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Abstract: Simulation-based multidisciplinary models are fundamental building blocks of mul-
tidisciplinary design optimization frameworks that involve coupled models. Solving the coupled
linear and nonlinear systems that arise from these models is challenging. One common challenge
arises when the Jacobian matrices represent a saddle point problem, where a block-diagonal cor-
responding to a discipline is non-invertible. These problems require a coupled solver algorithm
such as the Newton’s method instead of the popular block Gauss–Seidel-based methods because
of this non-invertible block. However, the coupled Newton’s method is challenging to implement
and suffers from robustness issues when the initial guess is away from the solution. To address
these challenges with saddle point problems, we introduce a nonlinear Schur complement solver
suitable for CFD-based multidisciplinary models. The solver leverages the specialized CFD linear
and nonlinear solvers. Therefore, it does not require solving a large coupled linear system like the
coupled Newton’s method. Furthermore, because the solver primarily uses the specialized CFD
solvers, it is not subject to the coupled Newton method’s robustness issues. We implement the
solver in NASA’s OpenMDAO framework and demonstrate its effectiveness using a coupled aero-
propulsive model. The solver is applicable to a wide range of saddle point problems that arise
with simulation-based design optimization formulations. By side-stepping the challenges of these
saddle point problems, the solver enables flexible and robust formulation of design optimization
problems, and will be an essential component of simulation based design optimization frameworks.
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1 Introduction

To reduce the environmental impact of aviation, new aircraft concepts use advanced technologies, such as
boundary layer ingestion or distributed electric propulsion. However, we do not have any prior experience in
designing these systems. Multidisciplinary design optimization (MDO) frameworks can help make optimal
interdisciplinary trades for these technologies [1].

Multidisciplinary and multiphysics models are at the core of every MDO framework [2, Sec. 13.2]. Keyes
et al. [3] provide a review of multiphysics modeling approaches and the computational challenges that arise
during this process. Performing design optimization with these multiphysics problems further compounds
the challenge. Solving optimization problems with large numbers of design variables and computationally
expensive models in a scalable way requires gradient-based optimization [2, Sec. 1.4]. Thus, efficiently
computing the derivatives of coupled models is the key to solving such optimization problems [2, Sec. 13.3].
There are many ad-hoc implementations of multiphysics models that include analytic derivatives [4? ?
, 5]; however, these frameworks are not extensible to additional disciplines. To tackle emerging design
problems such as aeropropulsive design optimization, we need flexible and extensible MDO frameworks that
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can robustly solve multidisciplinary models and automatically compute analytic derivatives for the entire
coupled model.

One MDO framework developed to address this need is OpenMDAO [6]. OpenMDAO uses the MAUD
architecture to automate the analytic derivative computation of coupled models with explicit and implicit
model components [7]. The flexibility of OpenMDAO streamlines the creation of multidisciplinary models
that can go beyond the ad-hoc implementations of multidisciplinary frameworks in terms of the number
of disciplines and model complexity. However, OpenMDAO only provides the basic building blocks of the
models, and it is up to the users to ensure the resulting nonlinear and linear systems can be solved successfully.

Solving the linear and nonlinear systems of equations that arise from multidisciplinary models is challeng-
ing. The most common solvers for these problems are based on Newton’s method and linear and nonlinear
block Gauss–Seidel (GS) methods [2]. OpenMDAO provides these core solver algorithms as well as a hi-
erarchical solver structure where groups that contain computational components can be nested to improve
solvers’ robustness and performance [6].

Despite its flexibility with the hierarchical solver structure, the current solvers in OpenMDAO have
difficulties when solving saddle-point problems [8]. In this context, a saddle point problem is a problem
where the governing equations for a given discipline or a computational component cannot be solved on its
own. This property of such models severely limits the hierarchical and GS-based solvers in OpenMDAO.
The only available approach for solving them is to use a fully coupled Newton’s method. However, using
the fully coupled Newton’s method is not always feasible or the most robust option available. Furthermore,
despite providing quadratic convergence near the final solution, the Newton’s method is not guaranteed to
be the most computationally efficient approach due to the requirement of solving a large linear system at
each solver iteration.

Saddle point problems like these appear across many different design optimization applications. The
most common example with CFD models arises when performing aerodynamic shape optimization of aircraft
configurations to minimize drag or some other performance metric that depends on drag, subject to a target
lift constraint [9]. These optimization problems are usually formulated with equality constraints; however,
the target lift value can also be achieved by varying the angle of attack at each design iteration. In this
formulation, the angle of attack variable is included in the model states and the target lift value can be
enforced with a balance equation with its own residual. This formulation is not commonly used because
the balance residual itself does not explicitly depend on the angle of attack value; the diagonal sub-block
of the Jacobian matrix is zero, and therefore, non-invertible. Other common examples that arise with
CFD-based multidisciplinary models include the trim balance for aerostructural optimizations [10], and as
we introduce in Sec. 3, the continuation balance for CFD models with powered boundary conditions to
model propulsors [11]. These example applications show that saddle point problems appear across a wide
range of design optimization applications, even with single disciplinary models. Therefore, addressing this
challenge of solving these saddle point problems during design optimization is critical for flexible formulation
of simulation based optimization problems.

