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Abstract: We have developed a new family of positivity-preserving, entropy stable spectral col-
location schemes of arbitrary order of accuracy for the 3-D compressible Navier-Stokes equations
on unstructured hexahedral grids. The proposed schemes are constructed by using a �ux-limiting
technique that combines a positivity-violating entropy stable method of arbitrary order of accuracy
and a novel �rst-order positivity-preserving entropy stable �nite volume-type scheme, which are
both discretized on the same Legendre-Gauss-Lobatto grids. To provide the positivity preserva-
tion and excellent discontinuity-capturing properties, the Navier-Stokes equations are regularized
by adding arti�cial dissipation in the form of the Brenner-Navier-Stokes di�usion operator. The
resultant scheme is conservative, design-order accurate for smooth solutions, and pointwise positiv-
ity preserving. To our knowledge, this is the �rst family of schemes of arbitrary order of accuracy
that provably guarantee both pointwise positivity of thermodynamic variables and L2 stability
for the 3-D compressible Navier-Stokes equations. Numerical results demonstrating accuracy and
positivity-preserving properties of the new schemes are presented for viscous �ows with nearly
vacuum regions and very strong shocks and contact discontinuities.

Keywords: Summation-by-parts (SBP) operators, Entropy stability, Spectral collocation schemes,
Positivity-preserving methods, Brenner-Navier-Stokes equations, Arti�cial dissipation.

1 Introduction

Global positivity of thermodynamic variables (e.g., density and temperature) is a necessary condition for
hyperbolicity of the Euler equations and existence of entropy solutions of the compressible Navier-Stokes
equations. Therefore, the pointwise positivity of density and temperature is vital for constructing stable
and robust numerical schemes for the compressible Euler and Navier-Stokes equations. Positivity-preserving
methods available in the literature for the compressible Navier-Stokes equations are very rare and either
limited to so-called weak positivity (which does not guarantee pointwise positivity of the thermodynamic
variables) [1] or to at most 2nd-order schemes in space and time [2, 3]. To our knowledge, there are no high-
order numerical schemes that provide both entropy stability and pointwise positivity of the thermodynamic
variables for the 3-D compressible Navier-Stokes equations.

Herein, we generalize and extend the 1-D positivity-preserving entropy stable methodology developed
in [4, 5] to the three-dimensional compressible Navier-Stokes equations on static unstructured hexahedral
grids. Similar to the 1-D high-order schemes in [5], the new schemes for the 3-D compressible Navier-Stokes
equations are constructed by combining a positivity-violating entropy stable method of arbitrary order of
accuracy and a novel �rst-order positivity-preserving entropy stable method developed in [6]. The novel high-
order schemes provide an arbitrary order of accuracy for su�ciently smooth solutions of the 3-D compressible
Navier-Stokes equations and the pointwise positivity at individual collocation points that are directly used
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for approximation of the governing equations. Another distinctive feature of the proposed methodology is
that the new high-order positivity-preserving schemes satisfy the discrete entropy inequality, thus facilitating
a rigorous L2-stability proof for the symmetric form of the discretized Navier-Stokes equations [7]. To our
knowledge, this is the �rst family of high-order schemes that are both pointwise positivity preserving and
entropy stable for the 3-D compressible Navier-Stokes equations.

2 Regularized Navier-Stokes equations

There are no theoretical results showing that the compressible Navier-Stokes equations themselves guar-
antee positivity of the thermodynamic variables. To overcome this problem, we regularize the Navier-Stokes
equations by adding arti�cial dissipation in the form of the di�usion operator of the Brenner-Navier-Stokes
equations introduced in [8]. The Brenner-Navier-Stokes equations are given by

∂U

∂t
+

3∑
m=1

∂Fxm

∂xm
=

3∑
m=1

∂F
(B)
xm

∂xm
, ∀ (x1, x2, x3) ∈ Ω, t ≥ 0, (1)

F (B)
xm

= F (v)
xm

+ σ
∂ρ

∂xm

[
1 V E

]⊤
, (2)

where U = [ρ, ρV1, ρV2, ρV3, ρE ]
T
is a vector of the conservative variables, σ is the volume di�usivity, and

F
(v)
xm ,m = 1, 2, 3, are the Navier-Stokes viscous �uxes.
The Brenner-Navier-Stokes equations (1) possess some remarkable properties that are not available for

the Navier-Stokes equations. Equations (1) guarantee existence of a weak solution and uniqueness of a
strong solution if the latter exists, ensure global-in-time positivity of the thermodynamic variables, satisfy a
large class of entropy inequalities, and is compatible with a minimum entropy principle [9, 10]. Capitalizing
on these remarkable properties of the Brenner-Navier-Stokes equations, we regularize the Navier-Stokes
equations as follows:

∂U

∂t
+

3∑
m=1

∂Fxm

∂xm
=

3∑
m=1

[
∂F

(v)
xm

∂xm
+
∂F

(AD)
xm

∂xm

]
, (3)

where the the arti�cial dissipation �ux F
(AD)
xm can be obtained from the viscous �ux of the Brenner-Navier-

Stokes equations, F
(B)
xm , by setting µ = µAD, σ = cρµ

AD/ρ, and κ = cTµ
AD. The coe�cient µAD is an

arti�cial viscosity and cT and cρ are positive tunable coe�cients, which are set equal to cρ = 0.9 and
cT =

cρ
γ−1 for all test problems presented herein.

