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Abstract: In direct and large eddy simulations, very small space steps are used close to the
solid walls in order to resolve the boundary-layer structures. Due to the restrictive CFL stability
criteria of explicit time-stepping schemes, the maximum allowable time step is also very small,
leading to high computational costs, notably for converging flow statistics. The use of an implicit
integration scheme may overcome this limitation at the price of an increased computional cost per
step. Furthermore, the most commonly used fully implicit schemes induce higher errors due to
the necessary approximations and bad dispersion and dissipation properties. As a compromise, a
fourth-order implicit residual smoothing scheme (IRS4), succesfully validated for a finite volume
solver in [1, 2], has been implemented in a multiblock high-order finite-difference solver. For
moderate CFL numbers, a similar accuracy as the explicit method is obtained with substantial
savings in terms of computational time.
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1 Introduction
High-order numerical methods are being implemented for direct numerical simulations (DNS) and large-eddy
simulations (LES) of turbulent flows and aeroacoustics. In order to preserve the numerical accuracy and
due to time scales comparable to the spatial scales, the Courant-Friedrichs-Lewy (CFL) number is close to
unity and generally explicit time integration schemes, such as Runge–Kutta or Adams-Bashforth schemes,
are used. The limit is then dictated by the physics rather than the numerical stability. However, in the
presence of solid boundaries, thin turbulent boundary layers develop on the walls which require the use of
very small mesh sizes. In such a situation, stability constraints of explicit schemes impose time steps much
smaller than the characteristic time of viscous-dominated turbulent structures near the wall, whereas the
physics would instead correspond to CFL of the order of 10. In the incompressible regime, if the stability
limit is dictated by a viscous criterion, an implicit scheme can remove the limit at the price of the solution of
a linear systems. The cost being moderate the algorithm remains efficient. For compressible Navier-Stokes
equations, due to the hyperbolicity, implicit method necessitates the solution of nonlinear systems. If a
sufficiently accurate time integration is chosen, such as implicit Runge–Kutta schemes or linear multistep
methods (Adams-Moulton or Backward Differentiation Formula schemes), the overcost may lose the benefits
of increasing the time step beyond the CFL limit.

A way to relax the severe stability limitations of explicit schemes without going into the trouble of fully
implicit ones, is the use of Implicit Residual Smoothing (IRS), a technique originally introduced to accelerate
the convergence to steady solutions. In fact, as shown in [1, 2], this technique can be extended to high order
and can simulate unsteady flow at CFL between 5 and 10 accurately with a moderate overcost. IRS may be
one order of magnitude cheaper than a fully implicit method where the nonlinear system is solved to strict
tolerance (even if absolute timing is always a matter of controverse). In the context of compressible flow
simulations, IRS was introduced at a time where computer power just allowed the computation of steady
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solutions. A relatively accurate (second-order) implicit phase was constructed by Lerat and coworkers
[3, 4, 5, 6] by simplifying a Lax-Wendroff-type implicit phase. Based on second-order differencing, it acts as
a Laplacian smoother to accelerate convergence. It has great similarity with the implicit phase introduced
later by Jameson and coworkers [7, 8] to smooth/filter the solution. IRS was used in several computational
fluid dynamics (CFD) codes to speed-up convergence of steady Euler and Navier-Stokes calculations in
conjunction with multigrid algorithm [9, 10, 11, 12, 13]. A fourth-order accurate version was introduced
in [1] and applied to the LES and DNS of selected geometrically simple flow configurations. A finite-
volume multi-domain formulation was discussed in [2] and shown to be efficient for LES in turbomachinery
in conjunction with a third-order accurate spatial scheme. The fourth-order IRS relies on a bi-Laplacian
filter to damp high-frequency modes of the residual, which leads to the solution of pentadiagonal systems
for each space direction and Runge–Kutta stage. Thanks to the efficient inversion of scalar pentadiagonal
matrices, the extra computational cost associated with the implicit operator was shown to remain much lower
than standard implicit schemes at least for the considered configurations. Nevertheless, its multi-domain
implementation requires simplifications of the implicit matrix that may hinder robustness. Furthermore, the
numerical dissipation properties of the implicit scheme are also modified and may lead to reduced numerical
stability in conjunction with higher-order schemes, such as the ninth order scheme considered in this study.

The objective of the present work is manyfold: i) first, the IRS is extended to a curvilinear finite-difference
formulation, more suitable than the finite-volume formulation to achieve high-order accuracy in space; ii) a
detailed study of the dissipation is carried out, and a filtering strategy is introduced to ensure the correct
damping of small scales at high CFL numbers; iii) finally, the numerical properties of boundary and interface
treatment, which is critical for DNS and LES on massively parallel computers, is presented.

The paper is organized as follows: Section 1 presents the governing equations and the time and space
discretization schemes used in this study. Section 3 gives the principles and properties of IRS implicit phase,
notably in the Fourier space and explains its implementation in a finite-difference code with curvilinear
transformation. The problem of boundary and interface treatments are detailed in Section 4. Section 5 give
some numerical applications showing the efficiency and the interest of the current time implicitation strategy.

2 Baseline numerical methods

2.1 Governing equations
The governing equations are the compressible Navier-Stokes equations written for a curvilinear domain by
using a coordinate transform. The physical space (x,y) is mapped into a Cartesian regular computational
space (ξ,η), and the third direction, which corresponds in the following to the spanwise direction z, is left
unchanged. By denoting (u,v,w) the velocity components, ρ the density, p the pressure and E the total
specific energy, the set of equations for the unknown vector U = (ρ, ρu, ρv, ρw, ρE)T is given by:

∂U

∂t
+

1

J

(
∂Fc
∂ξ

+
∂Gc

∂η

)
+
∂H

∂z
= 0 (1)

with J = xξyη − yξxη the Jacobian of the coordinate transformation. The fluxes Fc, Gc, H are the sum of
the inviscid (superscript e) and visco-thermal fluxes (superscript v) given by

Fec =


ρJΘξ

ρuJΘξ + pyη
ρvJΘξ − pxη
ρwJΘξ

(ρE + p)JΘξ

 , Fvc =


0

τxxyη − τxyxη
τxyyη − τyyxη
τxzyη − τyzxη

(u·τx)yη−(u·τ y)xη−(qxyη−qyxη)

 ,

Ge
c =


ρJΘη

ρuJΘη − pyξ
ρvJΘη + pxξ
ρwJΘη

(ρE + p)JΘη

 , Gv
c =


0

τxyxξ − τxxyξ
τyyxξ − τxyyξ
τyzxξ − τxzyξ

(u·τ y)xξ−(u·τx)yξ−(qyxξ−qxyξ)

 ,

(2)
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He =


ρw
ρuw
ρvw

ρw2 + p
(ρE + p)w

 , Hv =


0
τxz
τyz
τzz

u · τ z − qz


with u = (u, v, w)T , q = (qx, qy, qz)

T the heat flux, τ = (τx, τ y, τ z)
T the viscous stress tensor, and we have

noted τx = (τxx, τxy, τxz)
T , τ y = (τxy, τyy, τyz)

T and τ z = (τxz, τyz, τzz)
T . The contravariant velocities are

defined as:
Θξ = u · ∇ξ =

1

J
(uyη − vxη) and Θη = u · ∇η =

1

J
(vxξ − uyξ) (3)

The specific total energy is E = p/[(γ − 1)ρ] + (u2 + v2 + w2)/2 for an ideal gas satisfying p = ρrT , where
T the temperature, r the gas constant and γ the ratio of specific heats. The tensor τ follows the Newtonian
fluid constitutive relation. The dynamic viscosity µ is approximated with Sutherland’s law and the heat flux
components are modelled with Fourier’s law,.

