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Abstract: The present paper will address the development and implementation of the high-order
Flux Reconstruction (FR) schemes for high-speed flows on both straight and curved edged simplex
elements within the open-source COOLFluiD (Computational Object-Oriented Libraries for Fluid
Dynamics) platform. While the FR method potentially provides a more accurate detection of
complex flow features over relatively coarser mesh, when compared to their low-order peers, the
approach suffers from the same pacing items as the other high-order methods such as the slow
convergence to steady state and the lack of robust shock capturing capabilities. To overcome such
deficiencies, Adaptive Mesh Refinement (AMR) represent a robust procedure for improving the
quality of the physical results, especially shock capturing capabilities, due to a local increase of
the grid resolution and mesh/shock alignment. Particularly, spring-based and physics-driven r-
refinement (r-AMR) requires a compact stencil and is suitable for parallel computing. This fact
goes hand in hand with the FR method since the latter can obtain arbitrary high orders of accuracy
without requiring a wide stencil at higher orders. In this work, a concise overview of the FR method
and spring-based AMR techniques will be given, followed by some promising results of subsonic
flow simulations using FR in simplex elements and r-AMR-FR applied to benchmark high-order
supersonic test cases.
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1 Introduction
High-order methods have drawn considerable attention among the CFD community, mainly, the Flux Recon-
struction (FR) method. FR, originally developed by Huynh for 1D advection problem, is a framework which
allows to develop new high-order schemes while being simple and computationally efficient, particularly on
graphical processor units (GPU) [1, 2]. Despite the established advantages of the FR method [3], the latter
suffers from the lack of robust shock capturing methods. In order to overcome such deficit, Adaptive Mesh
Refinement (AMR) procedure is used to ease the shock capturing.
Previous to this work, a state-of-the-art fully implicit high-order FR code has been implemented for quadrilat-
eral and hexahedral meshes and used to solve Euler/Navier-Stokes equations, where its structure is extremely
modular and can be easily coupled to arbitrary sets of advection-diffusion-reaction Partial Differential Equa-
tions (PDEs) [4, 5, 6]. In addition, a sub-cell order-dependent spring analogy is developed and applied for
quadrilateral steady-state FR test cases. The latter module is parallel and physics-independent, letting the
user decide which monitor physical quantity to use for driving the adaptation according to the application
[7, 8].
In this work, we extend the existing FR code to deal with triangular meshes, develop a r-refinement sub-cell
order-dependent spring analogy within the aforementioned FR solver. The resulting solver is implemented
within the COOLFluiD platform [9, 10]. The authors invite the readers to consult the COOLFuiD’s website to
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have more detail about the FR solver and r-AMR module (https://github.com/andrealani/COOLFluiD/wiki).
The paper is structured as follows:

- Sec.2 and Sec.3 reviews the state-of-the-art of FR method for triangular elements and Vincent-Castonguay-
Jameson-Huynh Schemes applied to triangular elements;
- Sec.4 covers the main aspects of the implementation of FR for triangles within the COOFLuiD platform;
- Sec.5 presents spring based r-AMR and the sub-cell order-dependent spring analogy;
- Sec.6 shows very promising results for the FR-AMR solver, for low- and high-speed flows.

2 Extension of the FR approach to triangles
In this section, a review of the FR approach on triangles is presented based on [11, 12, 13, 14, 15]. The latter
was used as reference for the implementation of the solver.

Consider solving the 2D scalar conservation law within an arbitrary domain Ω:

∂u

∂t
+∇xyf = 0 ; ∇xyf =

∂f

∂x
+
∂g

∂y
, (1)

where x and y are spatial coordinates, t is the temporal variable, u = u(x, y, t) is a conserved scalar and
f = (f, g) with f = f(u) and g = g(u) being the fluxes of u in the x and y directions respectively. Similarly to
the 1D case, one considers partitioning the domain Ω into N non-overlapping, conforming linear triangular
elements Ωn.

Following the same analogy as the 1D case, the exact solution u within each element Ωn is represented by an
approximate solution uδn = uδn(x, y, t), a polynomial of degree P within Ωn and identically zero outside the
element. Likewise, the exact flux f within each element is represented by a function fδn = (fδn, g

δ
n) = fδn(x, y, t),

a polynomial of degree P+1 within Ωn and identically zero outside the element. Thus, the total approximate
solution uδ = uδ(x, y, t) and a total approximate flux fδ are defined as in the 1D case using Eq.2:

u(x, y, t) ≈ uδ(x, y, t) =

N∑
n=1

uδn(x, y, t) and f(x, y, t) ≈ fδ(x, y, t) =

N∑
n=1

fδn(x, y, t). (2)

Figure 1: Mapping between the physical space (x, y) and the computational space (ξ, η)

To facilitate the implementation of the FR approach in triangles, each element Ωn of the mesh is mapped
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to a reference element ΩS , a right angle triangle as depicted in Fig.1, using the mapping Θn such that:

x = Θn(ξ) = (1− ξ − η) x1,n + ξ x2,n + η x3,n, (3)

where x1,n, x2,n and x3,n are the coordinates of the three vertices of the triangular element Ωn in the physical
space.

