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Abstract: Results are presented that summarize how to obtain accurate functionals from dual-
consistent generalized summation-by-parts discretizations when solving problems of increasing
practical complexity. These results include showing that an optimized approach for approximat-
ing grid metrics is important for obtaining accurate functionals with Legendre-Gauss operators,
showing that the mortar-element approach outperforms the global summation-by-parts-operator
approach with respect to functional accuracy in certain situations, and showing that the use of
degree p + 1 geometry representations in the presence of flow tangency boundary conditions is
beneficial for functional accuracy.
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1 Introduction
In computational aerodynamics, the primary quantities of interest are often directly related to integral
functionals like lift and drag. The theory of functional superconvergence dictates that a degree p dual-
consistent discretization can lead to at least 2p-order-accurate functionals when the solution is sufficiently
smooth [8], which is desirable in the context of optimization problems in computational aerodynamics [10].
It is known that classical summation-by-parts (CSBP) schemes can lead to superconvergent functionals [11,
12]. Recently, a more general class of summation-by-parts (SBP) schemes has been introduced that are
referred to as generalized SBP schemes [6]. There are indications that some generalized SBP schemes lead
to superconvergent functionals [7, 19, 18]; however, for some schemes suboptimal functional convergence is
observed [3].

The objective of this paper is to synthesize recent work on generalized SBP schemes detailing how to
obtain accurate functionals from generalized SBP discretizations of hyperbolic partial differential equations
(PDEs) of increasing practical relevance. Beginning in one dimension, it is shown that accurate functionals
can be obtained from generalized SBP discretizations of a scalar linear boundary-value problem under certain
conditions. Next, results in two dimensions based on the mortar-element and global SBP-operator approaches
are presented. Finally, the extension to the Euler equations is summarized.

2 Overview of Discretizations
In this paper, generalized SBP discretizations of one- and two-dimensional scalar boundary-value problems
and the Euler equations in two dimensions are considered. Only steady problems are considered; however, all
ideas covered extend directly to unsteady problems. Details regarding the one-dimensional discretization may
be found in [3]. For the two-dimensional boundary-value problem, mortar-element and global SBP-operator
discretizations (see [5] for details) of divergence and skew-symmetric forms of the governing equation are
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considered. For the Euler equations, based on results from studies with the boundary-value problem, a
mortar-element discretization of the divergence form of the governing equations is considered. More details
regarding the two-dimensional discretizations may be found in [2].

2.1 Mortar-Element and Global SBP-Operator Approaches
To develop a general understanding of the mortar-element and global SBP-operator approaches (as first
introduced in [5]), it is instructive to consider an example based on the following two-dimensional boundary-
value problem:

∇ ·F :=

2∑
m=1

∂(amU)

∂xm
= S in Ω,

U = U− on Γ−,

(1)

where U is the solution, S is the source term, and am are constants. The boundary Γ− is defined by
Γ− := {(x1, x2) ∈ Γ | a ·n ≤ 0}, where a = [a1, a2]T and n is the outward unit normal vector. The boundary
Γ+ is defined by Γ+ := Γ \Γ−. On a single element, the transformed skew-symmetric form of (1) is given by

1

2
{∇ ·F + Λ · ∇U} :=

1

2

2∑
l=1

{
∂

∂ξl

(
2∑

m=1

J ∂ξl
∂xm

U

)
+

2∑
m=1

J ∂ξl
∂xm

∂U
∂ξl

}
= JS in Ω̂,

(2)

where

Λ :=

[
2∑

m=1

J ∂ξ1
∂xm

,

2∑
m=1

J ∂ξ2
∂xm

]T
and J is the Jacobian of the transformation from physical coordinates to computational coordinates, T : Ω̂→
Ω. See, for example, [16] for the definition of the Jacobian and the various metric terms in two dimensions.
Furthermore, for simplicity, it is assumed that a = [1, 1]T for the present example, but am 6= 1 is introduced
for the numerical examples.

