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Abstract: A previously proposed third-order accurate, coupled space-time

discontinuous-Galerkin Hancock (DGH) method is implemented in a multi-

dimensional large-scale computational framework for the first time. The predictive

properties of the massively parallel DGH implementation are investigated for several

fluid flow governing equations including the Euler and ten-moment Gaussian closure

models. The DGH method is shown to achieve third-order solution accuracy on grids

with skewed elements for hyperbolic equations with stiff sources using only linear

basis functions. The scheme achieves high-parallel efficiency on distributed-memory

architectures with 100,000’s of compute cores.
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1 Introduction
Efficient approaches for the solution of first-order hyperbolic balance laws are important for a variety of

physically complex flows such as multiphase, reacting, and non-equilibrium flows. The use of high-order

numerical schemes (i.e., higher than second-order accuracy [1]) in conjunction with scalable and efficient

parallel implementations provides a viable strategy for mitigating the computational cost of large-scale

simulations of such physically complex flows.

Of particular interest and motivation for the present work are moment closures from the kinetic theory of

gases. Such moment methods provide first-order hyperbolic-relaxation balance laws that offer an alternative

to the Navier-Stokes equations (NSE) for viscous gas-flow prediction. As they are not derived based on

a continuum assumption, moment methods offer the promise of maintaining physical validity in regimes

for which the NSE provide physically incorrect predictions. Although the first-order hyperbolic nature

of the resulting partial differential equations (PDEs) is associated with providing several computational

advantages over numerical procedures for the solution of the NSE (e.g., improved robustness and accuracy

for the treatment of wall boundaries in the presence of skewed meshes) [2], the moment-method PDEs for

fluid flow often include stiff local source terms, which may require special numerical treatment. Thus, the

development of efficient high-order discretizations for such PDEs needs to be considered in the context of

providing accurate and robust treatment of stiff source terms.

Many hierarchies of high-order methods have been studied in the past decades for the accurate solution

of hyperbolic balance laws on both structured and unstructured grids. A family of finite-volume methods

known as essentially non-oscillatory (ENO) schemes were first proposed by Harten et al. [3]. These schemes

are total-variation-bounded (TVB) and retain high-order accuracy in smooth regions by using an adaptive

stencil. Weighted ENO (WENO), e.g., [4, 5, 6], and central ENO (CENO), e.g., [7, 8, 9], schemes were

later developed, which utilize a weighted average of multiple stencils and a fixed central stencil with high-

order polynomial reconstruction, respectively. Finite-element-type schemes have also been developed, among

which are the families of high-order continuous-Galerkin (CG) and discontinuous-Galerkin (DG) schemes.
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The family of Runge-Kutta DG (RKDG) schemes were first proposed by Cockburn et al. [10, 11, 12], yielding

a TVB scheme that uses multi-step temporal integration. Later, Dumbser et al. [13]. formulated a unified

framework for single-step finite-volume and DG schemes denoted PNPM methods, in which least-squares

polynomial reconstruction is applied to a DG method. Variations of the DG formulation such as spectral

volume (SV) and spectral difference (SD) methods have been proposed by Wang [14] and Liu et al.. [15],

which share numerous similarities with the DG method. Huynh [16] later introduced a general formulation

combining these schemes in the framework of a flux reconstruction (FR) approach. More recent and extensive

reviews of the status of high-order methods, their potential and applicability can be found in Wang et al. [1]

and Gassner and Winters [17].

The current study investigates the capabilities of a particular member of the discontinuous-Galerkin fam-

ily of schemes for a range of problems described by first-order hyperbolic PDEs with stiff local source terms.

Specifically, the coupled space-time discontinuous-Galerkin Hancock (DGH) method, originally proposed by

Suzuki [18] for the efficient solutions of hyperbolic balance laws resulting from non-equilibrium extended hy-

drodynamics is considered. For the present work, the scheme has been implemented in a massively parallel,

multi-dimensional framework for practical computations—to the best of the authors’ knowledge this marks

the first time it has been presented as such. The current paper describes the evaluation of the scheme at

large computational scale for various PDEs. Although only linear basis functions are used, the DGH scheme

is shown to achieve third-order accuracy in coupled space time on skewed hexahedral elements and it has

been proven to be highly efficient on large-scale, distributed-memory architectures.

The rest of the paper is organized as follows. Section 2 gives a brief review of moment methods and

the application of maximum-entropy moment closures for deriving several governing fluid equations. The

formulation of the DGH scheme in three dimensions (3D) is presented in Section 3. Furthermore, the ap-

plication of the scheme on grids with skewed hexahedral elements is illustrated and discussed. In Section 4,

numerical results to demonstrate the predictive capabilities of the DGH scheme are presented. The model

equations considered are those provided by the linear convection-relaxation, the compressible Euler, and

the ten-moment Gaussian closure models. Additionally, parallel performance studies with the DGH im-

plementation are included to illustrate the near-optimum strong scalabilty of the algorithm up to 10,000’s

and 100,000’s of compute CPU-cores on two different distributed-memory architectures. Finally, a set of

conclusions are drawn and potential extensions of the scheme are discussed in Section 5.

2 Moment Methods
The efficient numerical solution of hyperbolic-relaxation balance laws describing moment closures from the

kinetic theory of gases is the primary motivation for this work. A brief summary of the theory of moment

methods is, therefore, provided here for the sake of completeness.

In gas-kinetic theory [19], rather than starting from the assumption that a fluid can be treated as a

continuum, it is assumed that a gas is comprised of discrete particles. A distribution function, F(xi, vi, t),
describes the density of particles at a position, xi, with velocity, vi, at time t. The evolution of the distribution

function for a gas with no external acceleration fields is described by the Boltzmann equation,

∂F
∂t

+ vi
∂F
∂xi

= δF
δt
. (1)

The right hand side term, δF
δt , is known as the collision operator. This term models the effects of inter-

particle collisions on the distribution function. This is a high dimensional equation, with three dimensions

in physical space, three dimensions in velocity space, and time.