The governing Eq.1 in the physical domain can be transformed to the equivalent governing equation in the
reference domain. The solution uδn within each element Ωn can thus be obtained by solving the transformed
conservation equation within the reference element ΩS :

∂ûδ

∂t
+∇ξη · f̂δ = 0, (4)

where

ûδ = ûδ(ξ, t) = Jnu
δ
n (Θn(ξ), t) , (5)

f̂δ = f̂δ(ξ, t) =
(
f̂δ, ĝδ

)
=

(
∂y

∂η
fδn − ∂x

∂η
gδn,−

∂y

∂ξ
fδn +

∂x

∂ξ
gδn

)
. (6)

Jn represents the Jacobian and can be expressed as follows:

Jn =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
. (7)

The terms Jn, ∂x
∂ξ , ∂x

∂η , ∂y
∂ξ and ∂y

∂η used in the previous equations depend on the shape of the element Ωn

and can thus be evaluated using Eq.3.
Let Γn and ΓS refer to the boundary of the physical element Ωn and the reference element Ωs, respectively.
One can thus define Pp(ΩS) the space of polynomials of degree ≤ P on ΩS , where the dimension of Pp(ΩS)
is 1

2 (P + 1)(P + 2). Another required definition for the extension of the FR approach to triangles is the
polynomial space Rp(ΓS) on the edges of the reference element defined as:

RP (ΓS) =
{
ϕ
∣∣ϕ ∈ L2 (ΓS) , ϕ

∣∣
Γf

∈ PP (Γf ) ,∀Γf

}
, (8)

with Γf being edge f of the reference element ΩS . This implies that functions of Rp(ΓS) are polynomials of
degree ≤ P on each side of the standard element, and are not necessarily continuous at the vertices. As in
the 1D approach, the 2D FR approach requires sevens steps.

Stage 1
The first stage consists of representing the approximate solution ûδ within the reference element ΩS by a
multi-dimensional polynomial of degree P , defined by its values at a set of Np = 1

2 (P + 1)(P + 2) solution
points. These solution points are represented in Fig.2 as well as the flux points which are located at the
Gauss quadrature points.
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Figure 2: Distribution of solution points (circles)
and flux points (squares) in the reference element
for P = 2

Figure 3: Numbering convention for the faces and
flux points on the reference triangular element
(P = 2) [15]

The approximate solution ûδ in the reference element lies in the space Pp(ΓS) and can then be expressed as:

ûδ(ξ, t) =

Np∑
i=1

ûδi li(ξ), (9)

where ûδi = Jn · ûδ
(
Θ−1

n (ξi) , t
)

is the value of ûδ at the ith solution point and li(ξ) is the multi-dimensional
Lagrange polynomial associated with the considered solution point in the reference triangle ΩS .

Stage 2
The second stage of the 2D FR approach involves determining the interface fluxes at the Nfp = P + 1
flux points along the standard element edges. Beforehand, it is necessary to present the convention used
to number faces and flux points as illustrated in Fig.3. Let the indices f, j refer to the flux point j on
the face f , where 1 ≤ f ≤ 3 and 1 ≤ j ≤ Nfp. Similarly to the 1D approach, the interface fluxes are
computed by first evaluating the multiple defined values of ûδ at each flux point using Eq.9. At each flux
point, ûδ− is defined as the value of ûδ computed using the local information of the element and ûδ+ as the
value of ûδ computed using the information of the neighbouring element that shares the considered flux point.

After computing the approximate solution values on both sides (ûδ− and ûδ+), one can then compute the
common interface value ûδIf,j associated to each flux point. The approach used to calculate such numerical
interface fluxes can be one of the well-known approaches including the Central Flux (CF) [16], Local Discon-
tinuous Galerkin (LDG) [17], Compact Discontinuous Galerkin (CDG) [18], and Internal Penalty (IP) [19]
approaches. Note that the Central Flux approach is a form of the commonly used Bassi-Rebay approach
(BR2) discussed in the 1D FR approach.

Stage 3
In this stage, the aim is to construct a transformed solution correction ûδC = ûδC(ξ, t) to approximate the
transformed discontinuous solution ûδD such that the sum equals the transformed numerical interface value
at the flux points (ûδD being defined by Eq.9). To do so, a vector correction function hf,j(ξ), associated
with each flux point f, j, is defined. Each vector correction function hf,j(ξ) is restricted to lie in the
Raviart-Thomas space [20] of order P , denoted by RTp(ΩS). The latter property implies that:

∇̂ · hf,j ∈ PP (ΩS)
hf,j · n̂|ΓS

∈ RP (ΓS)
, (10)

meaning that the divergence of each correction function ∇̂ · hf,j is a polynomial of degree ≤ P and that the
normal trace hf,j · n̂ on ΓS is also a polynomial of degree ≤ P along each edge. For the sake of simplicity,
the correction field ϕf,j(ξ) defined as the divergence of the correction function hf,j(ξ) is introduced such as:

ϕf,j(ξ) = ∇̂ · hf,j(ξ) (11)
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The vector correction functions hf,j verify the following property:

hf,j

(
ξf2,j2

)
· n̂f2,j2 =

{
1 if f = f2 and j = j2
0 if f ̸= f2 or j ̸= j2

(12)

Once the vector correction functions are chosen, an expression for the transformed solution correction ûδC

can be constructed on each face such that it verifies the following equation:

ûδC
∣∣
Γf

=

Nfp∑
j=1

[
ûδIf,j − ûδDf,j

]
[hf,j · n̂f,j ]

=

Nfp∑
j=1

Πf,j [hf,j · n̂f,j ] ,

(13)

with Πf,j the difference between the transformed numerical flux (interface solution) and the transformed
discontinuous solution on face f at flux point j.