To demonstrate the shortcomings of the current OpenMDAO solvers with these problems, we consider
a generic two-discipline multidisciplinary model. The coupled nonlinear system of this example problem is
written as:

R(u) =

[
R1(u1, u2)
R2(u1, u2)

]
= 0, (1)

where R1 and R2 represent the governing equations of the two disciplines and u1 ∈ Rm and u2 ∈ Rn

represent the states of each discipline. The Jacobian matrix that contains the partial derivatives of the
model’s residuals with respect to its states can be written as

∂R
∂u

=

[
∂R1

∂u1

∂R1

∂u2
∂R2

∂u1

∂R2

∂u2

]
. (2)

The two most common methods of solving this system of nonlinear equations are Newton’s method and
block Gauss–Seidel (BGS)-based methods. With the Newton’s method, the Jacobian matrix introduced in
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Eq. 2 is used in the formulation of a linear system, written as:

∂R
∂u

∆ui = −R(ui), (3)

where the superscript i represents the iteration number. Using this formula, the vector ∆ui iteratively
updates the state until convergence as

ui+1 = ui + ∆ui. (4)

Even though Newton’s method provides good convergence rates near the final solution, it suffers from
two main shortcomings. First, the update formulation requires the solution of a linear system that contains
the entire state vector of the multidisciplinary model. While solving such systems can be tractable with
relatively small models, their solution can get significantly more challenging as the multidisciplinary state
vector size increases. Secondly, Newton’s method cannot robustly converge to the solution when the initial
guess is far from the final solution, and robustly solving the resulting nonlinear systems requires globalization
strategies [12].

Because of these shortcomings, the nonlinear BGS-based methods are often preferred over Newton’s
method for large multidisciplinary models that involve CFD solvers. This is because the nonlinear BGS
methods can utilize each discipline’s specialized linear and nonlinear solvers. To solve the coupled nonlinear
equations, the nonlinear BGS method first solves the first discipline’s governing equations and uses the new
state of the first discipline to update and solve the second discipline’s governing equations. The method then
iterates between the two disciplinary models until it converges sufficiently.

An example solution process with the nonlinear BGS approach that uses the Newton’s method to solve
each disciplinary model can be written as follows. First, the guess for u2 at the ith iteration is used to solve
the first discipline’s governing equations:

∂R1

∂u1
∆uj1 = −R1(uj1, u

i
2),

uj+1 = uj + ∆uj .

(5)

where the update formula is iterated until the jth sub-iterate solves the governing equations of the first
discipline and is taken as the (i+ 1)th iterate of u1 with the nonlinear BGS solver:

R1(ui+1
1 , ui2) = 0. (6)

Then using the new state ui+1
1 , the second discipline’s governing equations are solved with the same approach:

R2(ui+1
1 , ui+1

2 ) = 0. (7)

This process is iterated until both disciplines’ governing equations are satisfied. At the cost of lower con-
vergence rates, the nonlinear BGS approach can be used to solve multidisciplinary models. Despite the
convergence rate, a significant advantage of the nonlinear BGS method is that it only requires the linear and
nonlinear solutions with individual model components, enabling the use of specialized solvers developed for
each component. For example, if one discipline includes a CFD model, the CFD code’s specialized linear and
nonlinear solvers can be used with the nonlinear BGS method to solve coupled multidisciplinary systems.

Even though the nonlinear BGS method is a popular choice for solving multidisciplinary models, it cannot
be used with multidisciplinary models that contain a saddle point problem. This is because the nonlinear
BGS solver requires the diagonal sub-blocks of the Jacobian (∂R1/∂u1 and ∂R2/∂u2) to be invertible.
However, many practical multidisciplinary models like the one we detail in Section 3 have one diagonal
sub-block in the Jacobian matrix that cannot be inverted. Specifically, with the practical example model we
use in this work, the second diagonal sub-block of the Jacobian is a zero matrix. With this property, the
resulting Jacobian matrix becomes:

∂R
∂u

=

[
∂R1

∂u1

∂R1

∂u2
∂R2

∂u1
0

]
. (8)

Because of this property of the nonlinear system, the nonlinear BGS-based methods cannot solve the resulting
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nonlinear systems.
To address this shortcoming with the BGS-based solvers in OpenMDAO while also side-stepping the

challenges associated with the fully-coupled Newton’s method, we develop a nonlinear Schur complement
(NSC) solver. We implement the NSC solver in OpenMDAO and demonstrate its performance with a CFD-
based aeropropulsive model. Compared to the available solver algorithms in OpenMDAO, the NSC solver
has several advantages. First, while the BGS cannot solve saddle point problems, NSC solves such problems
by considering the fully coupled Jacobian during the update process. Secondly, despite considering the fully
coupled Jacobian, the NSC solver does not require the solution of the large coupled linear system. The
NSC solver accomplishes this by utilizing the specialized linear and nonlinear solvers of the models’ sub-
components. As a result, the NSC solver does not suffer from the same robustness and computational cost
limitations as the fully coupled Newton’s method.