It is clear that any direct numerical solution of the Boltzmann equation is prohibitively expensive. How-

ever, the large amount of information the distribution function provides is rarely needed, as macroscopic

fluid properties are usually sought. Moments provide a connection between the distribution function and

macroscopic properties. To take a moment of a distribution function, the function is multiplied by an ap-

propriate velocity-dependent weight, W (vi), and integrated over all velocity space. For example, the mass
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density, ρ, can be found by taking W (vi) = m, where m is the mass of a particle. This is expressed as

ρ =
∞∫∫∫

−∞

mF(xi, vi) dvi = 〈mF〉 . (2)

The shorthand notation, 〈W (vi)F〉, is used to denote integration over all velocity space. Similarly, the

momentum density of the gas is found by taking W (vi) = mvi, such that

ρui = 〈mviF〉 , (3)

where ui is the bulk velocity. Moments can also be taken using weights dependent on the random velocity

ci, defined as ci = vi − ui. For example, the second-order pressure tensor, Pij , is defined as

Pij = 〈mcicjF〉 . (4)

For a monatomic gas, it is related to the traditional thermodynamic pressure with p = Pii/3, and to the

deviatoric (viscous) stress tensor with τij = pδij − Pij . Moments of arbitrarily high order can be taken,

however the physical significance of a moment becomes more ambiguous as this order is increased.

Evolution equations for macroscopic properties can be obtained by taking moments of the Boltzmann

equation directly. For an arbitrary velocity-dependent weight, W , this yields

∂

∂t
〈WF〉+ ∂

∂xi
〈viWF〉 = ∆ (WF) , (5)

where ∆ (WF) =
〈
W δF

δt

〉
. For a desired set of macroscopic properties, there exists a set of related weights,

W = [W0,W1, . . . ,WN ]ᵀ, and the resulting vector of moments can now be defined as U = 〈WF〉. It is

appealing to rewrite Equation (5) in balance law form by further defining the flux dyad Fi = 〈viWF〉 and
local source term S = ∆ (WF), yielding

∂U

∂t
+ ∂Fi
∂xi

= S. (6)

Equation (6) represents a set of first-order PDEs describing the evolution of macroscopic properties of a

fluid. To close the system, the form of the distribution function is restricted to a prescribed form that both

maximizes entropy and satisfies a given set of velocity moments present in the solution vector U [19, 20],

such that

F = eα
ᵀW . (7)

Here, the closure coefficients, α, are the Lagrange multipliers obtained from the constrained entropy-

maximization problem. Maximum-entropy moment closures lead to globally hyperbolic moment equations

[21, 22].

Two members of the maximum-entropy closure hierarchy considered in the present work are the five-

moment (Euler) and ten-moment (Gaussian) closures. The weight vectors for the Euler and ten-moment

Gaussian models areW5 = [m,mvi,mvivi]ᵀ andW10 = [m,mvi,mvivj ]ᵀ, respectively. The Gaussian closure

is well suited to describe viscous, adiabatic flows, despite not having a treatment for heat flux. Higher-order

moment closure can be derived within the framework of maximum entropy [23], and although their numerical

treatment could also be considered with the DGH scheme discussed here they are considered beyond the

scope of the current work.

3 The Discontinuous-Galerkin Hancock Method

3.1 Introduction
First-order hyperbolic balance laws, such as moment methods derived from the kinetic theory of gases, provide

models with physical and mathematical advantages over classical techniques. A spatial discretization such

as a standard finite-volume method is often used for the numerical solution of such PDEs (see[2, 24] and
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references therein). The discontinuous-Galerkin method is a strong alternative that allows for high-order

spatial accuracy on arbitrary structured or unstructured computational domains, and the potential for high

parallel efficiency.

The discontinuous-Galerkin Hancock model, developed by Suzuki and Van Leer [18], utilizes a coupled

space-time approach, but can be seen as being in between semi-discrete and fully discrete due to the fact

that the test functions for solution representation are only dependent on space. The method is based upon

Huynh’s upwind moment scheme [25], originally developed for the numerical solution of hyperbolic systems of

conservation laws in fully conservative form, and extended in the work of Suzuki and Van Leer [18] to the class

of hyperbolic-relaxation equations. The scheme is a one-step method with an intermediate state, providing

third-order accuracy in both space and time. Due to the relatively large amount of local computational work

required and low amount of communication with neighbouring elements, the DGH method is well suited to

provide efficient implementations on large-scale parallel architectures, as demonstrated in the present work.

3.2 Weak Formulation
The DGH method is a coupled space-time method for the solution of hyperbolic balance laws with stiff local

source terms. Specifically, weak solutions for PDEs of the form shown in Equation (6) are sought such that

the product of the PDE with a chosen, finite set of test functions, integrated over the space-time domain,

Ω(t) × T , should be satisfied. A scalar test function is defined in the same space as the solution U(xj , t),
denoted as ν(xj , t) ∈ Ω(t) × T . By taking the product of the PDE with an arbitrary test function and

integrating over the space-time domain, the weak formulation of the PDE is obtained. This can be written

as ∫∫
Ω(t)×T

ν(xj , t)
∂U

∂t
dxjdt = −

∫∫
Ω(t)×T

ν(xj , t)
∂Fi
∂xi

dxjdt+
∫∫

Ω(t)×T

ν(xj , t)S dxjdt. (8)

Here, T is the time interval over
[
tn, tn+1]. Solving the weak formulation given by Equation (8) is equivalent

to finding U(xj , t) for a chosen set of test functions ν(xj , t). Assuming the domain Ω(t) can be subdivided

into non-overlapping subdomains or cells Ω(t)k, and constructing test functions that are non-zero over a

unique computational element Ω(t)k, the following terms in Equation (8) can be integrated by parts to

provide ∫
T

ν(xj , t)
∂U

∂t
dt =

[
Un+1ν(xj , t)−Unν(xj , t)

]
−
∫
T

U
∂

∂t
ν(xj , t) dt, (9a)

∫
Ω(t)k

ν(xj , t)
∂Fi
∂xi

dxj =
∫
Γk

ν(xj , t)Fi · n̂i dΓ−
∫

Ω(t)k

Fi
∂

∂xi
ν(xj , t) dxj , (9b)

which removes derivatives of the solution and its flux from the space-time integrals. Here, Γk is the boundary

of the cell, and n̂i is the outward unit normal to the boundary. When it is assumed that the spatial

domain over the time interval T is fixed (i.e. Ω(t) = Ω) and the test function is a function of space only,