2.2 Base space and time discretizations
Central differencing is used to approximate the flux derivative. A spatial derivative of a quantity u on a
uniform mesh of size ∆x by means of a tenth-order accurate central scheme using an eleven-point stencil:

∂u

∂x

∣∣∣∣
j

=
1

∆x

5∑
l=−5

al u ((j + l)∆x) (4)

The baseline time-stepping procedure is the explicit low-storage Runge–Kutta (RK) of Jameson et al. [14],
which may be written as: 

U(0) = Un

∆U(k) = −αk∆tR(U(k−1)), k = 1, ..., s
Un+1 = U(s)

(5)

where Un is the numerical solution at time n∆t, ∆U(k) = U(k) −U(0) is the solution increment at the k-th
RK stage, s=4 is the number of stages and αk are the scheme coefficients (α1=1/4, α2=1/3, α3=1/2, α4=1).
Its formal accuracy is four for linear equations and reduces down to second order for nonlinear problems.

All the numerical schemes are implemented within the musicaa code (multiblock solver in computational
aerodynamics and aeroacoustics), developed at DynFluid laboratory, which is a high-fidelity finite-difference
(FD) solver written in Fortran and parallelized with MPI library. Various spatial and temporal schemes are
available but we restrict the attention for the current developments to the tenth-order FD and four-stage
RK scheme. In the following applications, the stencil size is reduced down to second order near physical
boundaries and we will use fourth-order central differencing for viscous fluxes (see § 4 for details about
boundary conditions).

2.3 Numerical dissipation
Central differencing methods require the addition of some form of artificial dissipation. Even starting with
a smooth solution, nonlinearity can excite odd-even decoupling and dissipation or filtering can be used
to control grid-to-grid oscillations. The latter are preferentially generated near the approximate physical
boundary conditions and can arise due to the successive application of the first-order derivative operator
in computing the derivatives of viscous fluxes. The problem is enhanced in the presence of sharp flow
discontinuities, such as shocks, and in the context of large-eddy simulations. The unresolved modes introduce
an aliasing error and have to be dissipated. The particular nature, amount and form of the dissipation has a
strong impact on the solution accuracy [15, 16]. In Ref.[1], a scalar artificial dissipation (AD) was used (we
omit here the shock-capturing term for simplicity). The approximation of flux derivatives is supplemented
by a ninth-order dissipation term:

DADj =
1

1260∆x
δ
(
λeδ9Uj

)
(6)
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where δ is the classical difference operator over one cell:

δ(•)j+ 1
2

= (•)j+1 − (•)j (7)

and λe is the spectral radius of the inviscid flux Jacobian. The coefficient 1/1260 is used by analogy with a
ninth-order MUSCL scheme [1].

In previous studies [15, 16], we also used selective filtering (SF). A filtered quantity u∗j is computed by
using a tenth-order centered filter built on an eleven-point stencil [17, 18] :

u∗j = uj − χDSFj with DSFj =

5∑
l=−5

dl u ((j + l)∆x) , (8)

with the coefficient χ ranging between 0 and 1. In most applications, a value χ ∈ [0.1 , 0.2] is used, so
that a minimal amount of dissipation is introduced. The filter has symmetric coefficients dl, so that it is
nondispersive. The connection with artificial dissipation has been clearly highlighted by Edoh et al. [19] (see
also [20, 21]), who showed that the performance of explicit AD and SF are similar. Both methods adjust
the amount of dissipation to the mesh size ∆x. One pitfall of the filtering approach is that it does not take
into account the time step ∆t, and for very small time steps (or CFL numbers), the repeated application
of the filter can lead to an overdissipation. A simple trick proposed in [19] to overcome this artefact is to
replace χ by min{χ,CFL}, which is done in the present implementation. We will see that selective filtering
independent on ∆t has also some advantages in the context of IRS time advancement.

3 Time integration using high-order Implicit Residual Smoothing

3.1 Principle of Implicit Residual Smoothing
In the original developments by Lerat and coworkers [3, 4, 5, 6], an implicit phase was proposed for a general
class of three-point schemes using an approximate Lax-Wendroff-like implicit operator. Starting from the
2D Euler equations, written as:

Wt + f(W )x + g(W )y = 0

and denoting A = ∂f/∂w and B = ∂g/∂w the Jacobian matrices, the complete implicit phase is:

∆W + θ
∆t2

2

{[
A2(∆W )x +AB(∆W )y

]
x

+
[
BA(∆W )x +B2(∆W )y

]
y

}
= ∆W expl

where ∆W is the solution increment and ∆W expl represents the explicit phase. It is unconditionally stable
for θ ≤ −1/2. A first simplification is the suppression of cross-derivative terms:

∆W + θ
∆t2

2

{[
A2(∆W )x

]
x

+
[
B2(∆W )y

]
y

}
= ∆W expl

An approximate factorization per spatial directions is then used, yielding:

∆W ∗ + θ
∆t2

2

[
A2(∆W ∗)x

]
x

= ∆W expl then ∆W + θ
∆t2

2

[
B2(∆W )y

]
y

= ∆W ∗

It is further simplified by replacing the Jacobian matrices by their spectral radius:

∆W ∗ + θ
∆t2

2

[
ρ(A)2(∆W ∗)x

]
x

= ∆W expl then ∆W + θ
∆t2

2

[
ρ(B)2(∆W )y

]
y

= ∆W ∗

After discretization by second-order central differences, the implicit operator J for each direction reads:

J = 1− θ2

(
∆t

∆x

)2

δ(λe2δ) (9)
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where δ is the differencing operator (7), λe denotes the spectral radius of the flux Jacobians in each direction
and θ2 is the value of the coefficient for the second-order scheme. A tridiagonal system has to be solved for
each space dimension.

A similar implicit operator was used by Jameson & Baker [7] to increase the CFL number of an explicit
Runge–Kutta time-stepping scheme for steady problems. The so-called "implicit residual smoothing" is
applied at each RK stages as:

W (0) = Wn

J∆W (k) = −αk∆tR(W (k−1)), k = 1, ..., s
Wn+1 = W (s)

(10)

where the implicit operator J of Jameson & Baker (JB) reads:

JJB = 1− ε
(

∆t

∆x

)2

δ2 with ε ≥ 1

4

[(
CFL
CFLexpl

)2

− 1

]

which has only first-order accuracy [22], whereas the Lax-Wendroff IRS operator (9) preserves second-order
accuracy. The Lax-Wendroff IRS2 was used in combination with a RK time stepping by Cinnella & Lerat
[23]. An extension to fourth-order (IRS4) was first proposed by Cinnella and Content [1], by keeping the
same form of the operator (9) but replacing the Laplacian smoothing by a bi-Laplacian smoothing:

J = 1 + θ4

(
∆t

∆x

)4

δ(λe4δ3) , (11)

which implies the resolution of a pentadiagonal system for each space directions. IRS4 is unconditionally
stable for θ4 ' 0.0023 (see § 4.3). We use the value θ4 = 0.0025 in the following. The additional error
introduced by the IRS4 operator with respect to the explicit scheme takes the form [1]:

−θ4∆t4λe4 ∂
5Fe

∂x5
+O(∆t4) (12)

with Fe the inviscid flux in the considered direction. Being proportional to an odd derivative, this error has
a dispersive nature. As the RK scheme is second-order in general, the additional error coming from the IRS4
is expected to have a negligible impact on the accuracy of the baseline scheme.