In the remainder of this paper, we first introduce the mathematical formulation of the NSC solver in
Section 2, and demonstrate its effectiveness with an example CFD-based aeropropulsive model in Section 3.
Finally, we provide the conclusions of this work in Section 4.

2 Nonlinear Schur Complement Solver

The goal of the NSC solver is to solve the coupled nonlinear system efficiently without needing to compute
a fully coupled Newton update. The solver also leverages existing specialized disciplinary linear and nonlinear
solvers while avoiding the inversion of diagonal sub-blocks of the Jacobian. In the following section, we derive
the solver algorithm and demonstrate the effectiveness of the solver with simple test problems.

2.1 Solver Derivation
To derive the NSC solver, we again use the example two-discipline system introduction in Section 1 and

consider the following coupled Newton update formula for this system:

∂R
∂u

∆ui =

[
∂R1

∂u1

∂R1

∂u2
∂R2

∂u1

∂R2

∂u2

] [
∆ui1
∆ui2

]
=

[
−R1(ui1, u

i
2)

−R2(ui1, u
i
2)

]
= −R(ui1, u

i
2). (9)

This formulation requires the solution of a linear system that includes both disciplines’ states. However, we
can compute the Schur complement of the coupled Jacobian matrix to compute the updates to the states
separately for each discipline. Rearranging the first row of Eq. 9, we get

∆ui1 =

(
∂R1

∂u1

)−1(
−R1(ui1, u

i
2)− ∂R1

∂u2
∆ui2

)
. (10)

Multiplying both sides by ∂R2/∂u1 and substituting in the second row of Eq. 9 yields(
∂R2

∂u2
− ∂R2

∂u1

(
∂R1

∂u1

)−1
∂R1

∂u2

)
∆ui2 = −R2(ui1, u

i
2) +

∂R2

∂u1

(
∂R1

∂u1

)−1
R1(ui1, u

i
2). (11)

Using this formulation, we can first solve for ∆ui2 and then substitute this result into Eq. 10 to obtain ∆ui1.
This formulation uses the Schur complement of the coupled Jacobian matrix to compute the coupled

Newton update for the second discipline ∆ui2, without needing to form and solve the fully coupled Jacobian.
This formulation also does not directly invert the diagonal sub-block of the Jacobian; the inverse of ∂R2/∂u2
does not show up in the equation directly, and the final linear system has a solution if the coupled Jacobian
itself is invertible. Despite avoiding the solution of one large linear system with all of the states, computing
∆ui2 with this formulation requires n + 1 linear solutions with the matrix ∂R1/∂u1. This is because the
matrix ∂R1/∂u2 has a size of m by n, and therefore the term (∂R1/∂u1)−1∂R1/∂u2 that appears on the
left hand side of Eq. 11 requires n linear solutions; one for each column of ∂R1/∂u2. The final additional
linear solution arises from the term (∂R1/∂u1)−1R1(ui1, u

i
2) on the right-hand side of Eq. 11.

As detailed in the next section, a typical multidisciplinary model structure that can benefit from this
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solver contains a CFD solver in the first discipline. Therefore, the first discipline has many more states
than the second one. This factor also affects the cost of linear solutions with each disciplines’ Jacobian; the
linear solutions with the first discipline’s Jacobian is significantly more expensive than the second. As a
result, keeping the number of linear solutions with the first discipline as small as possible is beneficial for
computational performance. Furthermore, we prefer to leverage the CFD solver’s nonlinear solver instead of
computing an update to its states using Eq. 10. Combining these two ideas, we can eliminate the additional
linear solution required for Eq. 11 by first solving R1 = 0 with a constant u2, which is identical to the
nonlinear BGS update for the first discipline.

Re-formulating Eq. 9 with this approach yields[
∂R1

∂u1

∂R1

∂u2
∂R2

∂u1

∂R2

∂u2

] [
∆ui1
∆ui2

]
=

[
−R1(u′1, u

i
2)

−R2(u′1, u
i
2)

]
=

[
0

−R2(u′1, u
i
2)

]
(12)

where the intermediate state u′1 satisfies R1(u′1, u
i
2) = 0. Then, ∆ui2 can be obtained by solving(

∂R2

∂u2
− ∂R2

∂u1

(
∂R1

∂u1

)−1
∂R1

∂u2

)
∆ui2 = −R2(u′1, u

i
2), (13)

which only requires n additional linear solutions with the matrix ∂R1/∂u1 instead of n+ 1.
The last step of this approach would be to compute a final update for u′1 to account for the changes in

u2 after taking the update ∆ui2. This correction can be formulated using Eq. 10 as:

∂R1

∂u1
∆ui1 = −R1(u′1, u

i
2)− ∂R1

∂u2
∆ui2 = −∂R1

∂u2
∆ui2. (14)

However, the right-hand side of this formulation is simply a first-order approximation of R1 at (u′1, u
i
2 +

∆ui2) = (u′1, u
i+1
2 ). Therefore, instead of relying on this first order approximation, we can update the

u2 vector and evaluate the true nonlinear residual R1(u′1, u
i+1
2 ). Finally, we can solve for ui+1

1 using the
specialized nonlinear solver of the first discipline. With this approach, instead of taking a single nonlinear
solver iteration with the first discipline, we can convergeR1, which is a preliminary step required for obtaining
Eq. 12 in the first place. Using this connection, we can replace u′1 in each iteration by ui1; the intermediate
first discipline state that solves R1 = 0 given ui2 can simply be carried over as the u1 vector that results
from the previous iteration.