Stage 4
The fourth stage of the FR approach in triangles deviates from the 1D case. In fact, this stage involves
constructing the solution gradient q̂δD expressed in the 2D case as:

q̂δD = ∇̂ûδ = ∇̂ûδD + ∇̂ûδC (14)

whereas, in the 1D formulation it was determined by applying the operator ∂
∂ξ to ûδD and ûδC . The

difference does not reside only in the aforementioned detail, but also in the definition of ûδC itself. As
previously mentioned, ûδC depend on the vector correction function and there is not a unique analytical
form for hf,j . Furthermore, ûδC is only defined on the boundary ΓS of the element, while q̂δD has to be
defined within the standard element ΩS . Thus, to obtain a proper form for q̂δD, an alternative approach for
forming the correction gradient is used:

∇̂ûδC =

3∑
f=1

Nfp∑
j=1

Πf,jψf,jn̂f,j . (15)

The new term ψf,j is a correction field introduced to transform ûδC defined on ΓS into ∇̂ûδC defined within
the element ΩS . The definition and details of forming ψf,j are developed in [12]. Using Eq.15, on can express
q̂δD as:

q̂δD = ∇̂ûδD + ∇̂ûδC =

Np∑
i=1

ûδDi ∇̂li(ξ) +
3∑

f=1

Nfp∑
j=1

Πf,jψf,jn̂f,j . (16)

For each of its components, q̂δD = (q̂δDξ , q̂δDη ) is represented by a degree P polynomial such as:

q̂δDξ =

Np∑
i=1

(
q̂δDξ

)
i
li(ξ) q̂δDη =

Np∑
i=1

(
q̂δDη

)
i
li(ξ). (17)

After obtaining q̂δD, one can then compute the approximate discontinuous flux using f̂δD = f̂δD(ûδD, q̂δD).
Likewise, for both of its components, the approximate discontinuous flux f̂δD = (f̂δD, ĝδD) can be expressed
with a degree P polynomial as

f̂δD =

Np∑
i=1

f̂δDi li, ĝδD =

Np∑
i=1

ĝδDi li. (18)
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The coefficients f̂δDi and ĝδDi are the values of the transformed flux evaluated at the ith solution point using
the approximate solution ûi and the auxiliary gradient q̂i, i.e f̂δDi = f̂(ûi, q̂i) and ĝδDi = ĝ(ûi, q̂i).

Stage 5
As in the 1D case, the fifth stage is similar to the second one except that the procedure is applied to compute
the numerical interface fluxes f̂δIf,j at the flux points along the edges of the standard element ΩS . To that end,
the multiple defined values of q̂δD are evaluated at each flux point using Eq.17 to obtain q̂δD

− and q̂δD
+ . In

addition, the approximate solution is computed at the edges of the element to obtain ûδD− and ûδD− using Eq.9.

By combining the latter variables, on can compute the discontinuous fluxes f̂δD− and f̂δD+ at the element
boundary. Once both approximate fluxes are computed at each flux point the same approach as chosen in
stage 2 is used to compute a common numerical normal flux (f · n)δIf,j .

Stage 6
The sixth stage of the FR approach consists in computing the transformed correction flux f̂δC to compensate
for the difference between the discontinuous flux and the values reached at the edges of the element. As in
the 1D case the goal is that the sum of the discontinuous flux f̂δD and the correction flux f̂δC equals the
continuous flux f̂δ within the element ΩS and the interface flux f̂δI at the edges of ΩS , i.e at the flux points.
The correction flux f̂δC is expressed as:

f̂δC(ξ) =

3∑
f=1

Nfp∑
j=1

[
(f̂ · n̂)δIf,j −

(
f̂δD · n̂

)
f,j

]
hf,j(ξ)

=

3∑
f=1

Nfp∑
j=1

∆f,jhf,j(ξ)

, (19)

where hf,j(ξ) is the correction function depending on the considered flux point and ∆f,j is defined as the
difference between the normal transformed numerical flux and the normal transformed discontinuous flux at
the flux point j on the face f . Therefore, by combining Equations 19 and 18, on can obtain the continuous
flux f̂δ.

Stage 7
The seventh and final stage of the FR approach in triangles consists in computing the divergence of the
continuous flux f̂δ. The obtained result will then be used to update the solution at the point ξi as follows:

dûδi
dt

= −
(
∇̂ · f̂δ

)∣∣∣
ξi

= −
(
∇̂ · f̂δD

)∣∣∣
ξi

−
(
∇̂ · f̂δC

)∣∣∣
ξi

= −
Np∑
k=1

(
f̂δDk

) ∂lk
∂ξ

∣∣∣∣∣∣
ξi

−
Np∑
k=1

(
ĝδDk

) ∂lk
∂η

∣∣∣∣∣∣
ξi

−
3∑

f=1

Nfp∑
j=1

∆f,jϕf,j (ξi)

(20)

The nature of the FR approach when applied to triangles depends on four factors [12]: the location of the
solution collocation points ξi, the location of the flux points ξf,j , the methodology for calculating the nu-
merical fluxes ûδI

f,j and f̂δIf,j and finally the form of the correction fields ϕf,j .

In the following sections, the location of the flux points ξf,j is defined using Gauss-Legendre quadrature
[21]. Regarding the location of the solution collocation points ξi, quadrature points are used as presented in
[22].
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3 Vincent-Castonguay-Jameson-Huynh Schemes
As stated in the previous sections, the stability of the FR approach is highly influenced by the choice of
the correction function and their associated correction fields. Vincent-Castonguay-Jameson-Huynh (VCJH)
schemes specify a stability-preserving form for the correction functions and fields as presented in [14] and
detailed in [23]. In this section, an adapted version of an energy-stable VCJH approach for selecting the
correction field ϕf,j will be summarized since it was used as a reference for its implementation. Indeed, the
approach presented in [15] is applicable to right triangles defined between [−1, 1] while the reference element
considered is defined between [0, 1].