3.2 IRS operator for curvilinear coordinates
Using 2D coordinate transform (ξ, η, z)→ (x, y, z) in § 2.1, the multi-dimensional implicit operator is written
as:

J =
(

1 + θ4∆t4δξ(λ
e
ξη

4δ3
ξ )
)(

1 + θ4∆t4δη(λeξη
4δ3
η)
)(

1 + θ4

(
∆t

∆z

)4

δz(λ
e
z

4δ3
z)

)
(13)

noting that the transformed coordinates (ξ, η) correspond to a unitary Cartesian grid (∆ξ = ∆η = 1). The
subscript of the differencing operator δ denotes the grid direction in which it is applied. In the z-direction,
the directional spectral radius of the inviscid Jacobian matrix is λez = |w|+ c, c being the sound speed. Since
the transformed directions are coupled, a single spectral radius is used for (ξ, η)-directions (in the same
spirit as Pulliam [24] for artificial dissipation):

λeξη =
√

Θ2
ξ + Θ2

η + c
√
∇ξ2 +∇η2 , (14)

the contravariant velocities Θξ and Θη being defined by (3).
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3.3 Interpretation in Fourier space
The main idea of IRS is to stabilize the scheme by smoothing the residuals by means of a Laplacian filter
(IRS2) or a bi-Laplacian filter (IRS4). The IRS operator acts on the difference scheme by contracting its
support and thus relaxes the restriction on the time step imposed by the CFL condition, which can be easily
interpreted using Fourier symbols of the operators.

The amplification factor of the RK4 scheme is found to be:

ĝ(ζ) = 1 + ζ + ζ2/2 + ζ3/6 + ζ4/24 , ζ ∈ C (15)

The stability region can be represented in the complex plane. The black line in Fig.1 marks the stability
boundary (|ĝ(ζ)| = 1). The gray color area denotes the unstable region (|ĝ(ζ)| > 1). Consider the linear
scalar advection problem

∂W

∂t
= −a∂W

∂x
= R(W ) (a > 0) (16)

The locus of the FD operator (4) is given by :

a∆xR̂(k∆x) = 2i

5∑
l=1

al sin (lk∆x)

= 2i

(
5

6
sin(k∆x)− 5

21
sin(2k∆x)+

5

84
sin(3k∆x)− 5

504
sin(4k∆x)+

1

1260
sin(5k∆x)

)
= i sin

(
k∆x

2

)
cos

(
k∆x

2

)[
1 +

4

3
sin3

(
k∆x

2

)
+

16

15
sin5

(
k∆x

2

)
+

32

35
sin7

(
k∆x

2

)
+

256

315
sin9

(
k∆x

2

)]
(17)

with i =
√
−1. The space discretization is nondissipative and its locus lies on the imaginary axis.

The Fourier symbol of the artificial dissipation operator (6) is given by:

|a|∆xD̂AD(k∆x) =
256

315
sin10

(
k∆x

2

)
(18)

and its locus is on the real axis. In order for the discrete scheme to be stable, the locus of the spatial
operator (R̂ + D̂AD) must remain within the stability region of the RK integration scheme, as shown in
Fig.1a. As the CFL increases, the locus will expand and ultimately exit the stability region, as exemplified
in the subsequent subfigures.

The IRS smoothing in Eq.(10) corresponds to a modification of the Fourier symbol of the spatial operator,
namely (R̂+ D̂AD)/Ĵ , where the Fourier symbol of IRS4 reads:

Ĵ = 1 + 16 θ4CFL4 sin4

(
k∆x

2

)
(19)

The modified locii for IRS4 are plotted in Fig.1 for CFL=1 to 6. The IRS operator contracts the spatial
locus, which is flattened on the imaginary axis due to the dispersive nature of the IRS operator. This also
implies that, as the CFL increases, the dissipation error decreases and tends to zero.

3.4 Von Neumann stability
To better understand the role of the numerical dissipation in combination with IRS smoothing, a Von
Neumann stability analysis is conducted. In the linear scalar case of a transport equation Wt + aWx = 0
(a > 0), the RK algorithm is developed as :

Wn+1
j = Wn

j +

4∑
s=1

γs∆t
s
∂sWn

j

∂ts
+ ... where γs =

4∏
q=4−s+1

αq (20)
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(a) (b) (c)

(d) (e) (f)

Figure 1: Stability region of the RK4 (white) and locus of the spatial operator with IRS4 smoothing (red) and
without (explicit, green), obtained from the Fourier symbols (lines) and the operator’s eigenvalues (symbol).
From left to right and top to bottom, CFL=1, 2, 3, 4, 5 and 6.

where Wn
j is the solution at grid index j and time iteration n. By applying a Fourier transform to Eq.(20),

we write the amplification factor for the discretized equation without numerical dissipation as :

Ĝ0 =
Ŵn+1
j

Ŵn
j

= 1 +

4∑
s=1

γsσ
sR̂s (21)

where σ = a∆t/∆x is the CFL number. Introducing artificial dissipation, the amplification factor becomes:

ĜAD = 1 +

4∑
s=1

γsσ
s
(
R̂+ D̂AD

)s
(22)

On the other hand, the filtering operation Eq.(8), applied at the last RK stage, corresponds to a convolution
operation in physical space, so that the amplification factor after filtering is multiplied by 1− χD̂SF :

ĜSF (k∆x) =

(
1 +

4∑
s=1

γsσ
sR̂s

)(
1− χD̂SF (k∆x)

)
(23)
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where the Fourier symbol of SF is obtained by applying a Fourier transform to Eq.(8) :

D̂SF (k∆x) = d0 +

5∑
l=1

2dl cos(lk∆x)

=
63

256
− 105

256
cos(k∆x) +

15

64
cos(2k∆x)− 45

512
cos(3k∆x) +

5

256
cos(4k∆x)− 1

512
cos(5k∆x)

= sin10

(
k∆x

2

)
(24)

Note that, for a = 1, the Fourier symbol of the tenth-order filter is the same as the one of the ninth-order
artificial dissipation when chosing χ = 256/315.

The role of the numerical dissipation is displayed in Fig.2 for CFL numbers between 1 and 15. We first
focus on the base scheme without stabilization in Fig.2(a). For the selected value of the IRS coefficient
(θ4=0.0025), it is apparent that the scheme remains always stable. At CFL=1, we observe a damping in the
mid-wavenumber range, which depends on the coupled effects of the RK and FD schemes. For higher values of
the CFL, the IRS operator acts and a double damping peak is visible, which moves toward low wavenumbers
as CFL increases. Damping vanishes at smallest scales (k∆x ≈ π), which highlights the need for additional
high-wavenumber dissipation. Figure 2(b) shows the amplification factors with artificial dissipation. Since
it is added to the spatial operator, its effect is coupled with the temporal scheme, which leads to the non-
monotonic behavior for CFL 1 and 2. For high values of CFL, the contractive character of the IRS operator
dramatically reduces the dissipation, which could also have been inferred from Fig.1. As a consequence, for
CFL ' 10, almost no dissipation is applied near the grid cut-off (k∆x ≈ π), so that grid-to-grid oscillations
can remain undamped and pollute the solution or become unstable. In Fig.2(c), the selective filtering is
applied with a coefficient χ = 256/315, so that the amount of damping is similar to that of AD without
IRS. As expected, the spectral characteristics are a combination of the base scheme and the filter response.
In particular, the damping at k∆x ≈ π remains the same independent of the CFL value. The fact that
the stabilization is independent of the base scheme gives the greater robustness of RK-IRS implementation,
notably for high values of CFL, since the filter will continue to dissipate the modes not resolved by the grid.
That is why, in the following, the results are obtained with the base scheme supplemented by the selective
filtering.

(a)
   0   /4  /2 3 /4    

0.2

0.4

0.6

0.8

1

1.2

(b)
   0   /4  /2 3 /4    

0.2

0.4

0.6

0.8

1

1.2

(c)
   0   /4  /2 3 /4    

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Amplification factors for the centred spatial operator (a), supplemented by artificial dissipation (b) or by
selective filtering (c) for increasing CFL numbers, CFL=1 ( ), 2 ( ), 5 ( ), 10 ( ), 15 ( ).