The resulting NSC solver from this derivation is summarized in Algorithm 1. In this formulation, ηrel
represents the relative nonlinear convergence tolerance. The solver only relies on the specialized nonlinear
solver of the first discipline to update the first discipline’s state vector u1. As a result, it does not introduce
robustness issues due to using the Newton’s method without globalization. Furthermore, the solver does not
require the inversion of the diagonal sub-block of the Jacobian (∂R2/∂u2) and obtains an update for the
second discipline’s states that is equivalent to using the coupled Newton’s method.

Algorithm 1 The NSC solver.
Given u02, solve R1(u01, u

0
2) = 0 to obtain u01.

i = 0
while ||R(ui1, u

i
2)||2 > ηrel||R(u01, u

0
2)||2 do

Solve Eq. 13 with ui1 as u′1 to obtain ∆ui2.
ui+1
2 = ui2 + ∆ui2

Given ui+1
2 , solve R1(ui+1

1 , ui+1
2 ) = 0 to obtain ui+1

1 .
i = i+ 1

end while
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2.2 Simple Test Problems
We introduce two simple nonlinear problems to demonstrate the NSC solver’s basic principles. The first

problem’s governing equations can be written as

R1(u1, u2) = 5
u1
2

+ 20
(u2

2

)3
,

R2(u1, u2) =
(u1

2

)3
+
u2
2
,

(15)

where both disciplines contain a single scalar state, and both residuals depend on both of the states. In
contrast, we also introduce another test problem,

R1(u1, u2) = 5
u1
2

+ 20
(u2

2

)3
,

R2(u1, u2) =
(u1

2

)3
.

(16)

Both test problems contain one solution at (u1, u2) = (0, 0). The second test problem differs from the first
one introduced in Eq. 15 in a single term in the second residual. This modification removes the dependence
of the second residual (R2) on the second discipline’s state (u2). As we will show next, this modification
introduces significant challenges in solving the second problem.

To demonstrate the significance of the change, we compute the Jacobian matrix of both problems. The
first problem’s Jacobian is: [

∂R1

∂u1

∂R1

∂u2
∂R2

∂u1

∂R2

∂u2

]
=

[
2.5 30(u2

2 )2

1.5(u1

2 )2 0.5

]
, (17)

whereas the second problem’s Jacobian is:[
∂R1

∂u1

∂R1

∂u2
∂R2

∂u1

∂R2

∂u2

]
=

[
2.5 30(u2

2 )2

1.5(u1

2 )2 0

]
. (18)

Due to the removal of the u2 dependence in R2 in the second problem, the last entry of the second problem’s
Jacobian becomes zero. Even though its full Jacobian is invertible in most of the solution domain, the sub-
Jacobian of the second discipline (∂R2/∂u2) is not invertible. As a result, even though both problems can be
solved with the fully-coupled Newton’s method, the second problem cannot be solved with the BGS-based
solvers.

The NSC solver is developed for saddle point problems with this structure where one of the disciplines
cannot be solved independently of the others. Because it does not need to invert the diagonal sub-Jacobian
block, on top of being able to solve the first test problem, the NSC solver can also solve the second test
problem.

We demonstrate the convergence of both solvers with the first test problem from two initial guesses in
Figure 1. In this figure, we plot the convergence path of each solver over the contours of the residual vector
L2 norm. Similarly, we plot the convergence of both solvers with the second problem in Figure 2. These
results demonstrate that the NSC solver can solve these nonlinear test problems without solving the full
Newton update or inverting the second diagonal sub-block of the Jacobian.

When the first discipline’s residuals are converged exactly in its updates, the NSC solver becomes equiv-
alent to the reduced-space Newton’s method [6]. Even though these two formulations are equivalent in this
special case, their convergence path is not guaranteed to be the same when the underlying nonlinear and
linear systems are solved inexactly. In this context, the NSC solver provides more flexibility in the solver
approach by formulating the nonlinear system in the full space, rather than the reduced space. Furthermore,
the NSC solver’s performance can be optimized by adjusting the convergence tolerances for the underlying
linear and nonlinear solutions as we discuss in the next section with a practical problem.
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(a) Newton solver convergence path. (b) NSC solver convergence path.

Figure 1: L2 norm of the residual vector and the nonlinear convergence history of the first test problem
(Eq. 15) with the Newton and NSC solvers. The solution at (0, 0) is highlighted with a red star.

(a) Newton solver convergence path. (b) NSC solver convergence path.

