
Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

An Infrastructure for Algorithmic Flexibility in Multi-fidelity and

Multi-disciplinary CFD Simulations

S. Morton∗, D. McDaniel∗ and N. Hariharan∗

Corresponding author: scott.a.morton@usace.army.mil

∗ US DoD High Performance Computing Modernization Program, USA.

Abstract: An infrastructure that is the core of a multi-disciplinary, multi-fidelity,

simulation tool in the US Department of Defense High Performance Computing

Modernization Program Computational Research and Engineering Acquisition

Tools and Environments (HPCMP CREATETM) program that couples

aerodynamics, thermochemistry, stability and control, structures, propulsion, and

store separation for a large range of freestream operating conditions, Kestrel, is

described. The infrastructure enables a robust and accurate capability targeting

fixed-wing aircraft and is being used extensively in government and industry

organizations within the US DoD acquisition community. This paper details the new

flexible physics coupling strategy in the context of a notional hypersonic trajectory

simulation. This strategy provides ultimate flexibility to define exactly when and

how different high-fidelity physics solvers are employed during the simulation.

Results are presented for the notional trajectory analysis.

Keywords: Numerical Algorithms, Computational Fluid Dynamics, Multi-fidelity

Solvers, Multi-physics Simulations.

1 Introduction

Over the last several decades the US government, industry, and academia have created a rich

foundation of physics-based simulation tools, including computational science and engineering

(CSE) tools for fluid dynamics and propulsion (CFD), structural mechanics (CSM), structural

dynamics (CSD), and electromagnetics (CEM), to name just a few. These tools have made

great progress becoming applicable to the entire envelope of operation of targeted vehicles.

However, over the last few decades of development the focus of these CSE tools has been on

individual improvements to each of them, rather than multi-disciplinary integration of the tools

into a system-level view of the vehicle.

For example, the Stability & Control engineer needs to include the effects of other disciplines,

such as aeroelasticity and/or thermal elasticity, in the plant of their control system to get an

accurate response during operational use in many cases. This same reasoning applies to the

Loads engineer using the CFD code. It is of critical importance that the focus move from single

discipline use of CFD to an integrated multi-disciplinary use at the speed necessary to impact

the other disciplines, in other words at the “speed-of-relevance.”

One of the driving reasons to make these changes to our focus is the need to reduce the overall

timeline of the vehicle development cycle. Due to increased complexity in the system and late

detection of defects, among others, the development cycle is growing from years to decades in

our major aircraft programs. One sure way to reduce the timeline is to move the use of high-

fidelity tools to the left on the timeline to eliminate defects in designs long before the first

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

aircraft is manufactured or even before the first wind tunnel model is tested. The earlier a design

decision is “locked-down” the more impact it has on the lifecycle cost of that system. A better

understanding of the system response and performance earlier can aid in increased iterations

of the design and an optimization of the vehicle can be achieved, ensuring these “locked-down”

decisions are the correct ones.

In response to this need to get a system level view of the vehicle, it is critical to have an

infrastructure that can be flexible enough to include other disciplines such as Propulsion,

Stability and Control, Structures, and Thermal Sciences with Computational Fluid Dynamics

simulations. In addition to multi-disciplines, it is also key to allow multi-fidelity of the

integrated disciplines to allow long trajectory times. Probably the most noteworthy feature

addition during the last year to the US DoD HPCMP CREATETM fixed wing virtual aircraft

product Kestrel[1,2] was the substantial set of changes to the workflow surrounding the coupling

of different CFD-related physics capabilities in the simulation software.

Two main requirements served as the driving motivation for the changes to the infrastructure.

First, the introduction of conjugate aero heating capabilities exposed limitations with the

existing time-accurate coupled analysis approach for long duration trajectories of flight

vehicles. The time scales of these simulations relative to the required solution time made the

computations intractable. While still desiring to support high-fidelity, time-accurate

simulations of smaller mission segments, it was necessary to support a more flexible coupling

strategy between physics modules addressing both the frequency at which different solvers

executed as well as the time integration scheme used to converge the solution (e.g. time-

accurate versus quasi-steady). The second motivating factor was the growing number of users

requesting the ability to run simulations with minimal or no aerodynamic modeling included

(e.g. a structural heating problem with a prescribed heat flux on the aero-structural boundary).