Although a closed form expression of the correction functions hf,j and their divergence ϕf,j has not been
found (unlike the 1D case), the coefficients of the polynomials defining each correction field ϕf,j can be ob-
tained from the solution of a system of equation [15]. To that end, some preliminary definitions are needed,
such as the operator D(v,w) defined as

D(v,w) =
∂w

∂ξ(w−v+1)∂η(v−1)
, (21)

where v and w are integers verifying 1 ≤ v ≤ w + 1. The 2D orthonormal Dubiner basis [24] is also needed,
which is given by

Lk(ξ) =

√
2

4
Qv(a)Q

(2v+1,0)
w (b)(1− b)v (22)

with
k = w + (P + 1)v + 1− v

2
(v − 1), (v, w) ≥ 0; v + w ≤ P (23)

a =
2ξ

1− η
− 1, b = 2η − 1 (24)

and Q
(α,β)
n is the normalized Jacobi polynomial of order n. The Dubiner basis expressed in Eq.22 is or-

thonormal on the reference triangle ΩS . Finally, the VCJH scheme coefficients (cm’s) are defined as

cm = κ

(
P

m− 1

)
, (25)

where κ is a free parameter which will be specified later and the binomial coefficient of degree m− 1 is given
by (

P
m− 1

)
=

P !

(m− 1)!(P − (m− 1))!
. (26)

Being polynomials of degree P , the correction fields ϕf,j can be expressed as

ϕf,j =

Np∑
k=1

σkLk(ξ), (27)

where σk are the expansion coefficients. In a VCJH scheme, these coefficients corresponding to each correction
field ϕf,j can be obtained by solving the following system of Np equations for the unknowns σk :

Np∑
k=1

σk

P+1∑
m=1

cm
(
D(m,P )Li

)(
D(m,P )Lk

)
= −σi +

∫
ΓS

(hf,j · n̂)LidΓ, for 1 ≤ i ≤ Np, (28)

where κ is the free parameter that must lie within the range 0 ≤ κ ≤ ∞. The integral term on the right
hand side of Eq.28 can be evaluated using Eq.12 and knowing that hf,j · n̂ is a polynomial of degree P on
the edges of ΩS .

The correction field obtained by solving the system of equations (i.e. Eq.28) and using Eq.27 results in
an energy stable Flux Reconstruction scheme on triangles. This scheme is parameterized by a single scalar

7



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

ICCFD11-2022-0303

parameter κ. Figure 4 represents an example of a correction field ϕ2,1 computed on the defined reference
element ΩS compared to reference data (the free paramter used is the same as in the reference [25]).

Figure 4: Plots of the VCJH correction field ϕ2,1 associated the flux point j = 1, f = 2 and p = 2 for a
parameter κ = 3.13 · 10−2 (right: adapted version, left: reference).

4 Overview of the FR solver

Figure 5: Illustration of the interactions between the FR solver and the COOLFluiD Framework [4]

The presented FR solver handles unstructured grids of 2D triangles and is implemented as a plug-in of
COOLFluiD. COOLFluiD is a scientific high-performance computing platform written in C++, offering a
component-based framework and handling complex multi-physics simulations. Since the implementation of
the present solver is based on (and linked to) the existing FR solver that handles 2D quadrilaterals and 3D
hexahedra, some aspects of the following description will include details on both solvers.
The FR solver is implemented to solve the compressible Euler and Navier-stokes equations in 2D (and 3D).
A particular feature in COOLFluiD is that the algorithms that depend on the physics of a problem are
decoupled from the numerical algorithms, meaning that the solver has been developed to solve advection
and advection-diffusion problems in general. All the required physics-dependent algorithms for the Euler
and Navier-Stokes equations were already implemented, and other physics-dependent functions can be added
to extend the functionality of the solver.
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As detailed in previous sections, the FR method is mainly characterized by the solution and flux point distri-
butions, the choice of the correction function (and field) and the interface flux scheme. The implementation
of the FR solver on triangles employs a Gauss-Legendre distribution for both flux and solution points. The
latter point distributions are defined in an appropriate C++ class within the solver facilitating the addi-
tion of other distributions if needed by simply defining new classes. The VCJH scheme for the correction
functions (discussed in Sec.3) has been implemented in the present solver for triangles (quadrilaterals and
hexahedra were already done). The existing FR implementation included several interface flux schemes,
namely: Centered flux [26], Lax-Friedrichs flux [27], Roe flux [28], AUSM+ (Advection Upstream Splitting
Method) [29] and AUSM+-up flux [30]. The order of the FR method can be chosen by the user knowing
that it has been implemented from P = 0 (1 order accuracy in space) up to P = 9 (i.e. 10 order accuracy
in space). Another noteworthy feature of COOLFluiD is that the solver can either be executed serially or
in parallel.
The implemented FR solver consists of two principal components: the FR data structure and the FR algo-
rithm. The first component’s main role is to create the data that defines the high-order unstructured mesh
comprising geometric entities (e.i. elements and faces), their connectivity and their properties.The second
component, also called core code, uses the created data to perform the computations and gives a numerical
solution. These two components interact with the existing COOLFluiD framework as represented in Fig.5.
The main block of the FR solver is the computation of the divergence of the reconstructed fluxes for each
element and time step. The interaction with the COOLFluiD framework is also illustrated by Fig.5, and
more precisely, the use of the physics module to evaluate the physical fluxes based on u and ∇u.