A necessary condition for selecting a unique, physically relevant solution among possibly many weak
solutions of the compressible Navier-Stokes equations is the entropy inequality. Both the Navier-Stokes
and regularized Navier-Stokes equations are equipped with the same convex scalar entropy function S =
−ρs and entropy �ux F = −ρsV , where s is the thermodynamic entropy. It can be shown that the
following inequality holds for both the conventional and regularized Navier-Stokes equations assuming the
corresponding boundary conditions are entropy stable (e.g., see [11]):∫

Ω̂

∂(JS)
∂τ

dΩ̂ =
d

dτ

∫
Ω̂

JSdΩ̂ ≤ 0. (4)

Along with the entropy inequality given by Eq. (4), the regularized Navier-Stokes equations (Eq. (3)) preserve
some other key properties of the Brenner-Navier-Stokes equations including the positivity of thermodynamic
variables. Herein, we present novel high-order schemes that mimic these properties of the 3-D regularized
Navier-Stokes equations at the discrete level.

3 Summation-by-parts operators

The derivatives in Eq. (3) are discretized by spectral collocation operators that satisfy the summation-
by-parts (SBP) property [12]. In one spatial dimension, this mimetic property is achieved by approximating
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the �rst derivative with a discrete operator, D, as follow:

D = P−1Q, P = P⊤, v⊤Pv > 0, ∀v ̸= 0,

Q = B −Q⊤, B = diag(−1, 0, . . . , 0, 1),
(5)

where P and Q are local mass and sti�ness matrices, respectively. Only diagonal-norm SBP operators are
considered herein, which are used for proving the entropy inequality at the semi-discrete level [12].

In one spatial dimension, the physical domain is divided into K non-overlapping elements [xk1 , x
k
Np

], so

that xk1 = x
(k−1)
Np

. The discrete solution inside each element is de�ned on Legendre-Gauss-Lobatto (LGL)

points, xk =
[
xk1 , . . . , x

k
Np

]⊤
. These local points xk are referred to as solution points. Along with the

solution points, we also de�ne a set of intermediate points x̄k =
[
x̄k0 , . . . , x̄

k
Np

]⊤
prescribing bounding control

volumes around each solution point. These points referred to as �ux points form a complementary grid
whose spacing is precisely equal to the diagonal elements of the positive de�nite matrix P in Eq. (5), i.e.,

∆x̄ = P1, where x̄ =
[
x̄0, . . . , x̄Np

]⊤
is a vector of �ux points, 1 = [1, . . . , 1]⊤, and ∆ is an Np × (Np + 1)

matrix corresponding to the two-point backward di�erence operator [12, 13]. As has been proven in [14],
these discrete SBP derivative operators can be recast in the following telescopic �ux form:

P−1Qf = P−1∆f̄ , (6)

where f̄ is a pth-order �ux vector de�ned at the �ux points. These 1-D SBP operators can be directly
extended to three spatial dimensions via the tensor product arithmetic [15].

4 High-order positivity-violating entropy stable schemes

With the 3-D SBP operators discussed in the previous section, a baseline 3-D pth-order semi-discrete
spectral collocation scheme for the regularized 3-D Navier-Stokes equations (1) can be written as follows:

(
Ûp

)
t
+

3∑
l=1

P−1
ξl

∆ξl
ˆ̄fpl −Dξl

[
f̂
p(v)
l + f̂

p(AD)
l

]
=

3∑
l=1

P−1
ξl

[
ĝ
p(AD)
l + ĝl

]
, (7)

where Ûp = [J ]Up, ĝl is boundary and interface penalty terms.

The pth-order contravariant inviscid �uxes, ˆ̄fpl , de�ned at �ux points are given by

ˆ̄fpm(ξ⃗i) =
N∑

j=i+1

i∑
l=1

2ql,j f̄(S)(Up(ξ⃗l),Up(ξ⃗j))
ˆ⃗am(ξ⃗l)+ˆ⃗am(ξ⃗j)

2 for 1 ≤ i ≤ N − 1,

ˆ̄fpm(ξ⃗i) = f̄(S)(Up(ξ⃗i),Up(ξ⃗i))
ˆ⃗am(ξ⃗i) for i ∈ {0, N},

(8)

where m = 1, 2, 3 and f̄(S)(·, ·) is a two-point, consistent, entropy conservative �ux that satis�es

(w1 − w2)
⊤
f̄(S)(U1, U2) = ψ⃗1 − ψ⃗2 (9)

for any two admissible states U1 and U2 [16]. For all test problems considered, we use the entropy conservative
�ux developed in [17]. In [6], we show that the proposed method for ensuring positivity is independent of a

particular choice of f̄(S). In the above equation and hereafter, âlm(ξ⃗ijk) is a pth-order discrete approximation

of J ∂ξl

∂xm at the solution point ξ⃗ijk, which is constructed such that it satis�ed the geometric conservation law

(GCL) equations (e.g., see [18]). The high-order contravariant viscous and arti�cial dissipation �uxes, f̂
(v)
l ,

are constructed as follows:

f̂
p(vis)
l =

3∑
m=1

[âlm]f
p(vis)
xm , f

p(vis)
xm =

3∑
j=1

[c
(vis)
m,j ]Θxj , (10)
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where f̂
p(vis)
l = f̂

p(v)
l or f̂

p(vis)
l = f̂

p(AD)
l and [c

(vis)
m,j ], 1 ≤ m, j ≤ 3 are the corresponding viscosity matrices.

For each 1 ≤ m, j ≤ 3, [c
(vis)
m,j ] is a block-diagonal matrix with 5 × 5 blocks, such that [

(
c
(vis)
m,j

)T
] = [c

(vis)
j,m ],

and
3∑

m=1

3∑
j=1

vT [c
(vis)
m,j ]v ≥ 0,∀v, i.e., the full viscous/arti�cial dissipation tensor is symmetric positive semi-

de�nite (SPSD). The gradient of the entropy variables, Θxj , is discretized by using an approach that closely
resembles the local discontinuous Galerkin (LDG) method developed in [19].