Suppose one wishes to discretize the skew-symmetric form of the two-dimensional boundary-value problem
using two elements that share an interface perpendicular to the ξ1 direction (face 2 on the left element
and face 1 on the right element), as depicted in Figure 1. For the mortar-element approach, the surface
quadrature nodes are defined on mortar faces that are introduced at element interfaces and boundaries
and the grid metrics are defined on the mortar faces. In contrast, for the global SBP-operator approach,
a global SBP operator is constructed over the entire grid, no mortar faces are introduced, and the grid
metrics are approximated using the global SBP operators. In this paper, D

(1D)
ξl

denotes a one-dimensional
generalized SBP matrix operator approximating the first derivative in the direction ξl, and is associated
with the symmetric and positive-definite one-dimensional norm matrix H

(1D)
ξl

. In two-dimensions, the various
operators are constructed via Kronecker tensor products. For example, in the direction ξ1,

H := H
(1D)
ξ1
⊗ H

(1D)
ξ2
⊗ Im,

Dξ1 := H−1Qξ1 , Qξ1 := Q
(1D)
ξ1
⊗ H

(1D)
ξ2
⊗ Im,

Eξ1 := Eβξ1 + Eαξ1 , Eβξ1 := RT
βξ1

H⊥ξ1Rβξ1 , Eαξ1 := −RT
αξ1

H⊥ξ1Rαξ1 ,

H⊥ξ1 := H
(1D)
ξ2
⊗ Im, Rβξ1 := tTβξ1

⊗ Iξ2 ⊗ Im, Rαξ1 := tTαξ1
⊗ Iξ2 ⊗ Im,

where a system of m equations is being discretized and Im is an identity matrix. The extrapolation operators
Rαξ1 and Rβξ1 approximate the following quantities [5]:

Rαξ1uκ ≈ Uκ(ξ
αξ1
1 , ξ

αξ1
2 ) and Rβξ1uκ ≈ Uκ(ξ

βξ1
1 , ξ

βξ1
2 ),
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Figure 1: Schematic diagram showing the two-element example. The faces on each element are numbered 1
through 4. The vertical line denoting the shared interface corresponds to face 2 on the left element and face
1 on the right element.

where, for example, ξαξ11 and ξαξ12 are the coordinates of the nodes on the surface Γ̂
αξ1
κ , which is perpendicular

to ξ1. The vectors ξβξ11 and ξβξ12 are defined in a similar manner. Finally, the superscripts L and R denote
terms corresponding to the left and right elements, respectively.

For the present two-element example, consider the discretization on the left element using the mortar-
element approach, given by

1

2

2∑
l,m=1

{
Dξl diag

(
J ∂ξl
∂xm

)L

h

+ diag

(
J ∂ξl
∂xm

)L

h

Dξl

}
uL
h = diag (Jh)

L
sL

+ H−1
{
−RT

αξ1
H⊥ξ1

(
fL
(1),h(uL

h)− f?,L(1),h(uL
h)
)}

+ H−1
{
−RT

αξ2
H⊥ξ2

(
fL
(3),h(uL

h)− f?,L(3),h(uL
h)
)}

+ H−1
{

RT
βξ1

H⊥ξ1

(
fL
(2),h(uL

h)− f?,L(2),h(uL
h)
)}

+ H−1
{

RT
βξ2

H⊥ξ2

(
fL
(4),h(uL

h)− f?,L(4),h(uL
h)
)}

,

(3)

where, for example, the flux in the boundary SAT for face 1 of the left element is given by

fL
(1),h(uL

h) :=

2∑
m=1

Rαξ1 diag

(
J ∂ξ1
∂xm

)L

h

uL
h

and the numerical boundary flux function for face 1 of the left element is given by

f?,L(1),h(uL
h) :=

1

2

(
ΛL
(1),hu

L
[1] + Rαξ1

2∑
m=1

diag

(
J ∂ξ1
∂xm

)L

h

uL
h

)
− 1

2

∣∣∣ΛL
(1),h

∣∣∣ (Rαξ1u
L
h − uL

[1]

)
.

Here, the grid metrics on the mortar faces are defined by

ΛL
(1),h :=

2∑
m=1

diag

(
J ∂ξ1
∂xm

)[1],L

h

,

for example, and uL
[1], u

L
[3], u

L
[4], u

R
[2], u

R
[3], and u

R
[4] hold boundary data. Finally, sL is a restriction of the

continuous source term to the nodes of the left element. For the mortar-element discretizations, the baseline
or modified approaches for the metrics can be used. For the baseline approach, the volume metric terms
are approximated using the same SBP operator used to discretize the flux terms and the surface metric
terms are constructed by extrapolating the volume metric terms to the surface of each element. For the
modified approach, the volume metrics on element κ are determined by solving a strictly convex quadratic
optimization problem [4, 5].