In an effort to support these and other related use cases in a general manner, some key paradigm

changes were made to the standard simulation workflow. Targets of opportunity were seized

to remove existing awkward interactions and workflows where possible. It is important to

emphasize that all existing simulations are automatically converted to the new paradigm. A

detailed discussion of the infrastructure will be provided below.

2 Infrastructure Description

From the beginning, the Kestrel development team recognized that in order to persist as a viable

and effective tool, it was of paramount importance that the overarching design avoid the typical,

monolithic design of so many of the simulation tools that have come before it. The natural

inertia associated with the development of multi-physics software tools wants to tightly couple

the various elements of the program since that is the most direct way to coordinate the various

moving parts of the simulation (i.e. data shapes, execution flow, routine interfaces, etc.).

However, this is realistically feasible only for single-physics simulations with only one or two

developers. Even then, serious problems can arise if appropriate testing is not in place.

Considering the added complexities of the multi-body, multi-physics simulations targeted by

the Kestrel product and the larger number of domain experts involved, this approach is destined

to produce a frustrating experience for users and the inability to make meaningful code changes

as requirements and/or technologies change. Previous projects similar to Kestrel have

effectively become petrified and therefore unusable for modern problems due to not being able

to insert new techniques and/or features into the code with any reliable assurance of success.

Indeed, during the initial releases of Kestrel when the level of complexity was relatively low,

the development team sometimes succumbed to monolithic temptations in the interest of time

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

only to have to “pay” for those decisions as improvements to support more complex use cases

were added.

The Kestrel development team has accepted as fact that the only persistent requirement is that

things will change in the future, whether it is requirements for new capabilities or a better

algorithm or technique to utilize in an existing feature. Therefore, the overall Kestrel design is

highly modular by nature, providing a way for the developers to surgically insert changes into

Kestrel without having to know “everything” about all of the various components and modules.

This elemental approach has analogous benefits to object oriented software design where

objects can be instantiated and used without being aware of the internal implementation of the

methods. The success of this approach is highly dependent on good test coverage at all levels

of integration. Other projects have addressed these issues with a loosely coupled architecture

that allows for a “plug-and-play” capability. However, these designs often lead to an

incoherent and non-intuitive experience for users, especially for highly complex simulations

such as the ones addressed here where multiple bodies are moving and/or deforming in time.

In the following sections, the key tenets of the Kestrel architecture aimed at realizing the

desired flexibility and adaptability of the simulation tool are discussed as well as the approach

to maintain an intuitive and simplistic user experience and bring the capabilities as close to the

discipline-specific user as possible. Figure 1 depicts the key elements of Kestrel and their

relationships that are discussed in some detail in the following sections.

Figure 1. Main elements of the CREATE-AV Kestrel simulation tool.

2.1 Input Management and Job Setup

For complex simulations, it is very difficult for a user to represent the desired problem setup to

the simulation tool in a straightforward manner. It typically requires multiple attempts (and

many wasted CPU hours) before finally getting the setup correct. The overarching focus of the

Kestrel job setup process is threefold: 1) the user should specify each of their input quantities

only once, 2) do not require the user to convert their inputs into unfamiliar units, coordinate

systems, etc. – meet them as closely as possible to their native data representation, and 3)

provide mechanisms to validate the job setup as early as possible in the process. Unfortunately,

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

this approach is not necessarily in sync with a consolidated, concise software implementation.

The following sections discuss Kestrel’s approach to each of these areas.

The Kestrel User Interface (KUI) serves as the one-stop shop for specifying all inputs for a

simulation (see Figure 2). It attempts to provide an object-based environment for the user to

relay the desired problem setup and parameter values in as natural a manner as possible while

preventing the user from having to input the same information multiple times. When possible,

choice lists are utilized over raw string or numeric inputs. Many numeric inputs include an

automatic unit conversion capability, and it is even possible to express inputs as an algebraic

expression. Support models such as a standard atmospheric model are included where

appropriate in order to abstract the particular input requirements of the Kestrel physics code

from the data the user has available. For example, though the Kestrel flow solver component

(KCFD) desires the flow condition to be specified by Mach number, static pressure, and static

temperature, Kestrel allows the condition to be specified in any number of ways to include

Mach/Altitude, Reynolds/Mach/Temperature, or Mach/Density/Dynamic pressure (for

aeroelastic cases).