Figure 2: L2 norm of the residual vector and the nonlinear convergence history of the second test problem
(Eq. 16) with the Newton and NSC solvers. The solution at (0, 0) is highlighted with a red star.

3 Solver Performance with a CFD-Based Aeropropulsive Model

Our primary motivation for developing the NSC solver is to solve nonlinear systems arising from CFD-
based aeropropulsive models. In particular, we want to solve the nonlinear problems that result from
using boundary conditions (BCs) to model propulsors in CFD models. We first introduce the coupled
aeropropulsive model we use as a benchmark case, explain how the NSC solver is integrated into the rest of
the solver hierarchy, and study the solver’s performance.

3.1 Coupled Aeropropulsive Model
The aeropropulsive model we use in this study is the BC version of the benchmark aeropropulsive model

developed in our previous work [11]. The benchmark model is a podded electric fan design shown in Fig. 3,
based on the aft-propulsor of NASA’s STARC-ABL concept [13]. While this is a simple design, it represents
the fundamental challenges of coupling a CFD solver to a propulsion model for a fully coupled aeropropulsive
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(a) Podded electric fan geometry in OpenVSP. The core
and the nacelle are modeled using two separate compo-
nents.

(b) CFD model of the podded fan. The CFD simula-
tions use an overset mesh that contains a symmetry plane
about the centerline of the propulsor. The contours on the
symmetry plane show the normalized stagnation pressure
values, and contours on the propulsor surfaces show the
coefficient of pressure values.

Figure 3: Geometry and the CFD model of the podded fan.

model. We only study the BC version of the benchmark model in this work because the nonlinear system
resulting from this version results in a zero sub-block in the Jacobian matrix, which prevents using BGS-based
solvers. In contrast, the NSC solver does not suffer the same limitations.

The coupled aeropropulsive model uses powered BCs to introduce the effects of the propulsion system
in the CFD model. Even though source-term formulations are more accurate for fan simulations [14], the
BC approach is also valuable. First, not all CFD solvers support the source-term formulation; therefore, a
BC formulation is more widely applicable. Secondly, while the source-term formulations are more accurate
for components such as fans, they become computationally restrictive when simulating an engine core,
where low-order cycle models can provide sufficient accuracy [15]. As a result, the know-how developed with
aeropropulsive design optimization using a BC formulation will be useful for future complete turbofan design
optimization problems where the core flow inlet and outlet interfaces are modeled using this BC formulation.

The extended design structure matrix (XDSM) diagram [16] of the multidisciplinary analysis (MDA)
formulation is shown in Fig. 4. The coupled aeropropulsive model is implemented using MPhys, a flexible
multiphysics analysis and optimization library based on NASA’s OpenMDAO framework [6]. With the
help of MPhys, the coupled aeropropulsive state vector and functionals are exposed to OpenMDAO, which
handles the data transfer between each model and solves the coupled derivative problems for gradient-based
optimization. Even though we do not perform design optimizations in this work, we use the available analytic
derivatives in the computation of the partial derivatives in the Jacobian matrix for the NSC solver.

The coupled aeropropulsive models consist of three main components: the aerodynamic model, the
propulsion model, and the balance formulation used to couple the two models together. In the following
sections, we detail each component in these coupled aeropropulsive models and explain the coupled model
formulation.

3.1.1 Aerodynamic Model

The aerodynamic analyses are performed with the open-source CFD solver, ADflow1 [17], which solves
the Reynolds-averaged Navier–Stokes (RANS) equations using a finite volume scheme on structured multi-
block and overset meshes. In this study, we use the Spalart–Allmaras (SA) turbulence model [18] with the
RANS simulations to compute the flow field around the propulsor, as shown in Fig. 3b. ADflow is well

1https://github.com/mdolab/adflow, accessed June 2022
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uaero, ubalance uprop

CFD Flow Conditions Flow Conditions Raero

Propulsion Fan Parameters Rprop

Balance Rbalance

Figure 4: XDSM diagram of the podded fan aeropropulsive model [11].

Figure 5: The CFD model uses subsonic outflow BCs for the fan face and subsonic inflow BCs for the fan
exit. The mass, momentum, and energy conservation across the fan are satisfied by adjusting the BC values
on the fan face and exit.

suited for gradient-based optimization because of its Python interface [17] and efficient adjoint solver imple-
mentation [19]. Due to the challenging nature of converging CFD simulations with overset meshes and fan
models, we use the approximate Newton–Krylov (ANK) solver implemented in ADflow [20]. The CFD mesh
contains about 600 thousand volume cells. Figure 5 shows the normalized stagnation pressure contours on
the symmetry plane.

We prescribe subsonic outflow BCs at the fan face by setting the static pressure at the fan face (ps,ff).
At the fan exit, subsonic inflow conditions are prescribed by setting the total pressure (pt,fe) and total
temperature (Tt,fe) at the fan exit. These three variables are inputs to the CFD model.