Unlike the mortar-element approach, no mortar faces are introduced for the global SBP-operator ap-
proach. Instead, in the context of the present two-element example, the discretization on the left element,

3



for example, can be constructed directly as

1

2

2∑
l,m=1

{
Dξl diag

(
J ∂ξl
∂xm

)L

h

+ diag

(
J ∂ξl
∂xm

)L

h

Dξl

}
uL
h = diag (Jh)

L
sL

− 1

2
H−1

{
1

2
RT
αξ1

H⊥ξ1Rαξ1
(
ΛL
h,1 +

∣∣ΛL
h,1

∣∣)+
1

2

(
ΛL
h,1 +

∣∣ΛL
h,1

∣∣)RT
αξ1

H⊥ξ1Rαξ1

}(
uL
h − Ĩξ1u

L
[1]

)
+

1

2
H−1

{
1

2
RT
βξ1

H⊥ξ1Rβξ1
(
ΛL
h,1 −

∣∣ΛL
h,1

∣∣)+
1

2

(
ΛL
h,1 −

∣∣ΛL
h,1

∣∣)RT
βξ1

H⊥ξ1Rβξ1

}
uL
h

− 1

2
H−1

{
1

2
RT
βξ1

H⊥ξ1Rαξ1
(
ΛR
h,1 −

∣∣ΛR
h,1

∣∣)+
1

2

(
ΛL
h,1 −

∣∣ΛL
h,1

∣∣)RT
βξ1

H⊥ξ1Rαξ1

}
uR
h

− 1

2
H−1

{
1

2
RT
αξ2

H⊥ξ2Rαξ2
(
ΛL
h,2 +

∣∣ΛL
h,2

∣∣)+
1

2

(
ΛL
h,2 +

∣∣ΛL
h,2

∣∣)RT
αξ2

H⊥ξ2Rαξ2

}(
uL
h − Ĩξ2u

L
[3]

)
+

1

2
H−1

{
1

2
RT
βξ2

H⊥ξ2Rβξ2
(
ΛL
h,2 −

∣∣ΛL
h,2

∣∣)+
1

2

(
ΛL
h,2 −

∣∣ΛL
h,2

∣∣)RT
βξ2

H⊥ξ2Rβξ2

}(
uL
h − Ĩξ2u

L
[4]

)
,

(4)

where Ĩξ1 := 1ξ1 ⊗ Iξ2 , Ĩξ2 := Iξ1 ⊗ 1ξ2 , and the volume metric terms in the left element are defined by

ΛL
h,1 :=

2∑
m=1

diag

(
J ∂ξ1
∂xm

)L

h

and ΛL
h,2 :=

2∑
m=1

diag

(
J ∂ξ2
∂xm

)L

h

.

For the global SBP-operator discretizations, the metrics are approximated using the global operators with
one of the standard approaches. In two dimensions, this process is straightforward. In three dimensions,
there are more possibilities. In Del Rey Fernández et al. [5], an example using the approach of Thomas and
Lombard [17] is given.

3 High-Order Grids
Approaches for constructing grids based on B-spline and Lagrange mappings are considered to construct
grids compatible with the orders of discretizations considered [2]. Descriptions of the different approaches
may be found in [2]; however, some comments on the application of these approaches in the context of
traditional finite-difference refinement and element-type refinement are presented here.

3.1 Traditional Refinement
For traditional SBP operators that have a repeated interior point operator, grid refinement can be performed
by inserting additional grid nodes such that the resultant grid family is consistent. For CSBP operators, a
consistent grid family can be constructed by starting with a fine grid and removing every second node in each
block in each direction successively to construct a series of grids that are increasingly coarse. Alternatively, if
one is interested in increasing the resolution of the series of grids by a factor other than two in each direction
as the grid is refined, one can use the analytical B-spline mapping approach, which was the approach used
by Hicken [9], for example, for some of his grid refinement studies.