.

Figure 2. The Kestrel User Interface (KUI) aims to make the typical problem setup

simple while keeping the hard problem setup manageable.

Inputs are grouped by functionality according to an object-based hierarchy. This approach was

inspired by the techniques discussed in [4] and represents an intentional decoupling of the

problem definition from the underlying component code input requirements. The main input

entities are simulation control, reference conditions, body definitions, body relationships,

motions, and output control. The simulation control and reference condition inputs consolidate

the typical simulation parameters such as number of iterations, job names, time step size, flow

conditions, etc. The body definitions allow the user to specify the characteristics of each

particular type of body in the simulation. For example, a store separation simulation could

have a single aircraft body definition and a single store definition even though the actual

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

simulation could include multiple instances of each of those body types. The body definition

inputs include the fluid mesh definition, boundary conditions, engines, control surfaces, and

mass properties among other things. The body relationship inputs include the specification of

the actual hierarchy of bodies in the simulation and their relative positioning information. Each

body in the section represents an instance of a body definition. Starting with a root body

positioned relative to the inertial reference frame, bodies may be added as peers (additional

root bodies) or children of the body. Then, peers or children of that body may be added, and

so forth.

Next, a variety of actions may be added to the simulation to incorporate dynamic effects into

the simulation. Action types include mechanical and thermal structural responses, engine

transients, control surface motions, prescribed rigid-body motions, and six degree of freedom

(6DOF) rigid-body motion. Each action type is typically applied to one of the bodies defined

in the relationship data. Extensive input validation automatically checks for invalid scenarios

(e.g. a prescribed and a 6DOF motion applied to the same body at the same time). Finally, the

type and amount of output data produced by the simulation may be controlled by a set of global

output control parameter inputs, or per-body output specifications may be introduced for more

specific requirements. In more recent years, the concept of an “action” has been expanded to

include other operations that don’t necessarily represent behavior of the bodies in a simulation

but rather operations to govern the behavior of the simulation. Examples include convergence

detection, freestream flow condition changes, and automatic force and moment targeting.

In the end, the KUI creates an XML job input file for the simulation based on all of the various

inputs provided by the user. The XML file includes all of the information necessary to define

the body hierarchy, locations of input files, input coordinate systems and units, assembly

instructions, and desired output coordinate systems and units, as well as all inputs needed by

components of the simulation to successfully run. One of the more important behind-the-

scenes pieces of the Kestrel code base is the shared utility code that collects and “normalizes”

all of the disparate user inputs collected into the hierarchical XML input file into a format that

each of the execution components can easily utilize. It converts all input data provided in a

user-specified unit and/or coordinate system and a user-specified scale to an internal system so

that individual components do not have to worry about those types of conversions.

2.2 CSI and Event-driven Architecture

The core of the modular architecture of Kestrel is the Common Scalable Infrastructure (CSI).

The infrastructure is the machinery that brokers the execution flow between the various

components in a simulation and handles operations that are common to each of the components.

CSI is at the heart of the efforts in Kestrel to maintain flexibility and abstraction in the program

design and to insulate against the inevitable changes coming in the future. There is a common

misconception that CSI is the “smartest” part of the Kestrel framework. In actuality it is, by

design, the most clueless part of the framework. It knows nothing and merely reacts to what is

provided to it. CSI is the manifestation of the overall design choice to push use-case-specific

functionality into individual components and maintain a homogenous behavior in the

infrastructure. This approach naturally preserves flexibility in the Kestrel implementation and

allows new features and/or new implementations of existing features to be made without

disrupting the infrastructure or any of the unrelated components within Kestrel.