Knowing that the Navier-Stokes and Euler equations can be written as a system of partial differential
equations in the conservative form (cf. [4]), the flux can be split up into a convective and a diffusive part.
Therefore, the algorithm consists of two major parts: the convective algorithm and the diffusive algorithm.
As shown in Fig.6, both algorithms interact with other classes defining the parameters of the FR method set
by the user, namely: the interface flux scheme, the correction function type and the geometric data (i.e. flux
and solution point distribution). In addition, a shock capturing algorithm based on a modified Localized
Laplacian Artificial Viscosity (LLAV) scheme combined with a positivity preservation method were previ-
ously implement as detailed in [4]. Their respective codes were extended to triangles in the present work in
order to alleviate oscillations caused by the Gibbs phenomenon.

Figure 6: General structure of the FR algorithm taken from [4].

9



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, Hawaii, USA, July 11-15, 2022

ICCFD11-2022-0303

5 Spring-Based Adaptive Mesh Refinement
In [7, 8], the authors have proposed and developed an r-refinement adaptation algorithm based on a user-
defined flow field variable, e.g. density or pressure, that relies upon the solution of pseudo-elastic systems
associated to the given mesh. The same philosophy is applicable to the FR triangular framework. Conse-
quently, a brief overview is given in the following.
Let n ∈ N be the number of the nodes in a mesh M and let P be the set of the nodes positions inside M.
Let L be the incidence matrix defined as:

Lij =

{
1, if nodes i and j are edge-connected
0, otherwise.

To achieve the equidistribution condition of r-refinement, the line integral I, expressed in Eq.29, must be
constant.

I =

∫ 1

0

W (r(s)) · r′(s)ds = constant, (29)

where r(s) = Pi + s(Pj −Pi) is the parametrization of the edge connecting nodes i and j in function of the
parameter s ∈ [0, 1]. Eq.29 is the solution of the Euler-Lagrange equation to the minimization of the energy
which reads:

Eij = Lij

∫ 1

0

W (r(s))(Pj − Pi)
2ds, (30)

Considering the weight function as a constant, the energy equation can be re-written in a form analogous
to the classical spring potential energy equation. In Eq.31, we can identify Wij as the stiffness coefficient
between nodes i and j and an equilibrium spring length set to zero.

Eij = LijWij(Pj − Pi)
2, (31)

The simplest optimization problem depends on finding the equilibrium positions between two adjacent nodes
in the mesh M based on a network of springs:

∂E

∂P
= 0 &

∂2E

∂P2 > 0. (32)

The analytic Jacobian is defined as:

∂Eij

∂Pi
= −2LijWij(Pj − Pi) = 0. (33)

After simplifying the constant and collecting the contributions of each node, we obtain:

n∑
j=1

LijWij(Pj − Pi) = 0. (34)

The resulting linear system, i.e. the pseudo-elastic system, to be solved using the Generalized Minimal
RESidual (GMRES) algorithm complemented by a parallel Additive Schwartz Preconditioner as provided
by the PETSc toolkit [31, 32, 33, 34], is expressed in Eq.35.

A[n×n]P[n×1] = b[n×1], (35)

where

Aij =

{
−LijWij , if i ̸= j∑n

j=1 LijWij , if i = j.

and b contains the non-homogeneous terms of the Dirichlet or the Neumann boundary conditions. As a
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result, the nodal re-positioning obeys to the following relation:

Pk+l = (1− ω)Pk + ωPnew, (36)

where Pk is the old node position at iteration k, Pk+l is the new relaxed node position at iteration k+ l, with
l > 0 and Pnew is computed from Eq.35. Within this work, we will mainly target the linear spring analogy.
To achieve that goal, the physics-driven linear stiffness can be used based on the selected flow variables
gradients. Eq.37 expresses the linear spring stiffness coefficient, kLij , between two edge-connected nodes i
and j with a respective nodal state Ui and Uj . The weight function introduced previously is described as:

Wij = kLij = |Uj − Ui|. (37)

Choosing such stiffnesses ensure that the r-refinement algorithm is physics-driven because the spring con-
stants will vary depending on the local physical properties of the flow. Nevertheless, supersonic flows display
high variations of physical variables over narrow regions and, for the nodes located in the vicinity of shocks,
the values of the spring constants computed with Eq.37 can reach high values. For that reason, in our
implementation, these values are truncated and bounded thanks to a P 2 algorithm, which is based on the
use of quantiles (the p-quantile of a distribution is defined as the value below which 100 % of the distribution
lies) [35]. The P2 algorithm gets all the spring constants one after the other and dynamically computes
truncated spring values based on user-defined minimum and maximum quantiles.

5.1 Boundary nodes
Two types of the boundary conditions are defined within our r-AMR algorithms:

1. Dirichlet (i.e. locked node) where the node position is kept constant:

Pm
i = P 0

i ,

2. Neumann (i.e. moving node in boundary) where only the tangential displacement is allowed. Mathe-
matically, this implies:

∂(Pi · ni)

∂x
= 0,

where ni is the boundary face normal vector.