The high-order spectral collocation scheme given by Eq. (7) is conservative and stable in the entropy
sense. The conservation follows immediately from the telescopic �ux form of the inviscid terms and the
SBP form of the viscous and arti�cial dissipation terms. The entropy stability of the discretized Navier-
Stokes terms in Eq. (7) is proven in [12]. The entropy dissipation properties of the arti�cial dissipation
terms follow immediately form Eq. (10) and the symmetric positive semi-de�niteness of the arti�cial viscous

tensor [c
(B)
m,j ], 1 ≤ m, j ≤ 3. Note, however, that entropy stability alone does not guarantee the positivity

of thermodynamic variables, if strong discontinuities are present in the domain. To address this limitation
of the high-order schemes, we develop a novel �rst-order positivity-preserving entropy stable scheme for the
3-D Navier-Stokes equations, which is presented next.

5 First-order positivity-preserving entropy stable scheme

5.1 First-order scheme

For each high-order element, the �rst-order scheme is approximated on the same LGL points used for
the high-order scheme. The �rst-order scheme treats solution points in a �nite volume manner with the �ux
points acting as control volume edges and can be written as

(
Û1

)
t
+

3∑
l=1

P−1
ξl

∆ξl

[
ˆ̄f1l − ˆ̄f

1(AD)
ˆ̄σ,l

− ˆ̄f
1(AD)
l

]
−Dξl f̂

p(v)
l =

3∑
l=1

P−1
ξl

[
ĝl + ĝ

1(AD)
l

]
, (11)

where ˆ̄f1l and ˆ̄f
1(AD)
ˆ̄σ,l

, ˆ̄f
1(AD)
l are �rst-order inviscid and arti�cial dissipation �uxes, f̂

p(v)
l , l = 1, 2, 3, are the

high-order physical �uxes, and ĝl are inviscid and viscous penalties that are identical to those used in [12].
Note that the discretization of the �rst-order inviscid �uxes on high-order LGL elements requires special

care. In [20, 21], it was suggested to approximate the �rst-order inviscid �uxes at each �ux point by using
the arithmetic average of the metric coe�cients associates with this subcell interface (see Eq. (B52) in [21]).
One of the major pitfalls of this approach is that this approximation is neither freestream�preserving for
constant �ows nor entropy conservative for isentropic �ows. Thus, the corresponding scheme does not satisfy
the geometric conservation laws and over dissipates the numerical solution in regions where the entropy
dissipation is not needed.

To overcome this problem, we discretize the inviscid �uxes in Eq. (11) by using an approximation in-
troduced in [6, 22]. These inviscid �uxes are represented as the sum of entropy conservative and entropy

dissipative terms: ˆ̄f1l = ˆ̄f
(EC)
l − ˆ̄f

(ED)
l , where ˆ̄f

(ED)
l is an entropy dissipative characteristic �ux developed

in [23], which is approximated so that it facilitates the pointwise density positivity [6]. The entropy conser-

vative �ux, ˆ̄f
(EC)
l , is discretized as follows:{

ˆ̄f (EC)(ξ⃗i) = f̄(S)(U1(ξ⃗i),U1(ξ⃗i+1))
ˆ⃗̄a1(ξ⃗i), for 1 ≤ i ≤ N − 1,

ˆ̄f (EC)(ξ⃗i) = f̄(S)(U1(ξ⃗i),U1(ξ⃗i))
ˆ⃗a1(ξ⃗i), for i ∈ {0, N},

(12)

ˆ⃗̄a1(ξ⃗i) =

N∑
R=i+1

i∑
L=1

2qL,R

ˆ⃗a1(ξ⃗L) + ˆ⃗a1(ξ⃗R)

2
,

where f̄(S)(·, ·) is any two-point, entropy conservative inviscid �ux that satis�es Eq. (9). In the present
analysis, we use the entropy conservative �ux developed in [17]. Comparing Eq. (12) with the high-order
entropy stable �ux in [15], we note that they are equivalent at the element faces (i ∈ {0, N}) and only di�er
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at the interior points. Using the metric terms given by Eq.(12), the following lemma can be proven.

Lemma 1. The inviscid �ux ˆ̄f
(EC)
l given by Eq. (12) is freestream preserving and entropy conservative, so

that the following equation holds:

3∑
l=1

w⊤PP−1
ξl

∆ξl
ˆ̄f
(EC)
l =

3∑
l=1

1⊤
1 P̂⊥,ξlB̂ξlF̂l. (13)

Hence, ˆ̄f
(EC)
l given by Eq. (12) has the same total entropy contribution on each element as the high-order

entropy consistent �ux in [15].

Proof. The proof of this lemma can be found elsewhere [6].