Each component in Kestrel includes a component application program interface (API) written

in Python. These APIs implement a component-specific class based on a generic component

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

class and contain standard methods for each component such that all components look identical

to each other from the viewpoint of CSI. These standard methods include instantiation, setup,

and event handling. At run time, CSI is launched in parallel on all compute ranks and utilizes

the body hierarchy as discussed previously to load the XML input file for the job, convert the

inputs into a common unit system, scale, and coordinate system, and then make them available

to the components in a way that is easily digested. Each component specified in the XML file

is instantiated in order of appearance, which includes the setup of local MPI information and

the registration of events the component will respond to. Next, CSI calls a setup method for

each component, which gives each component a chance to perform such tasks as extracting its

desired inputs from the body hierarchy reference provided during instantiation and validating

them. Finally, CSI “seeds” the event queue with the Initialize event, and that event is provided

to each component for processing if it is requested. The handling of this event is where most

components will perform all tasks necessary to prepare for the main simulation iterations (e.g.

reading additional input files, initializing various data, etc.). At this point the individual Kestrel

components take over and continue the simulation in the manner dictated by the processing of

events and the publishing of new events. CSI merely manages the process of providing the

events returned to it to all components that asked to handle it. This is what is meant by a

“component-driven architecture”. The individual components containing the “smarts” of

Kestrel make the decisions on which direction the execution path should take based on the user

inputs and the component algorithms.

While it is possible for a valid component to only contain the Python component API, it is

common for a component to also include “lower” code levels for faster execution. All efforts

are made to contain the core command and control operations at the Python level and only drop

to the lower code levels as needed for efficiency. However, this is a fuzzy line since the

capabilities of compiled languages have improved so much in recent years, and there is no real

requirement here other than the basic desire to always use the right tool for the job. What is

more important is the natural temptation discussed earlier to build “mega-components” that

encapsulate a lot of different functionality. The component is the core, testable executable unit

in Kestrel. Efforts are made to keep the Kestrel component landscape as elemental as possible.

The more granular and focused a component is, the easier it is to maintain and test, and the

more flexibility the overall simulation has with regards to execution flow. Also, more granular

components imply a more highly-factored code base and less duplicate code.

There are no restrictions by CSI on the particular events that it can process. In fact, events all

look identical from CSI’s viewpoint. However, there is an obvious understanding that multiple

components must agree to work with a common set of events in order to accomplish useful

work. In effect, the manner in which events are processed and published is the “language”

with which different components in a simulation communicate. The shared data items that

each component works on may be considered to be the “words” used in the communication.

It is difficult to relay through words how important the event-driven architecture is to the

modularity and flexibility of Kestrel. As an example, one of the earliest outgrowths of the

event-driven paradigm was the ability to conduct what is referred to as a “preflight” simulation.

It is possible to effectively remove the flow solver component (KCFD) from the simulation,

resulting in a simulation where all other activities such as mesh surface deformation, rigid body

motion, and external force application operate as in a normal simulation but the time-

consuming flow solution is not executed. This allows a user to quickly execute the planned

simulation in a matter of minutes to confirm the resulting body motion is as expected – another

example of allowing a user to validate their simulation inputs prior to consuming precious CPU

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

hours. The event-based approach quickly gives rise to the concept of letting the simulation

determine on its own when it is ready to proceed on to the next phase of the simulation. Imagine

a movie-like script that says something like “iterate on the flow solution until it is converged

at which point release the store”. A demand-based simulation flow like this could be invaluable

for minimizing the time required to complete a complex simulation. Finally, the integration of

3rd party components from collaborators to extend the native capabilities of Kestrel is currently

included through a Error! Reference source not found.. The event-driven framework and

modular architecture of Kestrel makes this type of integration almost trivial and allows

collaborators to immediately take advantage of the native capabilities within Kestrel (e.g.

visualization output) that would otherwise distract from the real collaboration effort.

A Data Warehouse (DW) facilitates the sharing of data between components on the same

compute rank. The DW provides mechanisms for a component wrapper to register data items

that it produces with the DW and places the item in the warehouse in a particular format

(language). Then, any component can safely check to see if a data item exists in the warehouse,

and if so, request the data item in any language. As long as the proper conversion routines

have been supplied by the registering component (or the DW itself), the DW will automatically

work with the owning component to provide a reference to the desired data. The heavyweight

data are still passed between components by reference such that when one component modifies

a common data array the change is immediately represented in any other component

referencing the data.