5.2 Sub-cell order-dependent spring analogy
5.2.1 Concept

The sub-cell order-dependent spring analogy, developed by F. Ben Ameur et al. in [8], exploits the FR
properties, mainly taking the advantage of the presence of the flux points. The key idea is to place fictitious
springs, between the flux points and the end nodes of the edge as shown in Fig.7. The equivalent edge
stiffness is computed as :

keq = keq,L + keq,R, (38)

where, keq,L/R =
∑N

i ki,i+1,L/R, N equals the number of springs placed in series and ki,i+1,L is the stiffness
of the spring placed between point i and i+ 1 on the left/right side of the edge.
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Figure 7: Sub-cell order-dependent spring analogy, edge linking node 1 and 2 (red dots) with 3 flux points
(blue squares) for a P2 reconstruction

The main benefits of this method are its sub-cell resolution and its order dependency. Indeed, it tends
to increase the flexibility of the mesh as the order of the polynomial extrapolation grows (because the
number of spring contributions increases with the order). This is very important as we would like to use
high-order polynomial reconstructions (to improve the accuracy per DOF) with coarse grids (to decrease the
computational cost).

5.2.2 Connectivity information: Q2 meshes

When studying flows over curved bodies (such as cylinders), Q1 meshes produce unsatisfying solutions. This
is due to the discrepancy between the physical boundary which is curved and its numerical description which
is straight. In addition, as already reported in [36, 37], if the order of the numerical method increases
and becomes highly different from the order of the geometrical approximation of the boundary (P4Q1 for
instance), the quality of the physical results decreases significantly. Within this work, we will mainly focus
our analysis on Q2 meshes. Consequently, connectivity information for the sub-cell order-dependent spring
analogy should be established. Fig.8(a) shows a simplified mesh of 3 high-order triangular mesh and a P3
reconstruction. We introduce as well the following nomenclature to clarify our subsequent explanations: the
3 red nodes at each vertex of the triangle are called corner nodes. Each node located at the middle of each
edge is called Middle node. Let us specify that this classification and numbering is only fictitious as of now.
Indeed, these nodes are all COOLFluiD geometric entities and possess the same characteristics.

Figure 8: Location of the nodes and of the flux points for P3Q2 (a) unstructured elements attached to one
boundary (b) structured elements attached to two boundaries.
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In order to be able to place the subsprings between two consecutive entities, a sorting algorithm is applied
in order to determine how these flux points are oriented with respect to the two edge-connected nodes. To
summarize: over the edges the number of subsprings is:

• P+2 : for Q2 meshes and if the FR polynomial order is even,

• P+3 : for Q2 meshes and if the FR polynomial order is odd.

Fig.8(b) depicts a special case of edge connected nodes (i.e. gray edge) where they are both boundary nodes,
yet, they are placed on different boundaries. Consequently, the gray edge linking both nodes should be dealt
with as an inner edge and not a boundary edge.
Concerning the boundary treatments of the middle nodes, we distinguish 2 cases:

1. For Q2 meshes on straight lines, as shown in Fig.9(b), we deal with the middle node as it was a regular
boundary node. Nevertheless, all boundary points are subject to a factor that multiplies its resulting
spring stiffness, in order to rigid its movements.

2. For Q2 meshes on curved lines, as shown Fig.9(a), we propose an ad-hoc solution. As the sub-cell
resolution is also present on a curved boundary, we approximate the second order line between two
consecutive points as a straight line and we deal with as piecewise linear boundary subsprings.

Figure 9: Simplified illustration of the Q2 boundary edge: Q2 straight line (b), Q2 curved line (a)

6 Numerical results

6.1 Inviscid flow in a channel with a bump
The first test case consists of an inviscid flow at M = 0.5 through a channel with a smooth sinusoid bump.
The physical domain is bounded by the inlet at x = 0, the outlet at x = 4 and the bottom and top edges at
y = 0 and y = 1 respectively. While the top edge is straight, the bottom one is characterized by a smooth
bump with an axis of symmetry positioned at x = 2, as illustrated in Fig.10a. The aforementioned sinusoid
bump is defined by the function:

f(x) = 0.1 + 0.1 · cos(π(x− 2)), with x ∈ [1; 3]. (39)

Regarding the boundary conditions, subsonic inlet and subsonic outlet conditions are imposed, as well as
a slip-wall boundary condition on both top and bottom edges. The subsonic inlet condition implied fixing
the total inlet pressure and temperature, while the subsonic outlet condition requires imposing the outlet
pressure. The free-stream flow values for this test case are summarized in Tab.1.

M∞ ρ∞[-] p∞[-] vx,∞[-] vy,∞[-]
0.5 1 1 0.5

√
1.4 0

Table 1: Sinusoid bump: free-stream flow characteristics
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(a) Coarse mesh: 35 elements (grid 1)

(b) Fine mesh: 203 elements (grid 2)

Figure 10: Discretization of the channel with triangular cells

As illustrated in Fig.10, the physical domain is discretized by means of two different grids formed by triangular
elements. For the finest mesh, illustrated in Fig.10b, the number of elements on the boundaries was fixed to 4
on the inlet and outlet edges, 12 elements on the top and 25 elements on the bottom edge. Both unstructured
grids were generated using Gmsh [38], an open-source mesh generator. Both straight edged elements with
linear geometric mapping (Q1), as well as curvilinear elements with quadratic geometric mapping (Q2) were
used. With Q1 straight-edged elements, the physical boundary may not coincide with the computational
boundary leading to errors polluting the solution. Therefore most of the presented simulations are run
with curvilinear triangular elements. In the present work, the elements are denoted by PpQq following the
convention of Bassi and Rebay [39], where p refers to the order of the polynomials used to approximate the
solution and q refers to the order of the polynomials used for the geometric mapping.