Since the IRS operator essentially introduces a dispersive error, it is also interesting to look at the relative
phase error φ + σk∆x in Fig.3. Since the dissipation term is non dispersive, this quantity is due uniquely
to the centred difference operator (4). The striking point in Fig.3(a) is that IRS damages the phase in
proportion to the CFL rise. Such a representation would suggest that dispersion errors are unacceptable
for CFL greater than 5. However, the analysis would be only valid for a regular grid with constant ∆x. In
practice, grid points are clustered near wall boundaries, for instance, and high values of the CFL, 5 or greater,
are located at these particular points due to the small ∆x. In other words, we can also see the spectral
properties relative to a fixed time step ∆t, which is done in Fig.3(b) and (c) for the amplification factor
and the phase respectively by multiplying the abscissae by the CFL number σ. For the advection equation,
ω = k a, and σ k∆x = ω∆t. In this representation, it is clear that the base scheme spectral properties are
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preserved in proportion to the CFL number up to ω∆t = π/2, that is to say if the time signal is discretized
by four iterations or more.

(a)
   0   /4  /2 3 /4    

    0 

 /2

   

3 /2

  2

(b)
   0   /2    3 /2  2  

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)
   0   /2    3 /2  2  

    0 

 /2

   

3 /2

  2

Figure 3: Spectral properties of IRS operator: relative phase error (a), damping factor versus ω∆t (b), and phase
error versus ω∆t (c) for increasing CFL numbers, CFL=1 ( ), 2 ( ), 5 ( ), 10 ( ), 15 ( ).

4 Boundary conditions and multi-domain interface treatment
The preceding analysis is valid for an infinite computational domain or a domain with periodic conditions.
The modification of the spatial operator close to boundaries will affect both stability and numerical errors.
For this reason, the stability analysis in the following will be carried out with the method of lines [25]. For
the linear scalar wave problem (16), spatial discretization on a grid with n points yields

∂Wn

∂t
= −aRn,nWn

where Wn is the numerical solution vector, of size n and Rn,n is the matrix associated to the spatial
operator R. By taking the Fourier transform of this expression, with Wn = Ŵne

Λkt, we obtain the following
eigenvalue problem :

(aRn,n)Ŵn = −ΛkŴn (25)

4.1 Periodic boundary condition

Writing the IRS scheme at the kth RK stage in matrix-vector form

Jn,n∆W(k)
n = −αk∆t aRn,nW

(k−1)
n

the IRS4 operator leads to the inversion of a pentadiagonal matrix Jn,n per direction at each Runge–Kutta
stage. For periodic boundary conditions, the periodic matrix Jn,n reads:

Jpn,n =



γ α β 0 · · · · · · · · · 0 β α
α γ α β 0 · · · · · · · · · 0 β

β α γ α β 0 · · · · · ·
... 0

0 β α γ α β 0 · · ·
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 β α γ α β · · ·
...

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
0 · · · · · · · · · 0 β α γ α β
β 0 · · · · · · · · · 0 β α γ α
α β 0 · · · · · · · · · 0 β α γ



(26)
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with β = θ4CFL4, α = −4β and γ = 1 + 6β. The eigenvalue problem (25) then becomes:

(aJ−1
n,nRn,n)Ŵn = −ΛkŴn (27)

For periodic boundary conditions, as expected, the solutions from the eigenvalue problem (27) with IRS
matrix Jpn,n perfectly match the locus of the Fourier symbol R̂/Ĵ , as seen in Fig.1 for CFL 1 to 6.

4.2 Physical boundary conditions
Near boundaries of the computational domain it is necessary to modify the IRS matrix. In Ref.[1], the
pentadiagonal matrix is simply truncated, which gives matrix J1n,n in Eq.(28). To gain some robustness in
the FD implementation, we have chosen to reduce IRS order near boundaries. The second to last row of
nodes is smoothed with IRS2 operator of Eq.(9) and the one-sided IRS1 operator [12] is used at the boundary
points, yielding matrix J2n,n.

J1n,n =



γ α β 0 · · · · · · · · · 0

α γ α β
. . . · · · · · · 0

β α γ α β
. . . · · · 0

0 β α γ α β
. . .

...
...

. . . . . . . . . . . . . . . . . . 0

0 · · ·
. . . β α γ α β

0 · · · · · ·
. . . β α γ α

0 · · · · · · · · · 0 β α γ


, J2n,n =



γ1 α1 0 · · · · · · · · · · · · 0
α2 γ2 α2 0 · · · · · · · · · 0
β α γ α β 0 · · · 0

0 β α γ α β
. . .

...
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 β α γ α β
0 · · · · · · · · · 0 α2 γ2 α2

0 · · · · · · · · · · · · 0 α1 γ1


(28)

with coefficients α2 = −θ2CFL2 and γ2 = 1 − 2α2 for IRS2, and α1 = ±θ1CFL, γ1 = 1 − α1 for IRS1
operator, which is defined as:

JIRS1+ = 1− θ1
∆t

∆x
δ+(λe) for a left boundary

JIRS1− = 1 + θ1
∆t

∆x
δ−(λe) for a right boundary

(29)

with δ+, δ− the upward and backward difference operator respectively. The Fourier symbol of IRS1 and
IRS2 are given by:

ĴIRS1+ = 1 + 2 θ1CFL
[
sin

(
k∆x

2

)
− i cos

(
k∆x

2

)
sin

(
k∆x

2

)]
ĴIRS2 = 1 + 4 θ2CFL2 sin2

(
k∆x

2

) (30)

To determine the coefficients θ ensuring the unconditional stability of the different IRS operators, a numerical
search is performed for the 1D scalar problem. The results are plotted in Fig.4. For IRS1, we set the value
θ1 = 0.36. A theoretical value for IRS2 of 1/16 was obtained analytically in [26, 23] and is used in following,
even if the numerical value is always lower than 0.04. For IRS4, the distribution of θ4 as function of CFL
follows the same trend as IRS2 with a peak around CFL=2, where the contractive effect of IRS operator is
not yet large. We set the value θ4 = 0.0025 in the applications.

For instance, for wall boundary conditions, the FD and dissipation stencil is reduced down to second-
order for the second to last row. For a no-slip wall, the velocity vector is set to zero (u = v = w = 0), a zero
normal temperature gradient (adiabatic wall) or a given wall temperature (isothermal wall) are prescribed,
and the normal pressure derivative is set to zero. Density is then calculated using the thermal equation of
state. For these Dirichlet conditions, the solution increments at the boundary are set equal to zero before
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Figure 4: Numerical determination of smoothing parameter θ ensuring unconditional stability for the 1D advection
problem: IRS1 (left), IRS2 (center) and IRS4 (right).

applying IRS smoothing.
For a Dirichlet boundary condition, the method of lines is applied with the matrix J2n,n and centred

schemes with reduced-stencil schemes near boundaries in the spatial operator matrix. The solution incre-
ments are imposed at the left boundary so that the corresponding first row and first column are suppressed
in the matrices [27]. A simple extrapolation is used at the right boundary. The eigenvalues, plotted in
Fig.5 for CFL 2, 5 and 10, show that the locii are significantly modified compared to the old treatment
using the truncated matrix J1n,n. In particular, for the highest CFL value, the use of a reduced stencil
IRS operator appears more dissipative, whereas the close-up view in the inset of Fig.5(right) indicates that
some eigenvalues can excite weak instabilities with the truncated version. However, using IRS2 and IRS1
coefficients on the borders, all the eigenvalues have a negative real part so that the linear problem has non
growing solutions.
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Figure 5: Eigenvalue spectrum with the method of lines for Dirichlet boundary condition using IRS matrix J2n,n

(4) and J1n,n (◦): CFL=2 (left), CFL=5 (center) and CFL=10 (right).