2.3 Multi-Disciplinary Components

The components that plug into the CSI provide the needed physics for the problem at hand and

can also interact with other components through the CSI to provide the multi-disciplinary

simulations desired by the User. The Components subscribe to the events discussed above (e.g.

iterate, sub-iterate, create restart) and also produce or subscribe to data elements in the Data

Warehouse. Figure 2 below depicts the various finite volume and finite element fluid dynamics

solvers (e.g. KCFD, COFFE, SAMAir) and their interactions with various modal and finite

element structures solvers (e.g. Modal/SD, Sierra/SD) and a conjugate gradient heat transfer

solver (e.g. Sierra/TF Aria). The interaction components described in Figure 2 are PUNDIT,

allowing multiple fluid solvers to transfer data using interpolation of mesh points, and FSI,

allowing fluid solvers to transfer data to/from structural solvers through interpolation of their

mesh points. Both PUNDIT and FSI are components that are completely automated with no

interactions by the User necessary.

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

Figure 3. Schematic showing fluid and structural solvers currently present in

CREATE-AV Kestrel.

2.3 Multi-Fidelity Multi-Physics Coupling

One of the most important and sweeping changes to Kestrel over the last several years is a

result of requirements from the hypersonic vehicle design community. Hypersonic flight

requires additional physics to be included in the simulation with varying time scales (e.g.

thermal-chemistry, ablation, fluid-thermal-structural interactions). It would no longer be

possible to simply run time accurate at the smallest relevant scale (typically CFD with on the

order of 10-5 sec time step) and have reasonable simulation times. It was also necessary to run

for long simulation times of 10’s minutes in order to account for thermal soaking of the vehicle

in hypersonic flight. These two requirements led to infrastructure changes that allow the

disparate solvers to execute at different intervals in the simulation.

Figure 4. Notional vehicle trajectory with non-uniform physics coupling and time

solution schemes.

Figure 4 represents a notional example of an aeroheating simulation during a hypersonic

trajectory that might require the thermal solver to execute every time step while the structural

solver and CFD solver execute in a quasi-steady mode at orders of magnitude larger time steps,

making the overall simulation of 10’s of minutes affordable. The simulation begins by

assuming the flow field is steady and converging the flow field around the initial thermal state.

The flow field is then held fixed while the thermal solver marches time forward at a time step

appropriate for the thermal domain. At user-specified times, the steady flow field is recomputed

around the most recent thermal state, and the new surface heat flux values are used as the

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

thermal solver continues in time. The user may elect to define convergence criteria to terminate

each of the fluid solve “segments” or may just have them go for a specified number of iterations.

The simulations described above can also span hundreds of thousands of feet in altitude,

causing issues with the freestream conditions relevant to the overall simulation. Kestrel now

supports updating the freestream conditions during a simulation. A user may provide a file that

describes how Alpha, Beta, and the simulation’s “Known Conditions” (e.g. “Altitude-Mach”)

change as a function of time. Every point in the file represents a discrete jump in the freestream

conditions, and Kestrel will re-initialize its flow field and reference state to the new conditions.

During the course of making these changes, another important decision was made to help with

multi-fidelity simulations. In previous versions of Kestrel, CFD solvers have been the assumed

drivers of the simulation and were always called during the simulation. In order to allow

surrogate aero models to be incorporated into the simulation, this assumption had to be

eliminated. Now a user can choose “no CFD solve” or replacement of the CFD solve with a

surrogate model. This new strategy opened Kestrel to new use cases like thermal-structural

only simulations with a prescribed aero input, as well as many others. The next section

describes some multi-fidelity, multi-physics simulations that take advantage of the new

flexibility in the Kestrel architecture.

3 Example Applications

This section presents two examples of the flexibility of the infrastructure to multi-physics and

multi-fidelity solvers. The first example is an aero-heating simulation using a conjugate

gradient heat transfer solver along with the CFD solver, and the second example is a long

duration trajectory simulation with disparate time intervals for the thermal solver and the CFD

solver.