The 3-D CFD solutions need to be averaged at the fan face and exit to obtain inputs for the propulsion
model introduced in the next section. These parameters are included in the outputs of the CFD model in
Fig. 4. We use an area-based averaging for static and total pressure terms, and for the total temperature
integration, we use a mass-based averaging. The mass flow rate, area, pressure, and momentum forces on the
fan face and exit are computed directly using the integration from the CFD solver without any averaging.
The details of the flow transfer method to couple the CFD model to the propulsion model is explained in
our previous work [11], which is based on the force-based averaging scheme developed by Gray et al. [21].

3.1.2 Propulsion Model

To estimate the power required by the fan, we use thermodynamic cycle analyses built with the pyCycle
library [22]. The propulsion model consists of a simple compressor with an assumed polytropic efficiency
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of 0.97, based on the NASA N+3 technology level reference propulsion system [23]. The compressor model
computes the total power required to operate the fan using the mass and area averaged inputs from the CFD
model. We then use the total power required by the propulsor (Ptotal) to prescribe the increase in the total
temperature across the fan in the CFD model, as explained in the next section.

3.1.3 Aeropropulsive Coupling

To obtain a coupled aeropropulsive solution, we must satisfy the mass, momentum, and energy conser-
vation across the fan. Conservation of these quantities are achieved by adjusting the static pressure at the
fan face (ps,ff), and the total pressure (pt,fe) and total temperature (Tt,fe) at the fan exit.

The balance formulation requires the amount of force applied by the fan (Ffan) to be specified as an input.
This force applied by the fan is different from the net thrust; the fan force is how much the fan pushes on
the flow, whereas the net thrust of the propulsor also includes the integration of pressure and viscous forces
on the propulsor walls. In this context, the force applied by the fan is equal to the difference in momentum
of the flow between the fan face and exit BCs. The momentum and energy added to the flow by the fan
appears in the balance equations, which are formulated as

Rmass (ps,ff, pt,fe, Tt,fe) = ṁff − ṁfe = 0,

Rmomentum (ps,ff, pt,fe, Tt,fe) = Fmomentum,ff + Fpressure,ff − Fmomentum,fe − Fpressure,fe + Ffan = 0,

Renergy (ps,ff, pt,fe, Tt,fe) = (Tt,ffṁff − Tt,feṁfe) cp + Ptotal = 0,

(19)

where the subscripts “ff” and “fe” represent the values evaluated at the fan face and fan exit, respectively. In
this formulation, all of the terms except for the force applied by the fan (Ffan) and the total power required
for the fan (Ptotal) are obtained by integrating the flow field at the fan face and fan exit BCs in the CFD
domain. Finally, the isobaric-specific heat (cp) of air is set to 1.0045 kJ/kgK◦.

When this three-by-three system of equations is satisfied, the mass flow at the fan face is equal to the
mass flow at the fan exit, the momentum going into the fan face, plus the fan force is equal to the momentum
coming out of the fan exit. Finally, the rate of energy flow into the fan face plus the total power of the fan
is equal to the rate of energy that comes out of the fan exit. This total power term (Ptotal) is computed by
the propulsion model introduced in Section 3.1.2.

In previous work [11], we did not converge the residuals listed in Eq. 19 at each analysis. Instead, we
formulated the optimization problems such that the three BC parameters are design variables, and the three
residual equations are equality constraints in the optimization problems. This is because we could not solve
these residual equations given the solver capabilities before developing the NSC solver. Adding these balance
equations as equality constraints in the optimization formulations introduce the requirement of computing
the total derivatives of these residuals with respect to design variables in every design iteration. This is
not computationally efficient because the resulting linear systems to compute the derivatives to be used in
optimization need to be solved accurately, meanwhile we do not need to solve the resulting linear systems
with the NSC solver accurately as we demonstrate in Sec. 3.3. Furthermore, using the NSC solver is more
robust compared to including the balance residuals as equality constraints because the NSC solver ensures
that the flow through the fan is balanced at each design iteration. On the other hand, the flow through
the fan starts at an imbalanced state where the equality constraints are not satisfied in the early iterations
with the optimization problem formulation based on equality constraints. This imbalance can introduce
undesirable features in the flow field such as separation that negatively affect CFD solver’s accuracy and
performance. Because of these factors, it is more beneficial to use the NSC solver instead of the equality
constraint based approach in previous work [11].

Without the NSC solver, one method to solve these additional balance equations with the CFD model is
to use a fully-coupled Newton’s method where the three balance residuals are coupled to the large nonlinear
system of the CFD model. However, this approach requires the solution of a large linear system that includes
the updates to the CFD model as well as the BC variables. Due to the large size and the stiffness of the
resulting linear system, this approach requires a highly customized linear solver that can couple additional
states to the specialized linear solver in the CFD code.

Another commonly used approach to solve CFD-based multidisciplinary models is the nonlinear BGS
method. However, this approach cannot be used with these balance equations because the states (ps,ff, pt,fe,
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and Tt,fe) do not directly appear in the balance residuals explicitly. As a result, the sub-block of the global
Jacobian is a three-by-three zero matrix. Even though the coupled Jacobian is an invertible system, this
sub-block is non-invertible, preventing the use of BGS-based solvers. Due to these limitations, we did not
solve the balance equations at each design iteration in previous work. The NSC solver we introduced in this
work is developed to address the challenges that arise directly. The following section explains how we use
the NSC solver to converge the coupled aeropropulsive model.