4.3 Interface treatment in multi-domain calculations
4.3.1 The different strategies of parallelisation for the linear system resolution

The parallel implementation of IRS is crucial for the efficiency of the method. As we have seen, IRS4
leads to the inversion of a pentadiagonal matrix per mesh direction at each Runge–Kutta step. As the
number of linear systems to solve is proportional to the number of implicited directions and to the number
of points in that direction, the computational cost can be important. Fortunately, efficient algorithms, such
as Thomas’ algorithm or cylic reduction, exist to solve small-banded matrices. They are based on a first
forward sweep, during which new coefficients are computed, and then a backward substitution to compute the
solution. These algorithms are however hard to parallelize efficiently, even if a large literature has tackled
this problem, essentially for tridiagonal systems. Strategy based on the redistribution of data between
processors [28] or Thomas-pipelined algorithms [29] are better suited for distributed memory architectures.
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They lack efficiency due to large communications for the former and idle time for the second. Some methods
are based on the divide-and-conquer algorithm, where successive transformations are used to divide the
orginal problem into computing cores. The tridiagonal and banded-matrix solvers available in ScaLapack
library [30] propose an MPI implementation. We have tested the banded-matrix routines of ScaLapack to
solve the pentadiagonal systems but the cost is prohibitive compared to Thomas’ algorithm. More complex
algorithms, such as Spike, [31] have been proposed to reduce the cost. Even if the scalability has been
improved, notably for large band matrices on distributed memory or with GPU processors, the cost remains
high for pentadiagonal systems. We have also tested the recent PaScal_tdma library [32], which proposes
an optimized parallel cyclic reduction method for tridiagonal matrices. The overcost is more reasonable but
the library has to be written for pentadiagonal matrices.

The other possibility to extend IRS to parallel and multiblock configurations is to solve approximate
systems on each subdomains by truncating the global system in order to generate local independent linear
systems for each processors. Some studies discuss the multi-domain extension for IRS implicitation but
are generally restricted to steady problems. Borel and Roux [33] used a Schwarz iterative method for
overlapping domain decomposition. They studied the influence of the thickness of the overlap and found
an optimal efficiency for an overlapping of L0=2CFL+1 cells. Lerat and Wu [34] proposed a time-lagging
interface condition, where the interface values are fixed at the previous time step. They showed how to obtain
a stable and conservative condition. Wu and Zou [35] further analysed this interface treatment and found an
optimal overlap L0=CFL for steady problems. They extended the time-lagging method to unsteady problem
by using an overlapping L0=2CFL+1 points. In Ref.[2], a strategy based on the use of an overlap between
blocks was studied by defining halos of ghost points, which is a popular strategy to implement compact FD
schemes [36]. It was shown that adding ghost points at the interfaces can limit the error generated by the
truncation. This strategy is pursued in the present study.

4.3.2 The ghost-point strategy

Layers of ghost cells are used to make mesh blocks independent and reduce the required number of parallel
communications. They are filled using the solution increments computed in the neighboring subdomain at
the previous RK stage. In Ref.[1, 2], the IRS operator is simply set equal to the identity for the last two
rows, which means that the two outside ghost cells are advanced explicitly in time, while the right-hand
sides are communicated from the neighboring block. In the present implementation, the coefficients for the
two first/last rows in IRS matrix are those of IRS1 and IRS2 operators. For an interior subdomain, the IRS
matrix is thus J2n+ngh,n+ngh as defined in Eq.(28) where n is replaced by n + ngh, ngh being the number
of ghost cells. Note that the eleven-point stencil base schemes already necessitates five rows of ghost points
in each direction, so that we use at least ngh = 5. This results in the inversion of a (n+ ngh)× (n+ ngh)
pentadiagonal matrix per direction on each mesh block, which introduces an overcost. The part due to parallel
communications is rather small, and a good parallel scalability is observed for blocks of approximately 503

points. The strategy may however suffer from a lack of robustness when using high values of CFL numbers
(greater than about 10). To illustrate this point, the scalar advection (16) is solved for a domain 0 < x < 1
discretized by 600 points. A 1D Gaussian hump, defined asW (x, 0) = exp(−500(x−0.5)2), is initially located
at the middle of the domain and advected periodically to its starting position 10 times at CFL=5. The results
are reported in Fig.6 using two solutions: the true periodic solution, i.e. IRS matrix is Jpn,n of Eq.(26)
and the approximate ghost-point solution, i.e. IRS matrix J2n+ngh,n+ngh of Eq.(28). The number of grid
points has been chosen so that the periodic hump is correctly advected (some oscillations due to dispersion
are visible on its left foot). Then ghost points are used at the left and right boundaries, which can represent
the connection with other MPI domains or blocks (note that periodicity is treated as communications by
MPI library). Using the nominal number of ghost cells, ngh = 5 (first row of Fig.6), a numerical instability
is observed after 10 turnovers and the simulation will rapidly blow up. Using an extended number of ghost
cells, ngh = 11 (bottom row of Fig.6), the solution is in perfect agreement with the periodic one. The
corresponding eigenspectrum are plotted on the left. Two unstable modes are clearly visible for ngh = 5 and
almost disappear for ngh = 11 (weak instabilities with a positive imaginary part of the order of 10−9 are
present). In fact, the numerical wave should travel at a distance (in terms of the number of mesh points) no
larger than the CFL number at each time step.

Additionally, the above-mentioned simplifications can introduce an error in the interface region. Such an
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Figure 6: Scalar advection of a Gaussian hump: On the right, the solution after 10 turnovers at CFL=5 using true
periodic conditions ( ) and the approximate conditions with ghost points ( ) are compared to the initial
(exact) solution (++). The corresponding eigenspectrum is given on the left with red symbols for the periodic
problem et black symbols for the ghost-point problem. For top figures, ngh = 5 and for bottom figures, ngh = 11.

error can be reduced by increasing the number of ghost cells from 5 on each side of the domain to a given
integer ngh, so that a reasonable tradeoff between cost and accuracy has to be found. Previous analyses by
Wu and Zou [35] for a time-lagging interface condition suggest that "since the CFL number is based on the
maximum wave speed (eigenvalue), it is natural that a local perturbation (due to time-lagging) of the scheme
will travel at a distance, in terms of the number of mesh points, no larger than the CFL number at each time
step." An optimal overlapping width of 2CFL+1 would enable to contain the error in the overlapping region.
As a consequence the overlapping method using ghost points should maintain the order of accuracy of the
interior scheme if ngh ≈2CFL+1. This point will be investigated in § 5.1 for a vortex advection problem.
In practice, all following applications are run on parallel computers. The maximum CFL is tested for each
interface and the number of ghost points is set to max(5,2CFL+1). Generally, high CFL region are located
near wall boundaries and few interfaces are concerned by the ghost-point extension. Each domain can have a
variable ngh on each phase and the communication management is done with MPI one-sided RMA protocol.

5 Numerical applications

5.1 Vortex advection
As noted earlier, the major issue in multi-domain computations is the treatment of interfaces between
domains. In the present work, communication between adjacent meshes is conducted through finite-size
overlaps. Their effect on solution accuracy and stability is investigated initially for the unsteady inviscid
flow generated by the a vortex convected by a uniform flow with freestream Mach number M = U∞/c = 0.5.
The initial condition is determined from Taylor’s theoretical vortex model:

u = U∞ +A y
∆y exp(αR2)

v = −A x
∆x exp(αR2)

p = p∞ − ρ∞ A2

4α∆x∆y exp(2αR2)

(31)
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where R =
√

(x− x0)2 + (y − y0)2 with (x0, y0) = (−30, 0) the initial vortex position, using a reference
length L = 1 m. The vortex strength is A = 5 and α = − ln 2/b2, where the Gaussian half-width is set to
b = 4. The domain considered extends −100 < x < 100, −100 < y < 100 discretized by N × N uniformly
spaced points, and periodic conditions are enforced in both directions. The grid is subdivided into four
equally sized subdomains. The initial vortex location is located on the interface y = 0 and the vortex is
advected from left to right during 100 time units L/U∞. It crosses the interface located at x = 0.