The �rst-order arti�cial dissipation �uxes ˆ̄f
1(AD)
ˆ̄σ,1

and ˆ̄f
1(AD)
1 for all 1 ≤ j ≤ N and ξ⃗i = ξ⃗ijl, 1 ≤ i ≤ N−1

are de�ned as follows:

dνm,n = ν(ξ⃗m)−ν(ξ⃗n)√
J(ξ⃗m)J(ξ⃗n)

,

ˆ̄f
1(AD)
1 (ξ⃗i) = c

(B)
ν (U1(ξ⃗i),U1(ξ⃗i+1),

ˆ⃗̄a1(ξ⃗i)) dνi+1,i/(ξi+1 − ξi) ,
ˆ̄f
1(AD)
ˆ̄σ,1

(ξ⃗i) = c
(B)
ν (U1(ξ⃗i),U1(ξ⃗i+1),

ˆ⃗̄a1(ξ⃗i), ˆ̄σ1(ξ⃗i))
∣∣∣
µ=κ=0

dνi+1,i/(ξi+1 − ξi) ,

ˆ̄f
1(AD)
1 (ξ⃗0) =

ˆ̄f
1(AD)
1 (ξ⃗N ) = ˆ̄f

1(AD)
ˆ̄σ,1

(ξ⃗0) =
ˆ̄f
1(AD)
ˆ̄σ,1

(ξ⃗N ) = 0,

(14)

with the identical de�nitions in the other computational directions. The µ, σ, and κ coe�cients in ˆ̄f
1(AD)
l are

directly proportional to the arti�cial viscosity, µAD. At the �ux points, the arti�cial viscosity coe�cient is
evaluated as the arithmetic average of the corresponding µAD values at the neighboring solution points. The
ˆ̄f
1(AD)
ˆ̄σ,l

�ux, which is proportional to ˆ̄σl, is introduced to add the mass di�usion to guarantee the positivity

of density.

5.2 Positivity of density and internal energy

We now prove that the �rst-order scheme given by Eq. (11) guarantees the pointwise positivity of density.

Theorem 2. Assume that ˆ̄f
(in)
l in Eq. (11) is the EC �ux of Chandrashekar [17]. Let ˆ⃗̄al± be the metric term

at the �±� interface in the l-th direction. If the explicit Euler discretization in time is used in Eq. (11), then
this 1st�order FV scheme preserves the positivity of density under the following time step constraint:

τ <
Jijk

2
3∑

l=1

D+
l +D−

l

Pll

= τρ (15)

with [
λc +

σ∥ˆ⃗̄a∥2

JG∆ξ

]±
l

= D±
l ≥ D±

l,min =
ρ±l,L

2ρ±l,A

∣∣∣V⃗ A · ˆ⃗̄al± − V(u,u±
l ,

ˆ⃗̄al±)
∣∣∣ , (16)

and the following constraint on σ±
l :

σ±
l ≥ σ±

l,min =

[
max

(
0,

ρL
2ρA

∣∣∣V⃗ A · ˆ⃗̄a− V(u,u±
l ,

ˆ⃗̄a)
∣∣∣− λc

)
JG∆ξ

∥ˆ⃗̄a∥2

]±
l

. (17)

Proof. The proof of this theorem is given in [6].

If the explicit �rst-order Euler scheme is used to advance the solution in time, i.e.

Ûn+1
1 = Ûn

! + τ
(
Û1

)
t
, (18)
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so that τ is in the interval that preserves the positivity of ρn+1(ξ⃗ijk), then the positivity of the internal

energy at the time level n + 1 at the solution point ξ⃗ijk is solely determined by the following quadratic
polynomial in τ :

IE(un+1)ρn+1 =
( τ
J

)2(dE
dt

dρ

dt
− 1

2

∥∥∥∥dmdt
∥∥∥∥2
)

+
τ

J
(un)

⊤

 dE
dt

−dm
dt
dρ
dt

+ IE(un)ρn, (19)

where Ûn
1 (ξ⃗ijk) = Jun, J(ξ⃗ijk) = J , ρn+1(ξ⃗ijk) = ρn+1,

(
Û1

)
t
(ξ⃗ijk) =

[
dρ
dt ,

dm
dt ,

dE
dt

]⊤
and IE(un) is the

internal energy of un. Note that Eq. (19) holds for any spatial discretization. Using Eq. (19), we now prove
the positivity of internal energy.

Theorem 3. Let the discrete solution at the time level n be in the admissible set, so that ρn(ξ⃗ijk), IE(U
n
1 (ξ⃗ijk)) >

0 for all solution points in the domain. Then, there exists τmin ∈ (0, τρ], where τρ is given by Eq. (15), such
that for all τ : 0 < τ < τmin, the 1st�order FV scheme given by Eqs. (11) and (18) preserves the positivity

of internal energy, i.e., IE(Un+1(ξ⃗ijk)) > 0 at every solution point.

Proof. The proof of this lemma can be found elsewhere [6].

The high-order discretization of the viscous terms may signi�cantly increase the sti�ness of the time step
constraint required for temperature positivity in regions where the solution loses its regularity. To overcome
this problem, we construct new conservative, discretely entropy stable limiters that bound the magnitude of
the velocity and temperature gradients in troubled elements and eliminate the sti�ness of the temperature
positivity time step constraint. For further details on these limiters, we refer the reader to [6].

5.3 Entropy stability of the �rst-order scheme

The �rst-order scheme presented in Section 5.1 is entropy stable. Indeed, entropy stability of the �rst-
order scheme (Eq. (11)) can be proven for the time derivative, inviscid, viscous, and arti�cial dissipation
terms individually. Contracting Eq. (11) with entropy variables, W, and taking into account that the mass
matrices are diagonal, the time derivative term can be manipulated as W⊤P̂d(JU)/dt = 1⊤P̂d(JS)/dt
(e.g., see [15]). The entropy stability of the inviscid terms follows directly from Lemma 1. The entropy
stability of the high-order viscous terms and the corresponding penalties have been proven in [12, 15]. The

�rst-order arti�cial dissipation terms and their penalties ˆ̄f
(ED)
l , ˆ̄f

1(AD)
l ,ˆ̄f

1(AD)
ˆ̄σ,l

, and ĝ
1(AD)
l , are all formed by

using SPSD matrices multiplied by 2-point jumps in the entropy variables and therefore are easily shown to
be entropy dissipative.