ν(xj , t) = ν(xj), the weak formulation can be further simplified. By substituting Equations (9a) and (9b)

into Equation (8) and applying Fubini’s theorem, which allows for the alternation of the order for integration

in space and time, the weak formulation becomes∫
Ωk

ν(xj)
[
Un+1 −Un

]
dxj =−

∫∫
Γk×T

ν(xj)Fi · n̂i dΓdt+
∫∫

Ωk×T

Fi
∂

∂xi
ν(xj) dxjdt

+
∫∫

Ωk×T

ν(xj)S dxjdt.
(10)

3.3 Polynomial Representation of the Solution
The individual solution Uh(xj , t)|Ωk

in element Ωk is assumed to be a polynomial function. Considering

the Legendre polynomials P up to degree K = 1 (corresponding to piecewise, linear functions) and a 3D
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problem yields

Uh(xj , t)|Ωk
, ν(xj)|Ωk

∈ P 1 (Ωk) , (11)

where xj ≡ x = [x, y, z] is a position vector in a Cartesian coordinate system and

P 1 (Ωk) = span {φ0(xj), φ1(xj), φ2(xj), φ3(xj)}
= span {1, x− xck , y − yck , z − zck} .

(12)

Here, xck = [xck , yck , zck ] is the centroid of the element Ωk. The numerical solution variables (i.e., the

degrees of freedom) are then the cell average value Uk, and the average value of the x, y, and z components

of the solution gradient within each cell [(∆xU)k, (∆yU)k, (∆zU)k]. The assumed solution in cell k is

therefore

Uk = Uk + (∆xU)k(x− xck) + (∆yU)k(y − yck) + (∆zU)k(z − zck). (13)

3.4 Update Formulas for the Degrees of Freedom
Inserting the solution representation from Equation (13) into the weak formulation given by Equation (10),

and performing integration using each test function yields the following update formulas for the degrees of

freedom:

U
n+1
k = U

n

k −
1
Vk

∫∫
∂Γk×T

Fi · n̂i dΓdt

︸ ︷︷ ︸
I

+ 1
Vk

∫∫
Ωk×T

S dxjdt

︸ ︷︷ ︸
II

, (14)

∆xU
n+1
k

∆yU
n+1
k

∆zU
n+1
k

 =

∆xU
n

k

∆yU
n

k

∆zU
n

k

+Kk

(
−
∫∫

∂Γk×T

x− xcky − yck
z − zck

Fi · n̂i dΓdt

︸ ︷︷ ︸
III

+
∫∫

Ωk×T

FxFy
Fz

 dxjdt

︸ ︷︷ ︸
IV

+
∫∫

Ωk×T

x− xcky − yck
z − zck

S dxjdt

︸ ︷︷ ︸
V

)
.

(15)

Here, Vk is the volume of the cell, ∂Γk represents the edges along the boundary Γk, and Kk is the matrix

given by

Kk =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

−1

, (16)
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where

Ixx =
∫∫∫
Ωk

(x− xck)2 dxj , (17a)

Ixy = Iyx =
∫∫∫
Ωk

(x− xck)(y − yck) dxj , (17b)

Ixz = Izx =
∫∫∫
Ωk

(x− xck)(z − zck) dxj , (17c)

Iyy =
∫∫∫
Ωk

(y − yck)2 dxj , (17d)

Iyz = Izy =
∫∫∫
Ωk

(y − yck)(z − zck) dxj , (17e)

Izz =
∫∫∫
Ωk

(z − zck)2 dxj , (17f)

are the area moments of inertia of the cell.

Equations (14) and (15) represent the discrete form of Equation (10) and require the evaluation of

five integrals (see the terms I-V), three of which involve a coupled volumetric-time domain, referred to as

volumetric integrals, and two of which a coupled surface-time domain, referred to as surface integrals. In

summary, there are two surface integrals for the boundary flux through the coupled space-time surface of the

computational element (I, III), a flux volumetric integral (IV), and two volumetric integrals for the source

term (II, V). The numerical approximations considered in the present work for evaluating the integrals I-V

are described in Sections 3.5-3.6.

3.5 Evaluation of Volumetric Flux and Source Term Integrals
There are three volume integrals present in the update formulas for the degrees of freedom that must be

evaluated; these are the source term (II), the flux (IV), and the first-order moment of the source term (V).

The Radau IIA method [26] for source-term time integration is used, due to the stiffness of the source term.

This method is an L-stable, two-step, third-order accurate implicit time-marching scheme written as

U
n+ 1

3 = U
n + ∆t

[
5
12

(
dU
dt

)n+ 1
3

− 1
12

(
dU
dt

)n+1]
,

U
n+1 = U

n + ∆t

[
3
4

(
dU
dt

)n+ 1
3

+ 1
4

(
dU
dt

)n+1]
.

(18)

Therefore, all integral spatial approximations in II, IV, and V are evaluated at the Radau IIA stages.

3.5.1 Volume Integral of the Flux

The temporal integration in integral IV is approximated by the two-point Radau IIA quadrature, such that∫∫
Ωk×T

Fi dxjdt ≈ ∆t
∫
Ωk

[
3
4
F
n+ 1

3
i + 1

4
F n+1
i

]
dxj . (19)

For performing the spatial integration in Equation(19), a Gaussian quadrature rule is used. Cockburn

and Shu [27] proved that for a semi-discrete method with a solution representation in polynomial space

PK , a quadrature rule used for the integration in space along edges must be exact for a polynomial of

at least degree 2K + 1. Therefore, to achieve third-order accuracy, a two-point Gaussian quadrature rule
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is sufficient for approximating the spatial integration with the desired accuracy. For a multi-dimensional

space a tensor product of quadrature rule is considered. Thus, assuming a 3D canonical reference element

[ζ, η, µ] ∈ [−1, 1]3, a two-point Gaussian quadrature rule in each coordinate direction is required (i.e., a total

of eight points). For illustration, Figure 1 depicts the quadrature points used for evaluating integrals in two

spatial dimensions, in which case there are four Gauss quadrature points at each stage of Radau IIA scheme.