The L2-norm of the error with respect to the analytical solution is first used to assess the solver accuracy.
The first series of runs, reported on the left of Fig.7, uses low CFL values between 0.02 and 1 with explicit
time marching and deliberately coarse grids ranging between N = 50 to 300 to distinguish the accuracy of
the spatial scheme. A slope of 2.5 in the log-log plot is obtained at CFL=1 and a very small time step has
to be used to approach the spatial scheme accuracy. A slope of 7 is obtained for CFL=0.02. This first series
shows that the temporal error rapidly dominates for this advection case.

In the second series of runs (middle plot of Fig.7), the implicit solver is used for large CFL numbers
between 1 and 10 on fine grids (N = 200 to 1600) to highlight temporal integration errors. At CFL=1, the
second-order accuracy of RK4 for nonlinear problems is recovered, and the slope slightly increases for higher
CFL. The error saturates for the coarsest grids and CFL 8 to 10, since the error level is very high and the
vortex is severely damaged during its advection.
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Figure 7: Vortex advection: L2-norm of the error with respect to the analytical solution. Left, error of the explicit
solver as a function of the mesh size ∆x (grids 50 × 50, 100 × 100, 200 × 200, 300 × 300) for small CFL numbers
(•,1; •,0.5; •,0.1;•,0.1; •,0.02). Middle, error of the implicit solver as a function of the mesh size ∆x (grids 200× 200,
400× 400, 800× 800, 1600× 1600) for large CFL numbers (•,1; •,2; •,4;•,6; •,8; •,10). Right, error as a function of
the time step ∆t: explicit solver (◦) and IRS4 solver (�) for the grid 400 × 400 on 4 blocks at M=0.5; IRS4 solver
on grid 400× 400 at M=0.1 on 4 blocks (4) and 1 block (∗); IRS4 solver on grid 1600× 1600 at M=0.5 (�).

Finally in the right subfigure of Fig.7, error logarithm is plotted as function of logarithm of ∆t for the
grid 400× 400 and CFL ranging from 0.1 to 10 with IRS4 smoothing. Up to CFL 1.2 the error is the same
as the one obtained with the explicit solver (black circles) and is second-order accurate. For higher values,
a steeper slope of 4 is observed since the advection error rapidly rises. By reproducing the same numerical
experiment with a very fine grid (N = 1600) for CFL 1, 2, 4, 6, 8, 10 (filled squares), it is clear that the
change of slope is due to the difficulty to advect information with large time steps. A last test for the large
CFL values is realized with N = 400 for a lower Mach number, M = 0.1. The error levels are the same as
the ones obtained for M = 0.5. For these runs, a single domain was also used, which does not change the
measured error, meaning that the errors are not related to the interface treatment.

In the preceding tests, the number of ghost cells for the MPI domain overlaps has been set to 2CFL+1.
The influence of the number of ghost cells is illustrated in Fig.8 for N = 1600 and CFL=10. We report the
iso-contours of the fluctuating pressure field, obtained by varying the number of ghost cells from 6 to 18.
Intense spurious noise is generated when 6 ghost cells are used (note that the simulation blows up for 5 ghost
cells). The spurious acoustic pulse and the vertical and horizontal oscillations developing at the interfaces
are reduced for 9 ghost cells and are almost absent when 18 ghost cells are used (the theoretical value is
2CFL+1=21).

14



Figure 8: Vortex advection: maps of fluctuating pressure (between ±5 Pa, and 1 white contour for -100 Pa identifying
the vortex core) on the grid 1600×1600 and CFL=10 using 6 (left), 9 (center) and 18 (right) ghost points. The white
dashed lines mark the domain interfaces.

5.2 DNS of turbulent channel flow
The increase of CFL thanks to IRS4 smoothing is particularly beneficial for the simulation of wall-bounded
turbulent flows, where very small mesh sizes are required near the wall to capture the stiff velocity gradient
and predict the wall friction accurately. The first case investigated is the turbulent channel flow at Reynolds
number Reτ = (ρwuτH)/µw = 180, based on the friction velocity uτ , the channel half-height H and the wall
density and viscosity ρw and µw, respectively. The computational domain of 4πH× 2H× 2πH is discretized
with a grid 192 × 180 × 160, uniformly spaced in the homogeneous directions x and z and clustered at the
wall in the wall-normal direction y. This leads to a DNS resolution of ∆x+ = 11.9, ∆z+ = 7.1, ∆y+

w = 0.8
and ∆y+

c = 4, where the subscripts w and c are used to denote the near-wall and centerline resolutions,
respectively. Isothermal no-slip conditions are applied at the walls and periodicity conditions along the
streamwise and spanwise directions. The Mach number is set to M = 0.3 and the simulation is parallelized
on 80 cores. For the implicit cases, IRS4 is applied in the wall-normal direction only, and the number of ghost
points used for the IRS4 at the MPI interfaces is set to 5, i.e. the minimum required by the scheme stencil.
Results using an explicit time integration with a global time step ∆texpl are compared with IRS4-accelerated
simulations using global time steps ranging from 4∆texpl to 7∆texpl (see Table 1).

Case Time integration CFLmax ∆t+ Nb iterations tCPU,expl.

tCPU,case

tCPU/it/proc,case

tCPU/it/proc,expl
Legend

EXPL RK4, explicit 1 1.05×10−2 750 000 1.0 1.0
IMPL4 RK4, IRS4 4 4.21×10−2 187 000 3.30 1.18
IMPL5 RK4, IRS4 5 5.26×10−2 150 000 4.06 1.18
IMPL6 RK4, IRS4 6 6.31×10−2 125 000 5.08 1.18 O
IMPL7 RK4, IRS4 7 7.36×10−2 110 000 5.93 1.18 ◦

Table 1: Numerical parameters and computational performance of turbulent channel flow simulations with
and without IRS4.

In the explicit case, the maximum CFL number, CFLmax is chosen equal to 1 to ensure stability through-
out the simulation. This corresponds to a time step of ∆t+ = 1.05 × 10−2. Choi & Moin [37] studied the
effects of the computational time step on the numerical solutions for an incompressible turbulent channel
flow at Reτ = 180 using a fully implicit method. Up to ∆t+ = 40 × 10−2, no significant deterioration of
turbulence statistics was observed. For the case IMPL7, which corresponds to the highest CFLmax used
here, the time step is equal to 7.36× 10−2, well below the limit found in [37], so we expect the physical time
step to have little impact on the accuracy of the solution. This allows to observe the influence of additional
numerical errors introduced by the IRS4 on the solution quality.

For all implicit cases, the total number of iterations used to reach a statistically converged solution
corresponds to the total number of iteration of case EXPL divided by CFLmax, so that the statistics are
collected over the same physical time interval for all cases. Comparisons of the computational cost for the
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explicit and implicit cases show that applying IRS4 in the wall-normal direction represents an overcost of
18% of CPU time (per point and per iteration). However, the total number of iterations being reduced
proportionally to the CFLmax in use, the total computation time is reduced. For instance a reduction by a
factor 4.06 is obtained for case IMPL5, and a factor 5.93 is found for IMPL7.
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Figure 9: Comparison of the rms velocities profiles (u+
rms, v+rms and w+

rms) with the Vreman & Kuerten ( )
reference [38] for the explicit and IRS4 time integration cases. Line legends in Table 1.