6 Arti�cial Viscosity

The arti�cial viscosity, µAD, is constructed so that it ensures consistency, maintains design-order accuracy
for smooth resolved solutions, and controls the amount of dissipation added in regions where the solution
is under-resolved or discontinuous. Furthermore, the mass and heat viscosity coe�cients of the arti�cial
dissipation �ux at each solution point are set as σ(ξ⃗ijk) = cρµ

AD(ξ⃗ijk)/ρ(ξ⃗ijk), and κ(ξ⃗ijk) = cTµ
AD(ξ⃗ijk).

The scalar arti�cial viscosity, µAD, is used for both the high- and low-order arti�cial dissipation operators.
Details on how the arti�cial viscosity coe�cient is constructed are presented in [6, 24]. Herein, we only brie�y
outline its key elements. The arti�cial viscosity coe�cient is constructed based on the �nite element residual
of the entropy equation and the physical properties of the �uid. In the k-th grid element, µAD is de�ned as
follows:

µAD = Snkµk
max,

where Sn is a sensor function (0 ≤ Sn ≤ 1) and µk
max is the magnitude of the arti�cial viscosity in the k-th

grid element.
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To detect grid elements where the solution loses its regularity or becomes under-resolved, the sensor is
constructed as a function of the �nite element residual of the entropy equation, which is given by

Snk =

{
Snk0 , if Snk0 ≥ max(0.2, δ),
0, otherwise

Snk0 = max(rk)max(1, p−1
p−1.5 ), (20)

where p is the polynomial order and r(ξ⃗ijk) is a pointwise normalized entropy residual. To take into account
the physics of a problem, we also augment the entropy residual-based sensor with compression and pressure
gradient sensors. These sensors are introduced to identify those regions where the amount of arti�cial
viscosity can be reduced without sacri�cing the solution accuracy. We refer the reader to [6] for further
details.

In each element, the upper bound of the arti�cial viscosity, µk
max, is set to be proportional to the maximum

value of local velocity and pressure jumps between neighboring solution points [6, 24]. The result is that we
minimize the amount of arti�cial dissipation at contact discontinuities and make µk

max proportional to the
discontinuity strength, such that the velocity and pressure jumps act as a limiter, if spurious oscillations are
present in the solution.

The globally continuous arti�cial viscosity µAD
k is then constructed by using the following smoothing

procedure. At each element vertex, we from a unique vertex viscosity coe�cient, µver
i = max

k∈Ii
µk
max, where Ii

contains indices of all elements that share the i-th grid vertex. After that, the globally continuous arti�cial
viscosity is obtained by using the tri-linear interpolation of 8 vertex viscosities, µver

i , of the given hexahedral
element.

7 High-order positivity�preserving �ux-limiting scheme

7.1 Flux-limiting scheme

Herein, we generalize the 1-D high-order positivity-preserving �ux-limiting method developed in [5] to
three spatial dimensions. A new high-order positivity-preserving �ux-limiting scheme for the 3-D Navier-
Stokes equations is constructed by combining the corresponding positivity-violating high-order spectral col-
location scheme (Eq. (7)) and the �rst-order positivity�preserving �nite volume scheme given by Eq. (11)
as follows:

dÛ
dt = θkf

(
dÛ
dt

)
p
+ (1− θkf )

(
dÛ
dt

)
1
+
(

dÛ
dt

)
AD

,(
dÛ
dt

)
p

=
3∑

l=1

−P−1
ξl

∆ξl
ˆ̄fl +Dξl f̂

(v)
l + P−1

ξl
ĝl,(

dÛ
dt

)
1

=
3∑

l=1

−P−1
ξl

∆ξl
ˆ̄f
(MR)
l +Dξl f̂

(v)
l + P−1

ξl
ĝl,(

dÛ
dt

)
AD

=
3∑

l=1

P−1
ξl

∆ξl

[
(1− θkf )

ˆ̄f
(AD1)
ˆ̄σ,l

+ ˆ̄f
(AD1)
l

]
+Dξl f̂

(ADp)
l

+P−1
ξl

[
ĝ
(AD1)
l + ĝ

(ADp)
l

]
,

(21)

where the �ux limiter θkf (0 ≤ θkf ≤ 1) is a constant computed independently in each element and ˆ̄f
(MR)
l is

the �rst-order Merriam-Roe entropy dissipative �ux [6, 23]. Note that the �ux limiting is only applied to the

inviscid terms and the mass di�usion term required for positivity of density. The term
(

dÛ
dt

)
p
is the baseline

high-order scheme with no arti�cial dissipation, where ĝl represents both the inviscid and viscous penalties.
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7.2 Positivity

To prove the positivity of the high-order �ux-limiting scheme (Eq. (21)), we �rst consider the 1st-order
explicit Euler approximation of the time derivative term in Eqs. (7,11), so that on a given element

Ûn+1
p = Ûn

p + τ
(

dÛ
dt

)
p
,

Ûn+1
1 = Ûn

1 + τ
(

dÛ
dt

)
1
,

where Ûn+1
p = [J ]Un+1

p and Ûn+1
1 = [J ]Un+1

1 are pth- and �rst-order numerical solutions de�ned on the
same Legendre-Gauss-Lobatto (LGL) elements with the same high-order metric terms. In the above equation,
Ûn+1

1 is obtained by the �rst-order positivity-preserving entropy stable scheme presented in Section 5.1.