3.1 Static Canonical Body Conjugate Gradient Heat Transfer

Thermal interactions between fluid and structural domains are a fundamental aspect of aero-

structural simulations. Flight in the hypersonic regime brings about non-negligible coupling

between aerodynamic pressure, shear, and thermal loads, heat transfer and structural

deformation. While emphasis on the hypersonic flight regime has been the primary driver for

development of this capability in Kestrel, there are also a number of other aero-heating use

cases that require the capability (e.g. turbomachinery, jet impingement, store and aircraft

thermal load management).

Kestrel has the ability to solve heat transfer problems by coupling with the "Aria" solver from

Sierra/TF (Sandia National Labs). Aria is a parallel, multi-physics solver capable of solving a

wide variety of partial differential equations, including the energy equation needed to solve

heat transfer in a solid. With the introduction of Aria into Kestrel, the array of available solvers

can quickly get confusing. As discussed earlier, Figure 3 shows a schematic of the different

fluid and structural solvers included in Kestrel, as well as the current couplings between the

solvers. The native fluid-structure interaction (FSI) component has been extended to support

both mechanical and thermal information transfer.

When coupled with Aria, KCFD uses the temperature distribution on the interface surface from

Aria as a localized input into the no-slip wall boundary condition. After moving the time step

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

forward, KCFD will have computed a new heat flux on the interface, which is then passed to

Aria as a specified heat flux boundary condition. The coupling is such that the solvers can

exchange information at every time step, or each solver can perform an independent number

of time steps in between coupling. Figure 5 shows how accounting for heat transfer in a

simulation impacts the shock profile and temperature field around a blunted cone at Mach 20

due to the energy transfer into the structure.

Figure 51. Sphere-nosed cone flow solution at Mach 20 with coupled aero-thermal

physics (top) and a fixed isothermal solid temperate boundary condition (bottom).

3.2 Long Trajectory Multi-Physics Multi-Fidelity Simulation

This example demonstrates the ability to specify various time steps for multiple physics solvers

in a simulation. Consider a hollow cylinder made of 321 Stainless Steel with the inner wall

held at a constant 294.4 K. Figure 6 depicts the quad-dominant aerodynamic solver’s mesh and

the structured hollow cylinder mesh for the thermal solver. The cylinder is “flown” through a

fictitious trajectory climbing from sea level to 15 km while accelerating from Mach 1.5 to 6.5

over a time period of 5 minutes at which point it holds those conditions constant for a period

of 5 minutes before returning to sea level and Mach 1.5 conditions (see Figure 7). The

simulation is performed in air as a perfect gas and using the Menter SST turbulence model. A

steady flow solution is computed with CFL=1000 (until converged or 10k sub-iterations) every

10 seconds of simulation time in response to the freestream conditions being updated and using

the surface temperature from the most recent thermal solution. The thermal solution is solved

time-accurate with a time step size of 0.01 sec using the most recent surface heat flux

distribution from the flow solve.

Isothermal

Coupled

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

Figure 6. Close-up view of aero (fluid) quad-dominant grid (blue) with ~80k triangle

cells and ~1.6M quad elements and structured grid for hollow cylinder (red) with ~77k

quad elements.

Figure 72. Altitude and Mach number time histories for notional hypersonic trajectory

with symbols showing time points where a new fluid solution is computed in a quasi-

steady coupling methodology.

Figure 8 (left) shows the resulting surface maximum temperature as a function of time for the

simulation. The maximum temperature increases fairly linearly during the climb to a 15 km

altitude and an increase in velocity to the maximum Mach number of 6.5 with a maximum

temperature close to 1200 K that then falls off fairly linearly during the descent. Figure 8 (right)

shows the distributed surface temperatures at 6 time slices in the trajectory.

Figure 9 shows temperature contours of both the fluid and structural domains at six times

during the trajectory (150 sec, 300 sec, 450 sec, 600 sec, 750 sec, and 900 sec). A few of the

features worth noting in the contours are the position of the bow shock, high heating in the

stagnation region and the extent of the high temperature region around the cylinder at different

points in the flight trajectory.