3.2 Hierarchical Solver Structure
The aeropropulsive model introduced in the previous section results in three groups of states and governing

equations that must be solved to obtain a balanced simulation. The vector of states and residuals of this
system can be written as:

u =

 uaero
uprop
ubalance

 , R =

 Raero
Rprop
Rbalance

 . (20)

In this notation, uaero represents the states of the CFD solver to model the aerodynamics, uprop represents
the states of the propulsion model, and finally, ubalance represents the states for the balance formulation
listed in Eq. 19.

We group the states for the aerodynamic and propulsion disciplines to obtain the combined state for the
aeropropulsive discipline to re-formulate the nonlinear system to more closely resemble the two-discipline
example introduced earlier. This results in

u =

[
uaeroprop
ubalance

]
, R =

[
Raeroprop
Rbalance

]
, (21)

where uaeroprop = [uaero uprop]T, Raeroprop = [Raero Rprop]T and the entries of the Jacobian matrix can be
formulated as: 

∂Raero
∂uaero

∂Raero
∂uprop

∂Raero
∂ubalance

∂Rprop
∂uaero

∂Rprop
∂uprop

∂Rprop
∂ubalance

∂Rbalance
∂uaero

∂Rbalance
∂uprop

∂Rbalance
∂ubalance

 =

[
∂Raeroprop
∂uaeroprop

∂Raeroprop
∂ubalance

∂Rbalance
∂uaeroprop

∂Rbalance
∂ubalance

]
. (22)

Using this rearrangement, the “aeroprop” group represents the first discipline, while the “balance” group
represents the second discipline in Algorithm 1.

The NSC solver involves solving the nonlinear system for the first discipline using its specialized nonlinear
solver. To do this with the aeropropulsive model, we use the solver hierarchy of the OpenMDAO model shown
in Fig. 6. In this XDSM diagram, the NSC solver provides the current values of ubalance using the update
formula in Eq. 13. Using these values, we first converge the CFD solver using the ANK solver, a highly
specialized nonlinear solver in ADflow [20]. Then, using the averaged quantities from the CFD solution, we
solve the governing equations of the propulsion system using the Newton solver in OpenMDAO. Finally, all
of these intermediate states are used to compute the balance residuals, and we compute an update to the
balance states using Eq. 13 until the desired relative nonlinear convergence is achieved.

3.3 Performance Benchmarks with the Solver
The NSC solver has three convergence related parameters: the relative nonlinear convergence of each CFD

simulation (ηCFD), the relative linear convergence of each solution to obtain the left hand side in Eq. 13
(ηlin), and the relative nonlinear convergence of the overall solver (ηrel). For all of the cases in this section,
we set ηrel to 10−8. This is equivalent to converging the CFD nonlinear residuals by 12 orders of magnitude
while converging the balance residuals by 6 orders of magnitude with respect to their initial values.

In Table 1, we present the convergence metrics with several combinations of the ηCFD and ηlin parameters.
The ηCFD parameter controls how much we reduce the nonlinear residual norm of the CFD model using the
ANK solver as shown in Fig. 6. A lower convergence tolerance satisfies the solution of the first discipline
in Algorithm 1 more tightly, at the cost of extra computational effort. Similarly, ηlin controls how tightly
each linear system is solved to compute the left-hand side of Eq. 13. We always converge the first CFD
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NSC ubalance

ANK uaero

Raero CFD Flow Conditions Flow Conditions

Newton uprop

Rprop Propulsion Fan Parameters

Rbalance Balance

Figure 6: XDSM diagram of the nonlinear solver hierarchy.

nonlinear solution by 10−4 because converging this system more loosely causes the propulsion model to fail.
The subsequent nonlinear solutions of the CFD model use the specified ηCFD value for each case. For all of
the cases in this section, we use a single Broadwell node with 28 cores in the Pleiades supercomputer at the
NASA Ames Research Center.

Table 1: Convergence metrics of each combination of ηCFD and ηlin studied.

Case ηCFD ηlin niter
Final Total % Time % Time in % Time in orders of mag.
ηbalance Time (s) in CFD Linear solver Remainder converged per sec.

1 10−2 10−1 6 2.90× 10−7 681.0 32.6 24.5 42.9 9.60× 10−3

2 10−3 10−1 5 9.24× 10−7 609.5 38.1 22.1 39.8 9.90× 10−3

3 10−4 10−1 5 1.72× 10−6 617.1 39.0 21.7 39.3 9.34× 10−3

4 10−4 10−2 5 1.83× 10−7 744.4 32.4 34.8 32.8 9.05× 10−3

5 10−4 10−3 5 1.79× 10−7 838.4 28.7 42.2 29.1 8.05× 10−3

For each case in Table 1, we report the number of NSC solver iterations (niter) required to converge to the
target relative tolerance, the relative convergence of the balance residual norm, total time, and percentages
of the total time spent in the CFD nonlinear and linear solutions. We also list the percentage of time spent
outside these nonlinear and linear solutions. This portion of the cost accounts for all the data transfer in
the multidisciplinary model and the partial matrix-vector multiplications required for Eq. 13. Finally, we
provide the orders of magnitude converged per second metric to provide a normalized convergence rate that
accounts for the different final residual values and the number of NSC solver iterations.

