4.2

error cost escalation through the project life cycle. In INCOSE International Symposium, volume 14,
pages 1723�1737. Wiley Online Library, 2004.

[7] Harald Hanche-Olsen. Buckingham's pi-theorem. NTNU, 2004.
[8] Eigen project. The Matrix class. https://eigen.tuxfamily.org/dox/group_

_TutorialMatrixClass.html.
[9] William Dawes, Simon Harvey, Simon Fellows, Neil Eccles, D Jaeggi, and Will Kellar. A practical

demonstration of scalable, parallel mesh generation. In 47th AIAA Aerospace Sciences Meeting including
The New Horizons Forum and Aerospace Exposition, page 981, 2009.

[10] Google Inc. Protocol Bu�ers 3. https://developers.google.com/protocol-buffers.
[11] IANA. Xcompute service name and port assignment. https://www.iana.org/assignments/

service-names-port-numbers/service-names-port-numbers.xhtml?search=11235.
[12] Per-Olof Persson. The level set method. Lecture notes, MIT, 16:1�7, 2005.
[13] Per-Olof Persson. Mesh generation for implicit geometries. PhD thesis, Massachusetts Institute of

Technology, 2005.

21