Therefore, at every i-th solution point of each element IE((Ûn+1
1 )i) > 0 and (ρn+1

1 )i > 0, where IE((Ûn+1
1 )i)

is the internal energy associated with the 1st-order solution (Ûn+1
1 )i.

To combine the 1st- and pth-order schemes, we use the �ux-limiting technique developed in [5], which is
in fact equivalent to limiting the low- and high-order solution vectors of the conservative variables:

Ûn+1(θf ) = Ûn + τ

[
(1− θf )

(
dÛ
dt

)
1
+ θf

(
dÛ
dt

)
p

]
= (1− θf )Û

n+1
1 + θfÛ

n+1
p = Ûn+1

1 + θf [Û
n+1
p − Ûn+1

1 ],
(22)

where the �ux limiter θf , 0 ≤ θf ≤ 1, is a constant on a given high-order element.
At each solution point, local lower bounds of density and internal energy are de�ned as follows:

ϵρi = (ρ1)
n+1
i ℵ, ϵIEi = IE((Û1)

n+1
i )ℵ, (23)

where ℵ , 0 < ℵ < 1, is a function that is bounded from below by a small positive number (e.g., 10−8), which
approaches to its lower bound if the solution is smooth and goes to 1 if the solution loses its regularity. In
the present analysis, ℵ is de�ned as follows:

ℵk = max(10−8, Lk), Lk = Snk max
i

(
|∆P |
2PA

)
, (24)

where 0 ≤ Snk ≤ 1 is the residual-based sensor given by Eq. (20) and 0 ≤ max
i

(
|∆P |
2PA

)
< 1 is one half of the

maximum relative two�point pressure jump (including jumps at the interfaces) on the kth element. Note
that 0 < ϵρi < (ρ1)

n+1
i and 0 < ϵIEi < IE((Û1)

n+1
i ) because 0 ≤ Lk < 1.

Let us show that the high-order �ux-limiting scheme given by Eq. (21) guarantees pointwise positivity
of density and temperature.

Lemma 4. For every i-th solution point, de�ne a set

Hρ
i = {θf ∈ [0, 1] | ρn+1

i (θf ) ≥ ϵρi }.

Then, the set Hρ
i can be written as Hρ

i = [0, θρi ] where 0 < θρi ≤ 1. Furthermore, the following statements
hold: 1) if 0 ≤ θf < θρi , then ρ

n+1
i (θf ) > ϵρi and 2) if θρi < 1, then ρn+1

i (θρi ) = ϵρi .

Proof. This follows directly from the fact that ρn+1
i (θf ) given by Eq. (22) is a linear equation in the variable

θf with ρn+1
i (0) > ϵρi .

Lemma 5. For every i-th solution point, de�ne a set

HIE

i = {θf ∈ Hρ
i | IE(Ûn+1

i (θf )) ≥ ϵIEi },

where Hρ
i = [0, θρi ] is de�ned in Lemma 4. Then, the set HIE

i can be written as HIE

i = [0, θIEi ] where

0 < θIEi ≤ θρi . Furthermore, the following statements hold: 1) if 0 ≤ θf < θIEi , then IE(Ûn+1
i (θf )) > ϵIEi and

2) if θIEi < θρi , then IE(Ûn+1
i (θIEi )) = ϵIEi .
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Proof. The proof of this lemma can be found elsewhere [7].

For a given element, we de�ne θIE = mini{θIEi } > 0. By construction, IE(Ûn+1
i (θIE)) ≥ ϵIEi and

ρ(Ûn+1
i (θIE)) ≥ ϵρi for every solution point on the element. The solution at the (n + 1)th time level is

set equal to Ûn+1(θIE), which preserves the pointwise positivity of both density and internal energy.

7.3 Entropy stability

We now show that the high-order positivity�preserving �ux-limiting semi-discrete scheme given by Eq. (21)
is entropy stable. Entropy stability of the high-order viscous terms is proven in [12]. As has been discussed in
Section 5.3, the �rst-order arti�cial dissipation terms are entropy dissipative. The high- and low-order inviscid
entropy conservative terms must be considered together to account for the contribution of θkf . Lemma 1

equates the entropy contributions of ˆ̄fl and
ˆ̄f
(EC)
l where ˆ̄f

(MR)
l = ˆ̄f

(EC)
l − ˆ̄f

(ED)
l . Therefore,

3∑
l=1

w⊤PP−1
ξl

∆ξl

[
θkf
ˆ̄fl + (1− θkf )

ˆ̄f
(EC)
l

]
= w⊤PP−1

ξl
∆ξl

ˆ̄fl (25)

for all 0 ≤ θkf ≤ 1. Thus, the θkf
ˆ̄fl + (1 − θkf )

ˆ̄f
(EC)
l �ux is entropy conservative, which follows directly from

the fact that the high-order �ux ˆ̄fl is entropy conservative, which is proven in [12, 15].

7.4 Freestream Preservation

Along with the positivity and entropy stability, the high-order positivity�preserving �ux-limiting scheme
given by Eq. (21) also guarantees freestream preservation. Indeed, let us consider the globally constant initial

condition with the consistent Dirichlet boundary conditions and show that dÛ
dt = 05. Note that all arti�cial

dissipation and viscous terms including the corresponding penalties depend directly on two-point jumps and
high-order computational derivatives of the solution, respectively. Hence, all viscous terms are identically
equal to zero.

We now show that all inviscid terms are also exactly equal to zero. The inviscid penalty terms are equal

to zero, because of the consistency of the Merriam-Roe �ux. Finally, ˆ̄fl and
ˆ̄f
(EC)
l have been proven to be

freestream preserving in [15] and Lemma 1 in Section 5.3, respectively.