Cases 1 through 3 vary ηCFD from 10−2 to 10−4 for an ηlin value of 10−1. As the ηCFD value is decreased,
the percentage of total time spent in the CFD nonlinear solver increases, and the relative cost of the remaining
operations is reduced. These results show that the optimal convergence rate is attained around an ηCFD
value of 10−3; however, the overall converge rate is not very sensitive to this parameter.

Cases 3 through 5 vary the ηlin parameter from 10−1 to 10−3 for an ηCFD value of 10−4. Similarly, as
the ηlin value decreases, the computational cost of the linear solutions increases as expected. Compared to
the first three cases, these results show that the nonlinear convergence rate per time is more sensitive to the
changes in linear solver tolerance; the nonlinear convergence rate increases as the ηlin is increased.

In this aeropropulsive model, we need to solve 3 linear systems that correspond to the columns of
∂Raeroprop/∂ubalance. These columns correspond to the partial derivatives of the aeropropulsive residuals
with respect to the three balance states: static pressure at the fan face (ps,ff), total pressure at the fan exit
(pt,fe), and the total temperature at the fan exit (Tt,fe). Solving these linear systems more tightly results in
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Figure 7: Relative convergence of various components of the NSC solver with respect to time from the initial
CFD solution. The blue lines represent the nonlinear residual norm of the CFD model, while the orange,
green, and purple lines show the linear residual for the three linear systems solved for the Schur update
(Eq. 13). The red dots represent the residual norm of the balance equations.

a more accurate computation of the linear system in Eq. 13 at the cost of extra computational effort. Even
though both ηCFD and ηlin can be set to very small values to closely follow the derivation of the NSC solver,
exact solutions of these systems result in high computational costs.

To demonstrate the cost of each stage of the solver, we plot the relative convergence of the nonlinear
and linear residuals with the NSC solver with ηCFD = 10−4 and ηlin = 10−2 (Case 4) in Fig. 7. As outlined
in Algorithm 1, we first converge the CFD residuals partially before the first NSC solver iteration. Then
during each NSC solver iteration, we first solve the three linear systems required for the update formula in
Eq. 13. These linear systems are restarted from the previous solutions. They are converged to a tolerance of
ηlin relative to the initial linear residual norm at the beginning of each solution. We then update the balance
variables using the NSC solver and the ANK solver to re-converge the CFD model. The solution process is
repeated until an ηrel value of 10−8 is reached, which results in about 12 orders of magnitude reduction in
the CFD model residuals and more than 6 orders of magnitude reduction in the balance residuals.

The computational cost of data transfer across the model and the matrix-vector products in Eq. 13
represent a significant portion of the overall solver cost, as shown in Table 1. This effect can also be seen in
Fig. 7. Here, the lines represent the times spent in the nonlinear and linear solvers of the CFD model. The
gaps between these lines represent the time spent transferring the data across models and computing the
Jacobian-vector products with the OpenMDAO model components. These operations can be responsible for
up to 42.9% of the total computational cost among the cases we listed in Table 1.

Given these performance results, one option to further accelerate the solver is to avoid solving the linear
systems past a given absolute convergence or using a low-rank update to the Schur complement or its inverse.
The low-rank update approach is very similar to the methods introduced by Broyden [24]. Another option
for reducing the cost of the Schur complement computation is to use an approximated Jacobian for the CFD
model, similar to the method introduced in previous work [20].
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4 Conclusions

In this work, we introduced an NSC solver developed for a particular class of multidisciplinary models
where a given discipline cannot be solved independently. With this class of models, the non-invertible block
diagonal of the Jacobian matrix prevents the use of BGS-based methods. One valid option for solving these
systems is to use a fully coupled Newton’s method; however, this approach also has shortcomings due to the
challenging nature of solving a large linear system and lack of robustness.

To address these shortcomings, we developed an NSC solver that computes the update to the non-
invertible discipline by using the Schur complement of the fully coupled Jacobian. We then solve the other
disciplines using their own specialized linear and nonlinear solvers. This approach enables us to rely on each
disciplinary models’ specialized linear and nonlinear solvers while obtaining Newton-like convergence rates
for the non-invertible discipline.

We demonstrated the effectiveness of the solver using a benchmark aeropropulsive model, where a propul-
sion model is coupled to a CFD solver through powered BCs. The solver can successfully converge the
balance equations and satisfies the continuity of mass, momentum, and energy across the BCs in the CFD
domain. The results demonstrate the favorable convergence rates achieved without formulating a fully cou-
pled Newton solver. The flexibility of the NSC solver removes the requirement of formulating these balance
problems as nonlinearly constrained optimization problems. Due to this, the solver will be an essential part
of simulation-based design optimization frameworks.
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