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

Figure 8. Maximum surface temperature as a function of time (left) and surface

distribution at selected time points (right) for the aeroheated cylinder simulation.

Table 1 below shows the dramatic variation in cost of the simulation depending on the chosen

simulation strategy. The time to compute the entire trajectory for the proposed time accurate

thermal solve with quasi-steady aero solve and convergence detection is 28 hours, whereas a

quasi-steady aero solve with a specified number of convergence sub-iterations is 54 hours.

Compare this to the traditional fully coupled time accurate method with an under resolved aero

time step of 0.001 sec requiring 87.5 hours and a more representative time accurate time step

of 0.00001 sec requiring 8,750 hours.

Table 1. Actual and predicted run times of hypersonic cylinder simulation (based on 44

compute cores on Onyx at the ERDC DSRC).

Present

Work

No Convergence

Detection

Couple every iteration

𝝙t=0.001 (predicted)

Couple every iteration

𝝙t=0.00001 (predicted)

28 hrs 54 hrs 87.5 hrs 8,750 hrs

Clearly the proposed method is more suitable for a design cycle and the accuracy can be

evaluated for some subset of conditions using the fully coupled time accurate method. The

flexibility in the Kestrel infrastructure and the intuitive User Interface allows users to find the

correct simulation strategy for their application in a single code.

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

Figure 93. Fluid and structure temperature contours at selected time points for the

aeroheated cylinder simulation. Note the colormaps for the fluid and structure are not

equal.

4 Conclusions

Kestrel is a multidisciplinary, high-fidelity simulation tool targeting robust and

accurate engineering solutions for the DoD acquisition community. Solutions for full

aircraft configurations containing complex, unsteady aerodynamics, thermochemistry,

mechanical and thermal fluid-structure interaction, rotating turbomachinery, control

surfaces, and rigid-body motion are possible in a production environment. Intuitive

and error-free job setup and validation is a priority, and a unique, event-based

execution paradigm which integrates various modular physics components helps to

minimize the complexity associated with a growing number of multidisciplinary

simulation requirements. The recent changes to the infrastructure enabling multi-

physics at multi-fidelity have been proven to be computationally efficient for long

duration fluid-thermal simulations. Extending this capability to the fluid-thermal-

Eleventh International Conference on ICCFD11-2022-0703
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

structural interaction problem will prove extremely useful to the hypersonic system

design community and is a priority for the Kestrel Development Team.

5 Acknowledgements

Material presented in this paper is a product of the HPCMP CREATETM-AV Element

of the Computational Research and Engineering for Acquisition Tools and

Environments (CREATE) Program sponsored by the U.S. Department of Defense

HPC Modernization Program Office. We would especially like to thank all of the

CREATE-AV Quality Assurance and Kestrel team members for their hard work and

invaluable contributions.

References

[1] Morton, S.A., McDaniel, D.R., Sears, D.R., Tuckey, T.R., Tillman, B., “Kestrel – A

Fixed Wing Virtual Aircraft Product of the CREATETM Program,” 47th AIAA

Aerospace Sciences Meeting, 5 - 8 January 2009, Orlando, Florida.

[2] McDaniel, D., Tuckey, T., “Multiple Bodies, Motion, and Mash-Ups: Handling Complex

Use-Cases with Kestrel,” AIAA Paper 2014-0415, 52nd Aerospace Sciences Meeting,

National Harbor, Maryland, Jan. 13-17, 2014.

[3] McDaniel, D. and Tuckey, T., “HPCMP CREATETM-AV Kestrel New and Emerging

Capabilities,” AIAA Paper 2020-1525, AIAA SciTech 2020 Forum, 6-10 January 2020,

Orlando, FL.

[4] Murman, S.M., Chan, W.M., Aftosmis, M.J., and Meakin, R.L., “An Interface for

Specifying Rigid-Body Motions for CFD Applications,” AIAA Paper 2003-1237, 41st

AIAA Aerospace Sciences Meeting, 6-9 January 2003, Reno, Nevada.

	1 Introduction
	2 Infrastructure Description
	3 Example Applications
	4 Conclusions
	5 Acknowledgements
	References