In general, in the absence of a global analytical transformation, the use of the analytical B-spline mapping
approach (or a similar approach) is also typically required to perform computations on a single grid as well
as grid refinement studies with more general traditional SBP operators that do not necessarily have uniform
nodal locations in computational space that include the boundary nodes [6, 13, 14]. This is because the
coordinates in computational space will typically need to be modified from uniformly spaced nodes to reflect
the nodal distribution of the SBP operators of interest, and the B-spline approach, for example, allows the
nodal locations in computational space to be modified in a continuous way.

One caveat with the B-spline approach is that the intermediate parameters that arise from the least-
squares fitting procedure are generally not uniformly spaced to ensure precise control of the grid in physical
space in the context of grid deformation algorithms, where an additional intermediate mapping to uniform
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computational coordinates is implied [9]. Note that it is possible that the use of uniformly spaced interme-
diate parameters could be sufficient to capture the initial grid if high-order grid generation is the priority
instead of grid deformation. Regardless, when the intermediate parameters are nonuniformly spaced, to
approximate the stretching of the intermediate parameters and the corresponding stretching of the grid
within elements in physical space, the approach of Osusky [15] can be adopted whereby the stretching of
the intermediate parameters is approximated via two-sided hyperbolic tangent stretching functions tuned
through edge-spacing parameters. In this way, the nodal distribution in uniform computational coordinates
can be set to the nodal distribution of the desired SBP operator and propagated through the intermediate
mapping followed by the B-spline mapping to obtain the desired nodal locations in physical space.

3.2 Element-Type Refinement
For element-type refinement, it is possible to use either the Lagrange or the B-spline approach. For the La-
grange approach, the relationship between the number of interpolation nodes and the degree of the mapping
is always N = pg + 1. For simplicity, and also due to the continuity requirement within elements, the same
relationship (i.e., N = pg + 1) is chosen for the B-spline approach and the initial grid is always constructed
such that, for each element, exactly the minimum number of nodes required to define a mapping of the
desired degree is present. A consequence of this construction is that the least-squares fit for each element
for the B-spline approach is exact to machine precision, with respect to reproducing the initial grid. Finally,
because the B-spline mappings are constructed to have no interior knots for element-type grids, there is no
need to introduce the modified B-spline basis functions used in [10] that permit spatially varying knots.

For the B-spline approach, like the traditional refinement case, two-sided hyperbolic tangent stretching
functions can be used to capture some of the stretching of the initial grid within elements. For element-type
grids, this might not be strictly necessary as one could argue that since the stretching of the initial grid is
already being captured through element boundaries and the number of nodes in each element is small relative
to the total number of elements, it is not as important as in the traditional case to capture the stretching
within elements. Finally, note that traditional SBP operators can also be applied as element-type operators;
however, purely element-type operators cannot be applied as traditional SBP operators due to the lack of
repeated interior point operators.

4 Results
One- and two-dimensional problems are used to assess the performance of the different schemes: scalar linear
boundary-value problems and subsonic channel flow over a Gaussian bump governed by the Euler equations.

4.1 One-Dimensional Scalar Linear Boundary-Value Problem
The purpose of this section is to highlight the main conclusion from [3], specifically that extrapolation
operators of at least degree 2p are required to retain functional superconvergence in curvilinear coordinates
when the metrics are approximated by the same SBP operator used in the overall discretization and the
degree of the SBP operator used is lower than the degree of the geometry representation [3]. To appreciate
this, consider discretizing a one-dimensional PDE with a source term F(x), where

F(x) =
πex

e− 1
cos

(
πex − π + e− 1

e− 1

)
,

such that the exact solution to the PDE is given by

U(x) = sin

(
π(ex − 1)

e− 1
+ 1

)
.

A functional is used that includes both boundary and volume contributions. Furthermore, a grid function is
used to stretch the nodal locations to obtain a variable metric Jacobian. Figure 2 provides the grid functions
used. Table 1 gives the functional convergence rates when solving the one-dimensional PDE numerically. The
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Figure 2: Grid functions for variable metric Jacobian.

Table 1: Representative functional error convergence rates for different grid functions for the one-dimensional
scalar linear boundary-value problem. Rates less than τ + 1 are boxed .