Figure 9 shows numerical solution for the various cases at stake. These are compared to the reference
solution of Vreman & Kuerten [38], obtained with an incompressible solver based on spectral method and
a very fine grid. The root-mean-square (rms) velocities profiles are plotted in Figure 9(A) along with the
reference solution and we observe a very good agreement for all cases. To highlight differences, the relative
deviations from the reference are plotted Fig.9(B, C and D). These are defined as dev(u+

i,rms) = (u+
i,rms,VK−

u+
i,rms)/u

+
i,rms,VK with u+

i,rms,VK the solution of Vreman & Kuerten for the i-th velocity component. Except
for points close to the wall, deviations are below 1% for all cases. Moreover, the application of the IRS4
does not lead to any noticeable increase of the relative deviation. For an accumulation of statistics on an
equivalent duration, we observe a good convergence of second-order statistics with a reduced computational
cost when applying IRS4. For simulations that require a longer time to converge statistics or to obtain
higher-order statistics, introducing IRS4 acceleration is therefore particularly beneficial.

5.3 LES of real-gas turbulent boundary layers
As a second application we consider boundary-layer transition of a real gas at high-subsonic condition (Mach
0.9). For this spatially evolving configuration, time-step constraints for DNS resolution of the wall-bounded
turbulence as similar to those encountered in the channel flow case. In the laminar and transitional regimes,
growing instability waves are particularly sensitive to dispersion errors, whereas numerical resolution of the
turbulent region strongly depends on numerical dissipation. A modal transition is performed by injecting at
the flow inlet plane a pair of oblique modes skewed by 30◦ with respect to the streamwise direction and with
a nondimensional angular frequency ω0L

∗/U∞ = 0.02. The inlet Reynolds number ReL∗ based on Blasius
length L∗ = x/

√
Rex is equal to 1000. The spanwise extent is taken equal to one spanwise wavelength of

the input modes, λz = 2π/β0, with the spanwise wavenumber β0 = 0.04L∗. Adiabatic no-slip conditions are
applied at the wall, and non-reflecting Tam & Dong’s conditions are imposed at the inlet, top and outflow
boundaries. The working fluid is perfluorinated ketone NovecTM649, a dense gas used in energy conversion
systems, and specifically Organic Rankine Cycles (ORC). The thermodynamic flow conditions correspond
to a freestream temperature of 100◦C and a pressure of 4 bars. At such conditions, the fluid deviates from
ideal gas behavior. Real-gas behavior is modeled with the Peng-Robinson-Stryjek-Vera equation of state [39]
and the Chung-Lee-Starling model [40] for the transport properties.

First, a DNS with the explicit time integration is realised over a computational grid of 9000× 400× 1000
points, achieving a total of 3.6 billions points parallelized on 16 384 processors. The resolution in wall units
corresponds to ∆x+=14 in the streamwise direction, ∆z+=7 in the spanwise direction, and ∆y+

w=0.7 and
∆y+

e =11 at the wall and at the boundary-layer edge, respectively. The grid is uniform in the streamwise
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Figure 10: Instanteaneous view of the streamwise velocity at y+ ≈ 15 for the DNS of real-gas boundary-layer
flow.

direction and the spanwise direction, and streched in the direction normal to the wall by a factor of 1.015
up to the 190th point. The streamwise domain extends up to a momentum-thickness Reynolds number
Reθ,end ∼ 5000, allowing the observation of high Reynolds-number effects. Despite the high subsonic Mach
number, we found that the mean and fluctuating turbulent profiles are very close to incompressible DNS
databases, essentially due to the high specific heat of NovecTM649 which significantly reduces friction heating
at the wall.

Case CFL ∆t/∆tDNS Nx ×Ny ×Nz ∆x+ ∆y+
w ∆y+

e ∆z+ Reθ,end Legend
DNS 1 1.00 9000× 400× 1000 14 ∼ 0.7 ∼ 11 7 ∼ 5000

LES-expl 1 1.33 3000× 360× 660 28 ∼ 0.8 ∼ 14 11 ∼ 3300
LES-IRS 4 5.33 3000× 360× 660 28 ∼ 0.8 ∼ 14 11 ∼ 3300

Table 2: Characteristics of the different cases for the real-gas turbulent boundary layers

Second, two LES are carried out at the same conditions as the DNS, in order to validate our LES strategy.
The LES computational grid, composed by 712 million points, is obtained by reducing the resolution and the
streamwise length (see Table 2). We chose a wall-resolved implicit large eddy simulation strategy, whereby
the explicit selected filter ensures selective regularization of the subfilter turbulent scales. This implicit
modeling strategy has been shown to be effective [16] and avoids the computational overhead introduced
by the explicit subgrid-scale models. The first LES, using explicit time marching at CFLmax=1 is referred
to as LES-expl hereafter and is used to validate our wall-resolved LES strategy, in particular the resolution
and the implicit subgrid model. For the second LES, called LES-IRS, the IRS4 smoothing is applied in the
wall-normal direction with a CFLmax of 4, resulting in computational time reduction by a factor 3.5 with
respect to the explicit case. The main characteristics of the different simulations are summarized in Table
2. A snapshot of the boundary-layer transition is reported in Fig.10. For more details, the reader is referred
to [41].
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Figure 11: Skin friction coefficient (left) and rms velocities profile at Reθ=3270 (right) for the different cases
and the DNS of Schlatter and Örlü [42].

Since the turbulent boundary layers exhibits an incompressible behavior due to the high specific heat of
the real gas, the results are compared with the incompressible DNS of Schlatter and Örlü [42]. Results for
the friction coefficient Cf are reported in Fig.11. The Cf evolution of both LES calculations are in very good
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agreement with the DNS, including the location of the transition. We focus in the following on the turbulent
boundary layer at the location Reθ=3270. The turbulent intensity profiles are reported in Fig.11. A good
match with the DNS and the incompressible reference is observed, with a slight underestimation of turbulent
intensities, due to the LES resolution. The profiles for LES-expl and LES-IRS are almost superimposed,
demonstrating the accuracy of the implicit time advancement.
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Figure 12: Premultiplied spanwise (left) and temporal (right) spectra of the streamwise velocity fluctuations
for the turbulent boundary layer at Reθ=3270.

To investigate in more detail the differences between the cases, the spanwise and temporal spectra of
the streamwise velocity fluctuations are plotted in Fig. 12. As expected, the premultiplied spanwise spectra
exhibit an earlier cut-off for the two LES, due to coarser spanwise resolution. Interestingly, we observe
a better resolution of LES-IRS w.r.t LES-expl at the small scales. This is a consequence of the lower
numerical dissipation introduced in LES-IRS, because numerical dissipation is applied less frequently over
the integration interval, due to the larger time step. Similar results are obtained for the temporal spectra.
This means that the LES cut-off is governed by streamwise resolution and not by time resolution. Finally,
we observe a smoother decaying slope for LES-IRS, most likely due to the dispersion of the IRS operator.

5.4 Laminar flow past a cylinder
We now investigate the performance of IRS4 on curvilinear grids. The first test problem is unsteady laminar
flow around a 2D circular cylinder at a Mach number M=0.3 and a Reynolds number ReD=1200, based on
cylinder diameter D and freestream velocity U0. Even if the flow is expected to become three-dimensional at
the selected Reynolds number, this configuration remains a good numerical test case used in the literature to
assess the performance of numerical schemes [43, 44]. In the aim of observing the influence of time integration
errors, a relatively fine grid of 360× 300 points is selected. An O-grid is generated with a first mesh size at
the wall of 0.0028D and free boundary located at a distance of 20D. Grid points are uniformly distributed
in the azimuthal direction. Tam & Dong’s non reflecting conditions are used at the free boundary and an
adiabatic wall condition is prescribed. The initial flow is symmetric and the transient phase is run with
the explicit solver (CFLmax=0.5) during 600 000 iterations. The recirculation bubble behind the cylinder
starts to grow, then becomes asymmetric and a regular von Kármán vortex shedding in the wake is finally
established. Starting from the same established flow solution, 7 simulations are performed over the same
physical time interval using increasing maximum CFL numbers: 200 000 additional iterations are run with
the explicit solver at CFLmax=0.5; then, plugging the IRS4 smoothing, 100 000 at CFLmax=1, 50 000 at
CFLmax=2, 25 000 at CFLmax=4, 12 500 at CFLmax=8, 8 333 at CFLmax=12 and 6 250 at CFLmax=16.