Since elements can be any convex polygonal shape, a mapping from the physical domain [x, y, z] to a

computational domain [ζ, η, µ] is required. For skewed hexahedral elements, a trilinear mapping, as used in

other previous works (e.g., [9]), is chosen for this transformation, such that

x(ζ, η, µ) = 1− ζ
2

1− η
2

1 + µ

2
x0 + 1 + ζ

2
1− η

2
1 + µ

2
x1 + 1 + ζ

2
1 + η

2
1 + µ

2
x2

+ 1− ζ
2

1 + η

2
1 + µ

2
x3 + 1 + ζ

2
1− η

2
1− µ

2
x4 + 1− ζ

2
1− η

2
1− µ

2
x5

+ 1− ζ
2

1 + η

2
1− µ

2
x6 + 1 + ζ

2
1 + η

2
1− µ

2
x7.

(20)

Here, xi with i = [0, 1, 2, . . . , 7] are the physical positions of the nodes that make up a single element. The

matrix of the coordinate transform from the physical domain to the computational domain is defined as the

Jacobian, J = ∂xi

∂ζj
,

J(ζj) = ∂x

∂ζ

∂y

∂η

∂z

∂µ
+ ∂x

∂η

∂y

∂µ

∂z

∂ζ
+ ∂x

∂µ

∂y

∂ζ

∂z

∂η
− ∂x

∂µ

∂y

∂η

∂z

∂ζ
− ∂x

∂ζ

∂y

∂µ

∂z

∂η
− ∂x

∂η

∂y

∂ζ

∂z

∂µ
. (21)

Each flux volumetric integral in Equation (19) can be evaluated by applying a Gauss quadrature inte-

gration over the canonical element Ω̂k to which an arbitrary computational cell, Ωk, is mapped using the

trilinear representation. Thus,∫
Ωk

Fi (U(xj , t)) dxj =
∫
Ω̂k

Fi (U(ζj , t)) |J(ζj)| dζj ≈
7∑

χ=0
wχ|J(ζj)|Fi (U(ζj , t)) , (22)

where χ is the index through the eight-point flux-volume quadrature with wχ as the corresponding weight,

and |J(ζj)| is the determinant of the Jacobian.

Finally, Equation (19) becomes∫∫
Ωk×T

Fi dxjdt ≈ ∆t
∑
χ

wχ |J (ζj)|
[

3
4
F
n+ 1

3
i + 1

4
F n+1
i

]
. (23)

Similarly, the volume integral of the flux for the time interval T ′ over [tn, tn+ 1
3 ] is given by∫∫

Ωk×T ′

Fi dxjdt ≈
∆t
3
∑
χ

wχ |J (ζj)|
[

1
2
F ni + 1

2
F
n+ 1

3
i

]
. (24)

3.5.2 Volume Integral of the Source Term

A midpoint quadrature rule is used for approximating the integral II in Equation(14). Figure 1 depicts the

location of these points for a coupled space-time element. A linearization of the source term is performed to

make the update equation for the cell-averaged values decoupled from the update formulas for the solution

slopes, such that

S(Uh(xi, t)) ≈ S(Uk(t)) +
(
∂S

∂U

)n∆xU
n

k

∆yU
n

k

∆zU
n

k

 ·
x− xcky − yck
z − zck

 . (25)
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y

t

x

tn+1

tn+ 1
3

tn

Figure 1: Schematic detailing volume integrals performed using Gaussian quadrature in space and Radau

IIA in time. Quadrature points used for the source-term integration are presented as triangles (N), while
points used for flux integration are designated with bullets (•). Calculated states in time are shown with

dashed lines.

Application of Radau IIA scheme in combination with the space integration for the source term yields∫∫
Ωk×T

S dxjdt ≈ Vk∆t
[

3
4
S(Un+ 1

3
k ) + 1

4
S(Un+1

k )
]
. (26)

3.5.3 Volume Integral of the Moment of the Source Term

The evaluation of integral V in Equation (15) is performed by making use of the linearization for the source

term given by Equation (25). Performing analytical spatial integration, the time integration is approximated

with Radau IIA quadrature, yielding∫∫
Ωk×T

(x− xck)S dxjdt ≈
3∆t

4
∂S

∂U

n+ 1
3 (
Ixx∆xU

n+ 1
3

k + Ixy∆yU
n+ 1

3
k + Ixz∆zU

n+ 1
3

k

)

+ ∆t
4
∂S

∂U

n+1 (
Ixx∆xU

n+1
k + Ixy∆yU

n+1
k + Ixz∆zU

n+1
k

)
,

(27a)

∫∫
Ωk×T

(y − yck)S dxjdt ≈
3∆t

4
∂S

∂U

n+ 1
3 (
Iyx∆xU

n+ 1
3

k + Iyy∆yU
n+ 1

3
k + Iyz∆zU

n+ 1
3

k

)

+ ∆t
4
∂S

∂U

n+1 (
Iyx∆xU

n+1
k + Iyy∆yU

n+1
k + Iyz∆zU

n+1
k

)
,

(27b)

∫∫
Ωk×T

(z − zck)S dxjdt ≈
3∆t

4
∂S

∂U

n+ 1
3 (
Izx∆xU

n+ 1
3

k + Izy∆yU
n+ 1

3
k + Izz∆zU

n+ 1
3

k

)

+ ∆t
4
∂S

∂U

n+1 (
Izx∆xU

n+1
k + Izy∆yU

n+1
k + Izz∆zU

n+1
k

)
.

(27c)
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3.6 Surface Integral Evaluation and Interface-Flux Approximation
Solutions between cells are discontinuous in a DG scheme. In order to obtain the interface flux along the

edge ∂Γk, a numerical Riemann solver is used to approximate

Fi · n̂i ≈ F̃ξ, (28)

where F̃ξ is the vector of computed fluxes normal to the edge ∂Γk. Two examples of popular Riemann

solvers (or flux functions, as they are commonly known) are Roe’s flux function [28] and the Harten-Lax-

Leer-Einfeldt (HLLE) flux function [29, 30].

Non-linear fluxes require that the surface integral I in Equation 14 is estimated by a quadrature rule.