8 Numerical Results

To assess the accuracy, discontinuity-capturing, and positivity-preserving properties of the proposed family
of high-order entropy stable spectral collocation schemes for the 3-D compressible Navier-Stokes equations,
we consider standard benchmark problems with smooth and discontinuous solutions. In all numerical ex-
periments presented herein, the 3rd-order strong stability preserving (SSP) Runge-Kutta scheme developed
in [25] is used to advance the semi-discretization in time. We use the Courant-Friedrich-Levy (CFL)-type
condition and the positivity time step constraints presented in Section 5.2, which guarantee positivity of
density and temperature at the �rst Runge-Kutta stage. If the scheme fails to preserve positivity on a later
Runge-Kutta stage, one can update the time step that meets the positivity constraint and repeat iterations
until the positivity constraint is met for all stages. The following acronyms are used for numerical schemes
in this section. The baseline high-order entropy stable spectral collocation scheme with polynomial order
�#� given by Eq. (7) with µAD

p = 0 is denoted as ESSC-p#. The new positivity preserving entropy stable

arti�cial dissipation scheme (Eq. (21)) is denoted as PPESAD-p#. The PPESAD-p# scheme with µAD
p set

to zero is denoted as PPES-p#.

8.1 3-D Viscous Shock

We validate that the proposed schemes are design-order accurate by solving the propagation of a 3-D
viscous shock on a sequence of randomly perturbed nonuniform grids. The 1-D viscous shock, which possesses
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ESSC PPESAD
K L∞ error rate L2 error rate L∞ error rate L2 error rate

p = 4
3 1.24 � 4.75e-2 � 0.68 � 4.03e-2 �
6 0.80 0.63 8.50e-3 2.48 0.56 0.27 8.20e-3 2.30
12 0.11 2.89 8.51e-4 3.32 0.11 2.37 8.51e-4 3.27
24 6.93e-3 3.96 4.96e-5 4.10 6.93e-3 3.96 4.96e-5 4.10
48 3.09e-4 4.49 1.54e-6 5.01 3.09e-4 4.49 1.54e-6 5.01

p = 5
3 3.15 � 3.30e-2 � 0.88 � 2.99e-2 �
6 0.34 3.20 4.13e-3 3.00 0.34 1.36 4.13e-3 2.86
12 4.37e-2 2.97 2.49e-4 4.05 4.37e-2 2.97 2.49e-4 4.05
24 2.30e-3 4.25 7.77e-6 5.00 2.30e-3 4.25 7.77e-6 5.00
48 3.50e-5 6.04 9.99e-8 6.28 3.50e-5 6.04 9.99e-8 6.28

p = 6
3 1.27 � 2.11e-2 � 0.52 � 1.99e-2 �
6 0.12 3.35 1.92e-3 3.46 0.12 2.07 1.92e-3 3.38
12 1.44e-2 3.11 7.33e-5 4.71 1.44e-2 3.11 7.33e-5 4.71
24 3.27e-4 5.46 1.20e-6 5.94 3.27e-4 5.46 1.20e-6 5.94
48 3.06e-6 6.74 7.56e-9 7.31 3.06e-6 6.74 7.56e-9 7.31

Table 1: L∞ and L2 errors and their convergence rates obtained with the ESSC and PPESAD schemes for
p = 4, 5, 6 for the viscous shock problem on 3-D nonuniform grids at t = 0.1.

(a) (b) (c)

Figure 1: Contours of randomly generated �rst-order arti�cial viscosity (left panel), high-order arti�cial vis-
cosity (middle panel), and �ux limiter obtained with the PPESAD-p4 scheme for the freestream preservation
problem at t = 10.

a smooth analytical solution at the Prandtl number Pr = 3/4, is rotated so that it propagates along the
direction [1, 1, 1]⊤ and is initially centered at the origin. The Reynolds and Mach numbers are set as follows:
Re = 50 and Ma = 2.5. The governing equations are integrated until t�nal = 0.1. For all polynomial orders
presented in Table 1, the proposed PPESAD scheme outperforms the corresponding baseline ESSC scheme
in terms of accuracy on coarse grids, for which the discrete solution is under-resolved (see the results shown
in bold). As the grid is re�ned and the viscous shock becomes fully resolved, the arti�cial viscosity coe�cient
µAD becomes identically equal to zero and the PPESAD schemes demonstrates the same design-order error
convergence as the ESSC scheme. Based on these results, we can conclude that the proposed PPESAD
scheme dissipates under-resolved �ow features in such a manner that reduces the error, while providing the
same accuracy as the underlying ESSC scheme when the solution is su�ciently smooth and fully resolved.
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(a) (b)

Figure 2: Time histories (left panel) of the total entropy computed with the ESSC-p4 and PPES-p4 schemes
and the PPES-p4 limiter coe�cient (right panel) on a randomly perturbed K = 82 grid for the isentropic
vortex problem.

8.2 Freestream preservation

We now corroborate our theoretical results presented in Section 7.4 and show that the new high-order
positivity�preserving �ux-limiting scheme given by Eq. (21) is freestream preserving on static curvilinear
grids. To demonstrate this property, the 2D constant viscous �ow with ρ = 1, T = 1, V = [cos(100),
sin 100, 0]⊤ at Re = 500, Ma = 3.5, and Pr = 0.7 is solved by using the PPESAD scheme on a 864-element
genuinely curvilinear grid around a cylinder. To ensure that all terms in the high-order positivity�preserving
�ux-limiting scheme are turned on during the simulation, we randomly set µAD

p and µ̄AD
1 to values between

0 and 1/Re, and the �ux limiter θf (see Section 7.1) to a value between 0 and 1 at each Runge-Kutta stage.
As evident in Figure 1, all arti�cial dissipation and �ux-limiting terms in the PPESAD scheme given by
Eq. (21) are nonzero throughout the simulation. Nonetheless, the global L2 and L∞ errors at the �nal time
tfinal = 10 are 2.84e−15 and 1.46e−13, respectively, thus corroborating our theoretical results.