Figure 11: Mach number contours for the inviscid flow through a channel with a bump obtained with P3Q2
elements (grid 2)

The Mach contour plot obtained with P3Q2 elements (using grid in Fig.10b) is presented in Fig.11. The
illustrated result was obtained using implicit time stepping method which greatly speeds up the convergence.
Indeed, since there is no constraint on the CFL number, convergence was reached in 76 iterations for a total
run time of 59.0447 seconds. Fig.12 shows the logarithm of the density residual and the CFL number
evolution as a function of the simulation iterations. The CFL law used is the following:

CFL(n) = min(0.5 · 2n, 104) , (40)
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where n is the number of iterations. If an explicit time stepping method was to be used, the CFL number
has to be limited to guarantee the stability of the scheme: CFLmax = 1

P+1 .

Figure 12: Logarithm of the residual of the density and CFL evolution for the inviscid flow through a channel
with a bump obtained with P3Q2 elements (grid 2)

In order to verify the obtained results, a comparison with data produced with the already implemented
and verified FR solver working with quadrilateral elements [4] was performed. Fig.13 illustrates the density
measured at the bottom wall extracted from the results obtained with P3Q2 triangular elements opposed to
P5Q2 quadrilateral elements. The total number of degrees of freedom in the triangles case is equal to 2030,
while in the quadrilateral elements case the number of degrees of freedom is 3600. As illustrated, P3Q2
triangular elements produced satisfactory results as it follows well the reference data.

Figure 13: Wall density obtained with P3Q2 elements compared to reference results obtained with P5Q2
quadrilateral elements

For an inviscid flow, no entropy should be produced within the flow field and thus, should be constant
on the entire domain. Therefore, the accuracy of the solution will be measured through the entropy error
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ϵs, where ϵs in the i-th state is defined as:
ϵs,i =

s− si
s

. (41)

The value of the entropy s is determined using the free-stream flow characteristics. The L2-norm of the
entropy error ϵs is defined as follows:

L2(ϵs) =

√√√√ N∑
n=1

∫
Ωn

ϵ2sdΩn ≈

√√√√ N∑
n=1

Nq∑
j=1

ϵ̂s
2Jnωj , (42)

where N is the number of elements, Ωn is the domain associated with the n-th element, Jn the Jacobian
determinant of the n-th element, Nq the number of quadrature points and ωj the j-quadrature weight. As
shown in Eq.42, the integral over the element domain is computed using Gauss quadrature as in [22].

Order P1 P2 P3
Dof 105 303 795 210 606 1590 350 1010 2650
L2 error 9.07E-03 3.35E-03 1.15E-03 1.31E-03 3.35E-04 1.08E-04 7.35E-04 1.31E-04 3.32E-05
Order P4 P5
Dof 525 1515 3975 735 2121 5565
L2 error 3.43E-04 4.43E-05 1.30E-05 1.84E-04 2.68E-05 7.16E-06

Table 2: Results for the entropy L2-error for the inviscid flow through a channel with a bump

The L2-norm of the entropy error has been computed for three successively refined grids starting with grid
1 (Fig.10a), with P1Q2, P2Q2, P3Q2, P4Q2 and P5Q2 FR schemes. For all the simulations the parameters
were fixed, this includes the VCJH parameter c, for which the same working value was used. As illustrated
in Tab.2, the accuracy is improved when either the polynomial order P approximating the solution within
an element is increased or for the same element size and number (i.e. p-refinement), or when the mesh is
refined for the same order (i.e. h-refinement). Tab.2 illustrates also the advantage of p-refinement as the
L2-error of P1Q2 elements on the finest grid are approximately reduced by a factor of 10 when using P5Q2
elements on the coarsest grid even though the total number of degrees of freedom is slightly higher for P1Q2,
namely 795 as opposed to 735 for P5Q2.

(a) P1Q2 (b) P3Q2

(c) P5Q2

Figure 14: Mach contours for the inviscid flow through a channel with a smooth bump on the coarse mesh
(grid 1)
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6.2 Viscous flow around a cylinder Re=40
In this test case, the aim is to simulate the stable re-circulation bubble formed behind a cylinder occurring at
a specific Reynolds number. In fact, The viscous flow around cylinders is greatly influenced by the Reynolds
number:

Re =
ρv∞D

µ
(43)

with v∞ the far-field speed, D the diameter of the cylinder and µ the dynamic viscosity. For different
Re-numbers, different flow regimes can be defined:

• For a very low Re-number, e.g. Re < 1, the flow is symmetrical and no separation occurs

• For 1 < Re < 40 a stable re-circulation bubble is formed behind the cylinder holding two steady
vortices at its trailing edge.

• For 40 < Re < 103 vortices are shed behind the cylinder and a von Karman vortex street is formed
[40].

In order to simulate a steady-state solution and visualize stable vortices, the Re-number is chosen equal to
40. The standard value for air was taken for the Prandtl number (i.e. Pr= 0.72). Pr is defined as

Pr =
µcp
κ

(44)

where κ is the Fourier heat conduction coefficient and cp the specific heat capacity. The free-stream values
for this second test case are compiled in Tab.3.

M∞ ρ∞[-] p∞[-] vx,∞[-] vy,∞[-]
0.15 1 1 0.15

√
1.4 0

Table 3: Viscous flow around a cylinder: free-stream flow characteristics

Regarding the geometry, the cylinder has a diameter of D = 1 while the outer boundary is characterized
by diameter douter = 30. An adiabatic no-slip wall is applied to the cylinder’s boundary. Moreover, a far-field
boundary condition is associated with the outer boundaries of the physical domain. Thanks to the symmetry
of the present case, only the upper half of the domain was considered and subdivided into 263 triangular
elements as depicted in Fig.15. The CFL law used in this case is the same as the one used for the bump.