The application of the quadrature rule in the space domain provides∫∫
∂Γk×T

Fi · n̂i dΓdt ≈
∫
T

∑
ξ

wξF̃ξ dt, (29)

where wξ is the weight of the quadrature point ξ. For integration of Equation (29) in time, the midpoint

rule is used as proposed by Suzuki [18], thereby evaluating fluxes at tn+ 1
2 ,∫∫

∂Γk×T

Fi · n̂i dΓdt ≈ ∆t
∑
ξ

wξF̃
n+ 1

2
ξ . (30)

The evaluation of the surface integral III (in the Equation (15) for the slope update) can be performed

in the same manner as the approximation of integral I. Thus, the same numerical interface fluxes can be

reused, as follows:

∫∫
∂Γk×T

x− xcky − yck
z − zck

Fi · n̂i dΓdt ≈ ∆t



∑
ξ

wξ (xξ − xck) F̃ n+ 1
2

ξ∑
ξ

wξ (yξ − yck) F̃ n+ 1
2

ξ∑
ξ

wξ (zξ − zck) F̃ n+ 1
2

ξ


. (31)

The (x, y, z) abscissas of the Gaussian quadrature points xq1 and xq2 on the edge of a cell used for evaluating

Equations(30) and Equations(31) are found with

xq1,q2 = xm ±
`

2
√

3
, (32)

where xm is the midpoint of the edge, and ` is the vector containing lengths of the edge. Application of

the Radau IIA method require the evaluation of the solution state at the intermediate time tn+ 1
3 . Thus,

flux evaluations are necessary at tn+ 1
6 and tn+ 1

2 . All necessary quadrature points for evaluating flux surface

integrals are shown in Figure 2 for the case in two spatial dimensions.

3.6.1 Hancock’s Predictor Step

To complete the approximation of the surface integral, the solution at the half time steps, Uh(xi, tn+ 1
2 ) and

Uh(xi, tn+ 1
6 ), for each update are needed as an input to the approximate Riemann solver. To obtain solution

values at these points, Hancock’s predictor step is used [25] .

The update formula for the cell-average value in Equation (14) can now be altered slightly by removing

element-face interactions, yielding

U
n+ψ
k = U

n

k −
1
Vk

∫∫
∂Γk×T ′

F̂i · n̂i dΓdt+ 1
Vk

∫∫
Ωk×T ′

S dxjdt. (33)

9
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y

t

x

tn+1

Un+1
h

Un
h

tn+ 1
2

tn+ 1
3

U
n+ 1

3
h

tn+ 1
6

tn
xq1 xq2

Figure 2: Schematic detailing the surface integral performed using two-point Gaussian quadrature in space

and the midpoint rule in time. Quadrature points used for integration over the time step [tn, tn+ 1
3 ] are

represented as triangles (N), while bullets (•) designate quadrature points used for integration over the time

step [tn, tn+1]. At each quadrature point, a Riemann solver is used to compute an interface flux. Calculated

states are designated with dashed lines.

Here, F̂i is the flux vector evaluated using only the face quadrature points and interior solution within

element Ωk, and T ′ is the time interval
[
tn, tn+ψ] with ψ = 1

2 or ψ = 1
6 . No approximate Riemann solver

is needed for these fluxes, as they are evaluated directly using the flux dyad of the system. This predictor

step can be simplified further through the use of the implicit Euler method to approximate the temporal

integration of the source integral, thus evaluating the source at time tn+ 1
2 . The flux integral is evaluated

explicitly at time tn, and Equation (33) can then be written as

U
n+ψ
k = U

n

k + ∆t
Vk

− ∫
∂Γk

F̂i (Uh (xj , tn)) · n̂i dΓ +
∫
Ωk

S
(
Uh

(
xj , t

n+ 1
2

))
dxj

 . (34)

Once the predicted cell average state at a fractional-time step U
n+ψ
k is computed, the solution value at any

point along the edge ∂Γk can be found with

Uh
(
xj , t

n+ψ) = U
n+ψ
k + φnk

∆xU
n

k

∆yU
n

k

∆zU
n

k

 ·
x− xcky − yck
z − zck

 , (35)

where φnk is a vector of slope-limiter values. Some options for slope limiting in multiple dimensions include the

Venkatakrishnan limiter [31], which is the multi-dimensional extension to the one dimensional Van Albada

limiter [32], or the Barth-Jesperson limiter [33], which is the multi-dimensional extension to the minmod

slope limiter [34]. High-order finite-element methods (such as the DGH scheme) that rely on slopes for their

assumed solution require a slope limiter to prevent spurious oscillations in regions of high gradients and/or

unresolved solution content.

The slope variables used here are the values at time tn. To evaluate the spatial integration of the source

term in Equation (34), a single Gaussian quadrature point at the centroid of the element (xck , t
n+ 1

2 ) is used.

This integral then becomes ∫
Ωk

S dxj ≈ VkS
(
Uh
(
xck , t

n+ψ)) . (36)

10
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From Equation (34) and (36), the state at a fractional time step Uh(xi, tn+ψ) can be found as

Uh(xi, tn+ψ) = U
n

k + φnk

∆xU
n

k

∆yU
n

k

∆zU
n

k

 ·
x− xcky − yck
z − zck


− ∆t
Vk

∑
∂Γk∈∂Ωk

∫
∂Γk

F̂i (Uh (xj , tn)) · n̂i dΓ + ∆tS
(
Uh
(
xck , t

n+ψ)) . (37)

3.7 Discrete Update Formulas
The discrete form of the cell-average update is then

[
U
n+ 1

3
k

U
n+1
k

]
=
[
U
n

k

U
n

k

]
− ∆t
Vk


1
3

∑
ξ

wξF̃
n+ 1

6∑
ξ

wξF̃
n+ 1

2

+ ∆t
[ 5

12I − 1
12I3

4I
1
4I

][
S
n+ 1

3

S
n+1

]
. (38)

Though some PDEs will contain source terms that can produce implicit update formulas, and this is the

case in the present work, that are simple enough to be evaluated a priori. However, Suzuki [18] advocates

using Newton’s method for complex, non-linear source terms in the general case. The discrete form of the
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slope updates is written as