ξ 1
2
ξ
2 +

1
2
ξ

1
3
ξ
3 +

1
3
ξ
2 +

1
3
ξ

1
4
ξ
4 +

1
4
ξ
3 +

1
4
ξ
2 +

1
4
ξ

1
5
ξ
5 +

1
5
ξ
4 +

1
5
ξ
3 +

1
5
ξ
2 +

1
5
ξ

(e
xp

(4
ξ)
−

1)
/(

ex
p(

4)
−

1)

Operator MFD1 MFD2 MFD3 MFD4 MFD5 MFNP

LGLp1 2.00 2.01 1.98 1.98 1.99 1.99

LGLp2 4.00 4.20 4.00 4.00 4.00 4.00

LGLp3 6.00 5.98 6.05 5.80 5.66 6.89

LGLp4 8.40 8.64 8.01 7.92 7.83 7.84

LGp1 4.01 2.00 1.99 1.97 1.97 1.95

LGp2 6.00 5.95 2.00 2.00 2.00 2.00

LGp3 8.69 7.96 8.23 3.96 4.02 4.01

LGp4 9.48 9.38 10.39 10.75 4.00 4.01

best-case convergence rates with LGL and LG operators are 2p and 2p+2, respectively. For all LGL operators,
approximately 2p convergence is obtained. However, the LG operators only obtain 2p+ 2 convergence when
the degree of the grid function is less than or equal to the SBP operator used to approximate the metrics.

4.2 Two-Dimensional Scalar Linear Boundary-Value Problem
In this section, conclusions from [2] are highlighted that involve the extension to a two-dimensional scalar
linear boundary-value problem. Specifically, a steady two-dimensional scalar linear boundary-value problem
is considered, and the source terms are chosen such that the exact primal and dual solutions are defined by

Uexact(x, y) := sin(2πx) + sin(2πy) and

ψexact(x, y) := sin(2πx) +
exp(y)− 1

exp(1)− 1
,
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(a) Initial grid with 5× 5 uniform nodes in each element. (b) Final grid with 4×4 p = 3 LG nodes in each element.

Figure 3: Example high-order grid for Ω with K = 16 nonoverlapping elements. A degree pg = 4 element-
local Lagrange mapping is defined on each element of the initial grid based on the uniform nodes. The
element-local mappings are subsequently used to repopulate the elements with the p = 3 LG nodes to
generate the final grid.

Table 2: Test case matrix for the two-dimensional scalar linear boundary-value problem.

Type of discretization Form of equation Metrics Mapping pg

Mortar-element Div/Skew Baseline Lagrange p
Mortar-element Div/Skew Baseline Lagrange p+ 1
Mortar-element Div/Skew Modified Lagrange p+ 1
Global SBP-operator Div/Skew Global Lagrange p
Global SBP-operator Div/Skew Global Lagrange p+ 1

respectively. The grid is constructed via an analytical transformation followed by a Lagrange mapping
approach, as shown in Figure 3. The functional of interest includes both volume and boundary contributions.
More details are provided in [2].

The schemes considered are summarized in Table 2. Although this specific problem does not require
the use of a degree p+ 1 mapping, when solving more complex nonlinear problems the use of higher degree
mappings can be beneficial (see, for example, [1]), which motivates the study of the use of higher degree
mappings in the present linear context. The accuracy of each scheme considered is evaluated in terms of
truncation, solution, and functional error, for both the primal and dual discretizations. The truncation
error should be O(hp) to confirm that the primal and dual discretizations are consistent and dual consistent,
respectively. The solution error should be at least O(hp) with O(hp+1) often being observed in the literature.
The functional error is considered to be superconvergent if it is at least O(h2p) and anything less is considered
suboptimal. Finally, the truncation error and functional error are assessed using the infinity norm and the
solution error is assessed using the global H-norm.

In terms of accuracy, it was found that the mortar-element divergence and skew-symmetric discretizations
give similar results, likewise for the global SBP-operator divergence and skew-symmetric discretizations. The
functional superconvergence results for the mortar-element schemes are summarized in Table 3. When using
degree p Lagrange mappings in each element, close to optimal truncation and solution error convergence rates
are observed, along with functional superconvergence for both the LGL and LG families of operators. The
preceding statement applies to both the mortar-element and global SBP-operator approaches. When using
degree p + 1 Lagrange mappings, the functional convergence rates with the LG operators are significantly
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Table 3: Mortar-element approach superconvergence matrix (metrics: baseline or modified, degree of map-
ping: p or p+ 1) for the two-dimensional scalar linear boundary-value problem.