Close-up views of the vorticity in the cylinder wake are plotted in Fig.13 for the two extreme CFL numbers
(intermediate cases are not reported for brevity). The snapshot is taken after one quarter of the number
of iterations. The explicit case will serve as reference in the following. At first glance, the vorticity field is
little affected even for a time step multiplied by 32. In fact, we show below that the dispersive error of IRS
essentially affect the shedding frequency, and the vortices are slightly shifted. The lift coefficient history is
presented in Fig.14, and the progressive frequency shift is visible for the two highest CFL values. Looking
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Figure 13: Laminar flow past a cylinder at ReD = 1200. Snapshot of the vorticity field at the same instant for the
explicit at CFL=0.5 (left) and implicit IRS4 at CFL=16 (right). 8 positive ( ) and negative ( ) isocontours
of ωzD/U0 from ±1 to 8.

more closely at the last shedding cycles for lift and drag coefficients, we can see that the accumulation of
phase errors is only significant for CFLmax 12 and 16. The quantitative errors with respect to the low-CFL
explicit case are reported in Table 3. The deviations for the Strouhal number fD/U0 are not measurable
for CFLmax=1 and 2 because the power spectral density is performed for 13 cycles. An error of more than
10% is noted for CFL=16. The errors for mean and fluctuating aerodynamic coefficients remains low below
2% for the lift and below 0.3% for the drag. The logarithms of the solution errors in the lift, drag mean and
rms values and Strouhal number are shown in Fig.15 as a function of logarithm of time step. We can see
that the error grows at a greater rate for high CFL values. The slope modification occurs for CFL around
10. Finally, an idea of the reduction in computational cost by inspection of the right panel of Fig.15. For
the present curvilinear setting, the IRS overcost in 2D is roughly of 50% per implicited direction, leading
to a total overcost of 100% (the cost of the explicit run at CFLmax=0.5 is approximately the same as the
implicit run at CFLmax=1). We can see that the cost decrease is linear in a log-log plot and that a saving
of a factor of 5 can be achieved with a solution of comparable accuracy with our reference.
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Figure 14: Laminar flow past a cylinder at ReD = 1200. Top, lift evolution for various CFL numbers ( ,0.5;
,1; ,2; ,4; ,8; ,12; ,16). Bottom, close-up views for the lift and drag for the last simulated

cycles.
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CFL 0.5 1 2 4 8 12 16
cLrms 1.1231 1.1230 1.1230 1.1229 1.1215 1.1153 1.1030
(error) (0%) (-0.0083%) (-0.0125%) (-0.0176%) (-0.1417%) (-0.6987%) (-1.7901%)
cDmean 1.5327 1.5328 1.5329 1.5332 1.5336 1.5323 1.5282
(error) (0%) (+0.0021%) (+0.0088%) (+0.0309%) (+0.0565%) (-0.0288%) (-0.2936%)
c′Drms 0.1674 0.1674 0.1673 0.1673 0.1673 0.1675 0.1677
(error) (0%) (-0.0151%) (-0.0192%) (-0.0361%) (-0.0492%) (+0.0732%) (+0.2142%)
St 0.224 0.224 0.224 0.230 0.233 0.238 0.248

(error) (0%) (0%) (0%) (+2.5641%) (+3.8961%) (+6.3939%) (+10.7266%)

Table 3: Errors with respect to the explicit solution for the laminar flow past a cylinder at ReD = 1200.
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Figure 15: Laminar flow past a cylinder at ReD = 1200. Left, error for increasing CFL numbers for the lift
fluctuations ( �), mean drag ( ◦), drag fluctuations ( 4) and Strouhal number ( ∗). Right, CPU
cost compared to explicit time integration.

5.5 LES of turbulent flow past a cylinder
The IRS4 method is finally validated for the flow past a circular cylinder at ReD = 3900 based on the diameter
D, and at M = 0.3, which is a common benchmark case for curvilinear geometries [45, 46]. The simulation
is performed on a multi-block H-O-H grid topology with approximatively 10 millions points parallelized on
102 processors. 270 points are used around the cylinder with a first mesh size of 0.002D, 96 points are used
in the spanwise direction to discretize 2D and the wake extent is discretized by 405 points. Non-reflecting
Tam & Dong’s conditions are applied at free boundaries and a sponge zone is added at the outlet boundary.
An explicit simulation is started from the initial field described in the AS1 benchmark case during 500 000
iterations with a nondimensional time step ∆tU0/D = 4.55× 10−4. The explicit calculation is then run for
500 000 and statistics are accumulated. A snapshot of the instantaneous field is given in Fig.16.

Afterwards, three implicit simulations with IRS4 are run by multiplying the time step by 2,3,4 and
dividing the number of iterations by the same amount. The IRS4 smoothing is applied in the ξ and η-
directions, yielding an overcost of approximately 20% per direction. A saving in CPU time of a factor of
1.44, 2.16 and 2.98 is obtained. Time-averaged fields, computed over the same physical duration, are in good
agreement, as shown in Fig.17 and 18. The explicit and the implicit case with 4∆t are almost superimposed
and in very good agreement with the experiment of Parnaudeau et al. [45].
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Figure 16: Flow past a cylinder at ReD = 3900. Snapshot of λ2 vorticity criterion.

6 Conclusion and Future Work
Fourth-order implicit residual smoothing (IRS4) is used for time implicitation of the compressible Navier-
Stokes on multi-block curvilinear meshes. The method is applied to DNS and LES of turbulent flows
and high-accuracy finite-difference schemes are used in conjunction with a suitable numerical dissipation.
IRS4 acts as a filter on the solution increments at each substep of the underlying Runge–Kutta algorithm.
It changes the spectral properties of the spatial operator and essentially introduces a dispersive error by
contracting the locus of the spatial operator near the imaginary axis. In order to enhance robustness at high
CFL in the context of high-order schemes, the main modifications of the method with respect to the original
version in Ref.[1] are:

• a filtering strategy is used instead of the artificial viscosity, which was part of the spatial scheme and
was thus affected at high CFL values by the strong contraction that reduces severely the effective
dissipation near the grid cut-off. On the contrary, filtering is independent on the time advancement;

• the extension to curvilinear grids takes into account the coupling of mesh directions with the coordinate
transform by using a spectral radius mixing both directions, which enters the IRS coefficients;

• the treatment of boundary conditions uses reduced-stencil IRS operators to fill the IRS matrix. Coeffi-
cients on the first row of the pentadiagonal matrix correspond to one-sided IRS1 and IRS2 coefficients
are used for the second row;

• the parallel and multi-block implementation rely on an overlap between domain where ghost points are
communicated. An optimal width of the overlap is found to be of the order of 2CFL+1.

Some simple to massively parallel applications are shown that demonstrate the efficiency of IRS4. A
saving in terms of computational time of a factor 3 to 5 in 3D is expected for scale-resolving turbulent
simulations. The overcost of IRS4 smoothing is approximately 15 to 30% per implicited direction. The
greater time steps can also allow a better convergence of statistics, notably for low-frequency phenomena
such shock wave-boundary layer interation. We are also currently applying the scheme to the compressible
flow inside a fluidic actuator, which implies a relatively complex multi-block arrangement and requires the
addition of shock-capturing since the flow is highly unsteady and supersonique. A future work will be to
further assess the combination of filtering and low-order numerical dissipation to simulate flows with shocks.
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