8.3 Entropy Conservation

In Lemma 1, it has been proven that the �rst-order positivity-preserving entropy stable scheme is entropy
conservative for inviscid smooth �ows, if all arti�cial dissipation terms are turned o�. We demonstrate this
property by solving the inviscid isentropic vortex �ow with periodic boundary conditions at Ma = 0.3 on a
randomly perturbed coarse grid (see Figure 2). The vortex is initially located at (0, 0), propagates to the
right, and returns to the origin by t�nal = 20. This test problem has the exact solution (e.g., see [11]). To
validate that the proposed �ux-limiting scheme is entropy conservative, we randomly set the limiter value
in the range between 0 and 1 at each grid element, as shown in Fig. 2. For this smooth inviscid �ow with
periodic boundaries, both the ESSC and PPES schemes semi-discretely conserve the total entropy in the
domain. Note, however, the total entropy production obtained with the ESSC-p4 and PPES-p4 schemes
with constant time step ∆t = 2e−4 is of the order of 10−14 at the �nal time, because the 3rd-order SSP
Runge-Kutta scheme used for approximating the time derivatives is not entropy conservative and violates
this condition by the amount that is proportional to the truncation error of the temporal discretization.

8.4 2-D shock di�raction

The next test problem is the di�raction of a rightward moving shock over a backward-facing step at
the Mach number Ma = 200, the Reynolds number Re = 104, and the Prandtl number Pr = 0.75 . This
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(a) (b)

Figure 3: Density and pressure contours computed with the PPESAD-p4 scheme for the viscous shock
di�raction �ow at Ma = 200.

(a) (b)

Figure 4: High-order (left panel) and �rst-order arti�cial viscosities (log10) obtained with the PPESAD-p4
scheme for the viscous shock di�raction �ow at Ma = 200.

is a very challenging problem that is characterized by the presence of both the strong discontinuities and
regions with very low densities and pressures. If not dissipated properly, any high-order scheme can generate
negative density and/or pressure values near the corner point and at the shock front. In contrast to the
results presented in [1], we use the entropy stable adiabatic no-slip boundary conditions at the wall and
penalize against the Blasius solution corresponding to Ma = 200 at the in�ow boundary for solving the
Navier-Stokes equations. The grid consists of 52944 elements and is clustered near the step surface, so that
the normal grid spacing at the wall is 2.67 × 10−3. The Sutherland's law is used to compute the physical
viscosity coe�cient.

Unlike the ESSC-p4 scheme that fails to preserve the positivity of thermodynamic variables for this
viscous shock di�raction �ow at Ma = 200, the new PPESAD-p4 scheme captures both the weak and
strong shocks as well as the contact discontinuity within one grid element practically without producing any
spurious oscillations, as one can see in Figure 3. Contours of the low- and high-order arti�cial viscosities
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of the PPESAD-p4 scheme for the viscous shock di�raction �ow at the �nal time are shown in Fig. 4. As
follows from these results, the arti�cial viscosity coe�cient is at least 3 orders of magnitude smaller at the
contact discontinuity than at the shock, thus indicating that the proposed physics-based arti�cial dissipation
method is capable of distinguishing di�erent types of waves.

(a) (b)

Figure 5: Time histories of the total kinetic energy (left panel ) and density pro�les computed with the
PPESAD-p4 and ESSC-p4 schemes on the 163 for the Ma = 2 TGV problem.

8.5 3-D supersonic Taylor-Green vortex �ow

The last test problem is the 3-D viscous, compressible Taylor-Green vortex (TGV) �ow at Mach number
Ma = 2. This problem is considered to test how the proposed PPESAD scheme performs for under-resolved
turbulent �ows with strong shock waves. We adopt the TGV �ow parameters used in [26]. For the TGV �ow
considered, the Sutherland's law is used for the physical viscosity, and the Reynolds and Prandtl numbers
are 400 and 0.7, respectively. The problem is solved on the periodic cube, 0 ≤ x, y, z ≤ 2π, with the following
initial conditions: [ρ,V , T ] = [1 + 1

16 (cos 2x+ cos 2y)(cos 2z + 2), sinx cos y cos z,− cosx sin y cos z, 0, 1]⊤.
The comparison of kinetic energy histories obtained with the ESSC-p4 and PPESAD-p4 schemes and the

hybrid 8th-order compact �nite di�erence/ 7th-order weighted essentially nonoscillatory (WENO) scheme [26]
are presented in Fig. 5a. As follows from this comparison, the kinetic energy computed using the new spectral
collocation scheme on the uniform 643-element grid is practically identical to that of the ESSC-p4 scheme on
the same grid and in an excellent agreement with that computed by the 7th-order FD-WENO scheme on the
5123-element grid. On the 43 and 163grids, the PPESAD-p4 scheme dissipates the total kinetic energy more
than the ESSC-p4 scheme. However, this does not imply that the ESSC-p4 solution is overall more accurate,
which can be observed in Fig. 5b. Indeed, the ESSC-p4 solution on the 163 grid contains large spurious
overshoots that are not present in the corresponding PPESAD-p4 solution. It should be emphasized that
both solutions converge to each other as the grid is re�ned.
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