∆xU
n+ 1

3
k

∆yU
n+ 1

3
k

∆zU
n+ 1

3
k

∆xU
n+1
k

∆yU
n+1
k

∆zU
n+1
k


=



∆xU
n

k

∆yU
n

k

∆zU
n

k

∆xU
n

k

∆yU
n

k

∆zU
n

k


+ ∆tΥ



1
3

∑
ξ

wξ(xξ − xck)F̃ n+ 1
6

ξ

1
3

∑
ξ

wξ(yξ − yck)F̃ n+ 1
6

ξ

1
3

∑
ξ

wξ(zξ − zck)F̃ n+ 1
6

ξ∑
ξ

wξ(xξ − xck)F̃ n+ 1
2

ξ∑
ξ

wξ(yξ − yck)F̃ n+ 1
2

ξ∑
ξ

wξ(zξ − zck)F̃ n+ 1
2

ξ



+ ∆tΥ



1
3

∑
χ

wχ |J(ζj)|
[

1
2

(Fx)nχ + 1
2

(Fx)n+ 1
3

χ

]
1
3

∑
χ

wχ |J(ζj)|
[

1
2

(Fy)nχ + 1
2

(Fy)n+ 1
3

χ

]
1
3

∑
χ

wχ |J(ζj)|
[

1
2

(Fz)nχ + 1
2

(Fz)
n+ 1

3
χ

]
∑
χ

wχ |J(ζj)|
[

3
4

(Fx)n+ 1
3

χ + 1
4

(Fx)n+1
χ

]
∑
χ

wχ |J(ζj)|
[

3
4

(Fy)n+ 1
3

χ + 1
4

(Fy)n+1
χ

]
∑
χ

wχ |J(ζj)|
[

3
4

(Fz)
n+ 1

3
χ + 1

4
(Fz)n+1

χ

]



+ ∆t
[ 5

12I − 1
12I3

4I
1
4I

]


∂S
∂U

n+ 1
3 ∆xU

n+ 1
3

k

∂S
∂U

n+ 1
3 ∆yU

n+ 1
3

k
∂S
∂U

n+ 1
3 ∆zU

n+ 1
3

k
∂S
∂U

n+1∆xU
n+1
k

∂S
∂U

n+1∆yU
n+1
k

∂S
∂U

n+1∆zU
n+1
k


.

(39)

Here, I is the identity matrix ∈ R3×3, and Υ is the block matrix given by

Υ =

Kk 0 0
0 Kk 0
0 0 Kk

 . (40)

4 Numerical Results

4.1 Linear Convection-Relaxation
To demonstrate the convergence accuracy of the third-order DGH scheme, the linear convection-relaxation

equation was solved in 3D. This equation is written simply as

∂ρ

∂t
+ vi

∂ρ

∂xi
= −ρ

τ
, (41)
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Table 1: `2 error norms and convergence order obtained for solution of the linear convection-relaxation

equation on a series of systematically refined computational grids.

# of Elements `2 Error Order

80× 80× 80 9.030× 10−4 ——

160× 160× 160 1.231× 10−4 2.87

200× 200× 200 6.376× 10−5 2.95

300× 300× 300 1.911× 10−5 2.97

350× 350× 350 1.207× 10−5 2.98

where vi is the convection velocity, and τ is the relaxation time. The exact solution to this PDE is expressed

as

ρ(xi, t) = ρo(xi − vit) exp
(
− t
τ

)
. (42)

The initial condition chosen for this problem is

ρ(xi, 0) = exp
(
−0.5

[
x2 + y2 + z2]) , (43)

with the non-dimensional convection velocity components given by vi = [−2,−2,−2]ᵀ, and the relaxation

time set to τ = 1. The solution is time marched to a final time t = 3 on a Cartesian grid discretizing the

domain [−10, 10]3. The Courant–Friedrichs–Lewy (CFL) number used is 0.3. Note that for this smooth

problem, the DGH method is used wihtout the application of a slope-limiter function. Table 1 shows the

error norms and convergence order achieved with the linear convection-relaxation equation on a series of 3D

grids. Clearly, third-order accuracy is observed.

4.2 Isentropic Vortex
This is a test case originally presented by Balsara and Shu [35], in which a mean flow is disturbed by a vortex.

The compressible Euler equations were used to simulate the diagonal movement of the hydrodynamic vortex

across a two-dimensional, periodic domain of [−5, 5]2. The compressible Euler equations describe a gas in

local thermodynamic equilibrium everywhere, and are the lowest member of the maximum-entropy closure

hierarchy. They are written as

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0,

∂

∂t
(ρui) + ∂

∂xi
(ρuiuj + pδij) = 0,

∂

∂t

(
ρuiuj

2
+ p

γ − 1

)
+ ∂

∂xi

(
ui

[
ρujuj

2
+ γp

γ − 1

])
= 0.

(44)

The primitive solution vector for the Euler equations is W = [ρ, ux, uy, p], and the non-dimensional initial

conditions for the mean flow are given as W0 = [1, 1, 1, 1]ᵀ. The vortex is present due to variations in the

primitive variables from the mean flow, such that

δv = ε

2π
e0.5(1−r2), δvx = −yδv, δvy = xδv,

δT = − (γ − 1) ε2

8γπ2 e(1−r2), δS = 0,
(45)

where the temperature and entropy are defined by T = P/ρ and S = P/ργ , and the heat capacity ratio

is that of a diatomic gas, γ = 1.4. The strength of the vortex is designated by the parameter ε = 5. The

simulation is run to a final non-dimensional time of t = 10, at which point the vortex has fully traversed the

grid and arrived back at its original position (see Figure 3).

This problem was simulated on a series of regular Cartesian and irregular grids. The latter grids were
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(a) t = 0. (b) t = 5. (c) t = 10.

Figure 3: Predicted DGH solution for the isentropic vortex problem at the non-dimensional times t = 0, 5
and 10 obtained on a disturbed mesh with 80 × 80 computational elements. The thin white lines indicate

the boundaries of the computational elements.

Table 2: `2 and `∞ error norms and solution accuracy order obtained for the isentropic vortex problem.