Figure 15: Discretization of the domain for the viscous flow around a cylinder case (Nelements = 263)
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Figure 16: P1Q2 (#dof=789) Figure 17: P2Q2 (#dof=1578)

Figure 18: P3Q2 (#dof=2630)

Figure 19: Flow characteristics for Re = 40 and
definition of vortex centers position, length of the
recirculation zone and separation angle

a/D b/D L/D θ
Coutanceau [41] & Bouard
(experimental) 0.76 0.29 2.13 53°

Xu [42] 0.72 0.3 2.24 -
Lepilliez et al. [43] 0.707 0.297 2.220 -
Wang et al. [44] 0.75 0.3 2.29 52.1°
Xu et al. [42] - - 2.21 53.5°
Present results
P3 0.7 0.29 2.23 53.31°
P2 0.704 0.27 2.16 50.32°

Table 4: Viscous flow over a cylinder for Re = 40: length L of recirculation zone, location (a, b) of vortex
center and separation angle.

Table 4 shows the normalized center positions and lengths of the recirculation zone as well as the sep-
aration angles θ for several references and our present results (i.e. P2 and P3). Mainly, the error on the
latter, with respect to the experimental value, measured by Coutanceau and Bouard and compared to the P3
solution, is of the order of 0.58%, whereas the errors on the center coordinates are (7.89%, 0%). In general,
our obtained values are in good agreement with the other reference simulations.
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6.3 Supersonic flow in a channel with a wedge
Multiple results of the sub-cell order-dependent spring analogy are obtained for the steady 2D wedge channel
flow based on the FR-AMR sub-cell order-depent spring analogy for triangular grids. The test case conditions
are presented in Tab.5 and Tab.6, whilst, the computational domain is shown in Fig.20.

Physical Model M ρ [-] ρu [-] ρv [-] ρE [-]
Perfect gas 2 1 2.36643 0 5.3

Table 5: 2D wedge – Flow characteristics

Dimensions Type BC 1 BC 2 BC 3 BC 4
2D Triangular Inlet Outlet Symmetry no-slip wall

Table 6: 2D wedge – Computational domain

Figure 20: 2D wedge geometry

Three meshes are used to demonstrate the capabilities of the FR-AMR sub-cell order-dependent spring
analogy. The results over the meshes, presented in Tab.7, are in agreement with the results in F. Ben Ameur
et al. [8]. In fact, for all configurations, the mesh adapts itself properly to the phenomena encountered in
the wedge channel. We can indeed see that the mesh is refined around the shocks, the expansion waves and
their reflections. The results of the simulations carried out on the meshes (cf. Tab.7) are depicted in Fig.21,
Fig.22 and Fig.23.

Q2 meshes used for # Elements Coarsening
# Elements # DOF Coarsening

# DOF
P3 2050 ×1 20500 ×1
P4 344 ×6 5655 ×3.62
P5 176 ×11.6 3696 ×5.55

Table 7: Mesh characteristics
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Figure 21: FR-AMR P3Q2 results

Figure 22: FR-AMR P4Q2 results
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Figure 23: FR-AMR P5Q2 results

To further asses the capabilities of the unstructured FR-AMR solver, the shock position is compared to
the reference, as studied in F. Ben Ameur et al. in [8].

The results obtained in Fig.24 show a considerable advantage brought by the AMR procedure: the shock
(which is characterized by the density jump) is close to the reference solution, i.e. xref = 1.0039 and
ρ2

ρ1
= 1.7047. It comes with no surprises that P3 density field at the line section Y=0.5, is the closest to the

analytical solution, as it contains a large number of DOFs. Nevertheless, the P4 and P5 solutions depicts
excellent outcomes, considering that we are using ×6 and ×11.6 coarser meshes, respectively.

Figure 24: Comparison of the density fields obtained around the oblique shock for P3, P4 and P5 with
respect to the analytical solution at Y=0.5m
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6.4 Inviscid hypersonic flow around a cylinder
Promising preliminary results are obtained for the case of a Mach 8 inviscid flow around a cylinder with
a radius of 1.5. The test case is well known in the literature as it is used to investigate the carbuncle
phenomenon of the various upwind schemes [45, 46, 47, 48]. Fig.25 shows the pressure contours of the
adapted mesh. We can clearly see that the bow shock is narrowly captured while using a relatively coarse
mesh with 776 elements. This number is quite low for hypersonic simulations, even when using a third order
polynomial (i.e. P3). The numerical instability associated with shock-induced anomalies are limited thanks
to r-AMR.

Figure 25: (a) Initial Mesh - (b) Adapted Mesh - (c) Pressure field and contours lines

7 Conclusion and Future Work
Within this work, the authors have successfully extended the COOLFluiD’s existing FR solver to deal
with triangular elements. The new solver can handles explicit/implicit and inviscid/viscous governed by
the Euler or Stokes equations. Basically, this extension will mainly reduce the tedious mesh generation
task, especially, for complex geometries as the solver can rely now on simplex elements. In addition, the new
concept of sub-cell order-dependent spring analogy shows its promising results on this type of mesh elements.
As our previous work concerning r-AMR, the FR-AMR is developed as a standalone module that can be
coupled, with minor efforts, to any high-order CFD/plasmas solvers. Finally, this work contributed to the
development of the first in its kind spring-based r-AMR within the high-order FR framework for triangular
meshes.
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