Operator Baseline, p Baseline, p+ 1 Modified, p+ 1

LGL 4 4 4
LG 4 8 4

Table 4: Global SBP-operator approach superconvergence matrix (metrics: global, degree of mapping: p or
p+ 1) for the two-dimensional scalar linear boundary-value problem.

Operator Global, p Global, p+ 1

LGL 4 4
LG 4 8
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(a) LG, p+ 1, global.
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Figure 4: Comparison of skew-symmetric discretizations for the two-dimensional scalar linear boundary-
value problem. Global SBP-operator approach on left, mortar-element approach on right. Each subcaption
gives the operator family, degree of mapping, and approach for the metrics, respectively.

reduced with the baseline approach for the metrics relative to the LGL operators and relative to the LG
operators with the degree p mappings, due to the degree p accuracy of the LG extrapolation operators.
Note that because the dual truncation error still converges at a rate close to p, this indicates that this
loss of functional superconvergence is not due to a lack of dual consistency. With respect to the present
accuracy measures being studied, the main benefit of the modified approach for the metrics is the retention
of functional superconvergence with LG operators when using degree p+ 1 mappings.

The functional superconvergence results for the global SBP-operator schemes are summarized in Table 4.
Superconvergence is obtained with degree p mappings. However, superconvergence is only obtained with the
LGL operators with degree p+ 1 mappings (a similar trend is observed when using exact mappings), despite
the dual truncation error converging close to order p. Therefore, functional accuracy could be considered as
a criterion for potentially preferring the mortar-element approach over the global SBP-operator approach.
To emphasize this point, Figure 4 compares the functional error convergence for global SBP-operator and
mortar-element discretizations with degree p+ 1 mappings. Only the mortar-element discretizations obtain
superconvergence for all operators.
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(a) Second coarsest grid with p = 3 LGL nodes in each element. Only the element boundaries are shown.

(b) Numerical solution on second coarsest grid with p = 3 LG operators. Pressure contours are shown.

Figure 5: Grid and numerical solution for the subsonic channel flow over a Gaussian bump problem governed
by the Euler equations.

4.3 Two-Dimensional Subsonic Channel Flow Over a Gaussian Bump
In this section, the extension to the Euler equations is discussed in the context of a two-dimensional subsonic
channel flow over a Gaussian bump problem. Figure 5 shows a grid and numerical solution for this problem.
The functional of interest is a weighted lift over the surface of the bump. Only the divergence form of the
Euler equations is considered, as it is expected that the skew-symmetric form will give similar results in terms
of accuracy based on the results from the two-dimensional scalar problem. Furthermore, the mortar-element
approach is used due to its ability to obtain functional superconvergence with degree p+ 1 mappings via the
modified metrics, in contrast to the global SBP-operator approach.

Table 5 summarizes the functional convergence results for the subsonic channel flow over a Gaussian bump
problem. In contrast to the scalar problem results, the degree p mappings do not lead to superconvergence
in general due to the insufficient accuracy of the wall normal in the flow tangency boundary condition [2].
Similar to the scalar problem, superconvergence with degree p+1 mappings is obtained for LGL and not LG
operators with baseline metrics. However, superconvergence with degree p+ 1 mappings for LG operators is
recovered with modified metrics.

5 Conclusions
High-order tensor-product generalized SBP discretizations have been investigated and conditions for obtain-
ing accurate functionals for CFD problems of increasing practical complexity have been delineated. Results
in one and two dimensions involving linear and nonlinear problems have been discussed. Future work will
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Table 5: Mortar-element approach superconvergence matrix (metrics: baseline or modified, degree of map-
ping: p or p+ 1) for the subsonic channel flow over a Gaussian bump problem.

Operator Baseline, p Baseline, p+ 1 Modified, p+ 1

LGL 8 (wall normal) 4 4
LG 8 (wall normal) 8 4

focus on investigating analogous conditions for obtaining functional superconvergence from more complex
problems involving large eddy simulations and the Reynolds-averaged Navier-Stokes equations.
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