Mesh # of Elements `2 Error `2 Order `∞ Error `∞ Order

Cartesian 400 1.0230× 10−1 —— 1.2038× 10−2 ——

1600 2.2158× 10−2 2.207 6.9568× 10−3 0.791

6400 3.5935× 10−3 2.624 1.4390× 10−3 2.273

25600 4.8042× 10−4 2.903 1.5611× 10−4 3.204

102400 6.0952× 10−5 2.978 1.9928× 10−5 2.970

409600 7.6444× 10−6 2.995 2.6144× 10−6 2.930

Disturbed 400 1.1549× 10−1 —— 1.6223× 10−2 ——

1600 2.8450× 10−2 2.021 1.0585× 10−2 0.616

6400 5.4151× 10−3 2.393 3.1871× 10−3 1.732

25600 8.3110× 10−4 2.704 5.2243× 10−4 2.609

102400 1.1647× 10−4 2.835 9.5139× 10−5 2.457

obtained by randomly disturbing the nodes of the coarsest Cartesian mesh such that skewed convex quadri-

laterals are generated, and then refine each element using a half-edge approach multiple times to achieve the

desired mesh resolution. The simulation was run with a CFL number of 0.3, without use of a slope limiter.

The `2 and `∞ errors and computed orders of accuracy are shown tabulated for simulations performed on

both the Cartesian and disturbed meshes in Table 2. The inspection of Table 2 clearly shows that the `2
error norms converge with the nominal accuracy in the asymptotic limit on both Cartesian and irregular

quadrilateral grids for a set of non-linear PDEs. It is worth emphasising that the DGH method achieves the

third-order accuracy despite the fact only linear elements are used.

4.3 Kelvin-Helmholtz Instability
The compressible Euler equations of gas dynamics were again used to simulate a case demonstrating the

Kelvin-Helmholtz instability, which occurs at the interface between two fluids with differing velocities. In

this case a jump in mass densities is used to make the interface between the two streams obvious. Being able

to sharply capture such interfaces in small-scale structures for this case helps demonstrate the low numerical

dissipation of the DGH method. For this problem, the instability is triggered at two interfaces, which are

slightly perturbed lines at (yB , yT ) = (0.25, 0.75)± 0.01 cos(6πx). The initial conditions are given as

W0 =

{
W1, yB < y < yT

W2, otherwise
, W1 =


2

0.5
0

2.5

 , W2 =


1
−0.5

0
2.5

 . (46)
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Figure 4: DGH solution for Kelvin-Helmholtz instability at time t = 2.

The solution is time-marched to a final non-dimensional time of t = 2 on a domain (x, y) ∈ [0, 1]2 with

periodic boundary conditions in both directions. The result, shown in Figure 4, was obtained on a Cartesian

computational domain of 40, 960, 000 elements using the Roe flux function [28], Venkatakrishnan slope limiter

[31], and a CFL number of 0.3. The scheme is efficiently able to resolve small-scale structures in the flow

without exhibiting excessive numerical dissipation.

4.4 Stokes Flow
As mentioned, one of the main motivations for the development of the DGH-based implementation is the

large-scale efficient solution of moment-closure models from the kinetic theory of gases. Such models offer

hyperbolic-relaxation models that can be used as an alternative to the compressible Navier-Stokes equa-

tions for continuum flows, while also remaining valid for significant departures from local thermodynamic

equilibrium. The ten-moment (Gaussian) closure is written in conservation form as

∂ρ

∂t
+ ∂

∂xk
(ρuk) = 0,

∂

∂t
(ρui) + ∂

∂xk
(ρuiuk + Pik) = 0,

∂

∂t
(ρuiuj + Pij) + ∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij) = −3Pij − Pkkδij

3τ
,

(47)

where the relaxation time τ can be related to viscosity and hydrostatic pressure through τ = µ/p [19, 36,

37, 2].

As a demonstration of such a hyperbolic model’s ability to accurately describe traditional viscous flows,

Figure 5 compares a moment-closure solution for low-Reynolds-number flow past a circular cylinder to the

classical analytical Navier-Stokes solution. The fluid simulated is Argon with a density of ρ = 1.784 kg/m3, a

free-stream velocity of 0.5 m/s, and a pressure of 101 325 Pa. A constant viscosity of µ = 2.117× 10−5 Pa · s
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(a) The deviatoric x-direction pressure, Pxx − p. (b) The shear pressure, Pxy.

Figure 5: DGH prediction (top half) and exact solution (bottom half) for Stokes flow past a circular cylinder.

is used. The diameter of the cylinder is set to 1× 10−5 m, and the outer-diameter of the domain is 30
times this value. The corresponding Reynolds and Knudsen numbers are Re = 0.421 and Kn = 0.0063,
respectively. A relatively uniform semi-cylindrical grid was used to discretize the computational domain

for this problem, in which a typical cell covered an angle of 0.05625◦ around the cylinder, and the radial

mesh spacing was about 0.45% of the inner-diameter. A reflection boundary condition was imposed at the

inner-diameter surface and symmetry plane surfaces, and a free-stream flow was used at the outer boundary.

The Roe flux function [28] and a CFL number of 0.3 were used for this simulation. Despite the fact that

the flow Mach-number is only Ma = 0.0018, the compressible Gaussian moment-closure solution is accurate

without the need for low-Mach-number preconditioning. This, again, shows the very low level of numerical

dissipation present in the DGH scheme.

4.5 Taylor-Green Vortex
The Taylor-Green vortex is a suitable problem for evaluating the capabilities of high-order methods. This

test case is characterized by its transition to turbulence, and subsequent decay. The incompressible NSE

are typically used for the simulation of this test case, and obtaining an accurate result with the ten-moment

closure would be a novel result in demonstrating its applicability to the direct numerical simulation of

turbulent flows. This subject is treated in more detail in [38].

Because a perfect compressible gas with a heat capacity ratio γ = 1.4 is simulated, the diatomic extension

for the Gaussian closure developed by Hittinger [37] is used to model this problem. The Gaussian closure

was originally derived for a monatomic gas with only three translational degrees of freedom, with no internal

degrees of freedom (rotational or vibrational). Hittinger’s extension accounts for the energy that can be

present in these internal degrees of freedom for a diatomic gas. The previously shown ten-moment model is

extended to
∂ρ

∂t
+ ∂

∂xk
(ρuk) = 0,

∂

∂t
(ρui) + ∂

∂xk
(ρuiuk + Pik) = 0,

∂

∂t
(Pij + ρuiuj) + ∂

∂xk
(ρuiujuk + uiPjk + ujPik + ukPij)

= −3Pij − Pkkδij
3τt

− 2 (Pkk − 3Erot)
15τr

δij ,

∂Erot

∂t
+ ∂

∂xk
(ukErot) = −3Erot − Pkk

5τr
.

(48)

Here, the relaxation times can be related to the gas viscosities with

τt = µ

p
, τr = 15µB

4p
, (49)
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where µ is the fluid viscosity, µB is the bulk viscosity, and p = (Pii + 2Erot) /5.
The domain is given by (x, y, z) ∈ [0, 2πL]3, with a non-dimensional reference length L = 1. Periodic

boundary conditions are used on all sides of the domain, and the initial conditions are given by

W0 =


ρ

U sin
(
x
L

)
cos
(
y
L

)
cos
(
z
L

)
−U cos

(
x
L

)
sin
(
y
L

)
cos
(
z
L

)
0

1
γM2 + 1

16
[
cos
( 2x
L

)
+ cos

( 2y
L

)] [
cos
( 2z
L

)
+ 2
]

 . (50)

Here, the non-dimensional velocity U = 1, and density is computed with the equation of state

ρ = γpM2

Tref
, (51)

with reference temperature Tref = 1 and a Mach number of M = 0.1. The Reynolds number of the flow

is defined as Re = ρrefUL
µ , and is equal to 1600. The reference density is taken to be ρref = 1, and the

appropriate viscosity is then µ = 1
1600 , with the bulk viscosity approximated as µB = 3µ. The solution is

time-marched to final non-dimensional time t = 20, using a CFL of 0.1, the HLLE flux function and no slope

limiter. To validate results, the integral of the kinetic energy as well as the integral of the enstrophy,

Ek = 1
ρrefΩ

∫
Ω

1
2
ρujuj dΩ, (52a)

E = 1
ρrefΩ

∫
Ω

1
2
ρ
∣∣∣~∇× ~u∣∣∣2 dΩ, (52b)

are computed for the entire domain, Ω, during the calculation. For incompressible flows, the temporal

evolution of the kinetic energy dissipation rate, ε = −dEk

dt , can be related to the enstrophy exactly as

E = ρref ε

2µ
, (53)

and this is approximately true for compressible flows at a low Mach number.

Figure 6 depicts the predicted enstrophy and kinetic energy by the DGH scheme on a series of computa-

tional Cartesian meshes ranging in size from 1283 to 5123 hexahedral elements for a total of 2,097,152 and

134,217,728 cells, respectively. Additionally, the same figure provides the reference solution from Wang et

al. [1] which was obtained by solving the incompressible NSE on a grid with 5123 elements and a spectral

method. An inspection of Figure 6a shows that the DGH solution appears to be converging towards the

reference data of Wang et al., although some slight differences can still be noticed at the end of the dissipa-

tion dominated phase (i.e., beyond about t = 15). In contrast, Figure 6b shows that the estimated enstropy

computed directly with the solution slopes predicted by the DGH scheme are approaching the reference data

at a relatively slower rate. However, an indirect estimation of the enstrophy using Equation (53) reveals sig-

nificantly improved predictions that are much closer to the reference data. This behaviour can be explained

by considering that the enstrophy relies on derivatives of the velocity field whereas the kinetic energy depends

directly on the velocity field. Recalling that the third-order DGH scheme relies on linear elements for the

solution procedure, it is obvious that the solution slopes are approximated with lower accuracy than the

solution, and this fact is reflected in the direct evaluation of the enstrophy in this case. Three-dimensional

plots obtained on the 5123 Cartesian grid are shown in Figure 7. The DGH scheme accurately captures a

turbulent result, and is able to resolve small scale structures in the flow. The reader is referred to [38] for

further discussions regarding the contextualization of the results in the field of direct numerical simulation

of turbulent flow.
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Figure 6: Plot of the predicted kinetic energy and enstrophy by the DGH scheme along with the reference

spectral method solution from Wang et al. [1].

4.6 Parallel Performance
Strong scaling studies using the DGH scheme were performed using two different distributed-clusters for

the solution of the Taylor-Green problem. The scheme was shown to achieve a parallel efficiency of about

Ep = 0.96 on up to 262,144 computational cores of Intel “Knights Landing” 7230 on the Theta KNL system

located at the Argonne National Laboratory. Figure 8a shows the results from three different scaling studies

of varying grid sizes (643, 1283, 5123) on the Theta system. Using the 5123 case, the scheme was also shown

(Figure 8b) to achieve a parallel efficiency of about Ep = 0.97 on up to 16,384 computational cores of Intel

“Skylake” and “Cascade Lake” on the Niagara system, located at the University of Toronto.

5 Conclusion and Future Work
The interest in and derivation of hyperbolic-relaxation equations with stiff local source terms from the

kinetic theory of gases is discussed. The formulation of the coupled space-time finite-element discontinuous-

Galerkin Hancock method is shown in three dimensions, and results obtained using the first large-scale

implementation of the scheme are shared. The third-order accuracy of the scheme is confirmed on multi-

dimensional Cartesian and non-Cartesian meshes for linear and non-linear conservation laws. The scheme

is used in conjunction with a high-order member of the maximum-entropy closure hierarchy to accurately

capture a classical viscous result, which is in great agreement with the exact solution obtained with the

Navier-Stokes equations. The scheme and an extension to the high-order maximum-entropy closure is also

used to produce a novel result for the direct numerical simulation of a turbulent case. Finally, a strong

scaling study of the implementation was performed on two separate distributed clusters, and remained close

to perfectly optimal on both architectures, on up to more than a quarter-million computational cores.

As future work, a direct comparison between the DGH and other high-order finite-element schemes in

terms of speed and accuracy will be assessed. An extension of the DGH scheme to fourth-order (or higher)

temporal and spatial accuracy will be investigated. An extension of the scheme to second-order derivative

terms for the solution of PDEs with parabolic terms is also of interest.
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(a) t = 2.5.

(b) t = 15.0.

(c) t = 17.5.

Figure 7: Contour plots of the z-component of vorticity and magnitude of velocity at various non-dimensional

times, using a Cartesian grid of size 5123.
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(a) Strong scaling analysis on Theta.
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Figure 8: Strong scaling analysis for the Taylor-Green problem, performed on two distributed clusters.
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