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Abstract: High-speed Computational Fluid Dynamics calculations often rely on structured
meshes in order to facilitate aligning the mesh with shocks either manually or via some semi-
automated process. The shock alignment of the mesh is often considered critical in order to obtain
sufficiently accurate outputs such as integrated surface heat transfer. However, creating shock-
aligned structured meshes with complex geometries and/or multiple interacting shocks is chal-
lenging, and may not even be feasible for some configurations. Unstructured meshes offer greater
flexibility focusing mesh resolution to capture complex geometry and flow features. This work
demonstrates that integrated pressure drag computed using automated output-based adapted un-
structured meshes can achieve higher degrees of accuracy compared shock fitted structured meshes
for a canonical high-speed test case.
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1 Introduction
Properly resolving critical flow features for high-speed aerodynamic flow calculations is critical for accurate
predictions of outputs of interests, such as lift, drag, or surface heat transfer, just to name a few. This
raises an underlying question then of what aspects of the flow are the most critical to resolve. Traditionally,
much emphasis is placed on resolving the shockwave, especially the leading shockwaves of the geometry.
The is strong justification for this approach, as these shockwaves fully set the flow conditions for everything
downstream on the geometry. Poor resolution of the shockwave and/or misalignment of the mesh can
introduce spurious, non-physical entropy gradients that contaminate the flow and can lead to numerical
phenomena such as carbuncles. Consequently, there is a strong preference for generating grids that are
well-aligned with the shockwaves. For structured meshes and simple geometries that lack strong interactions
of the shockwaves, this may be accomplished with straightforward heuristics, but for complex geometries
and unstructured grids, the process can become very labor intensive with significant user intervention across
multiple iterations.

Nevertheless, such feature-based adaptation is not always guaranteed to improve the measured results for
output quantities of interest. One of the classical examples of this outcome is the “fish-tail” shock that airfoils
exhibit at high transonic speeds. The shockwave in this scenario is very strong, but because it emanates from
the trailing edge of the airfoil, it is completely decoupled from the drag functional. Therefore, increasing
resolution around such a shock does not improve the predicted drag accuracy. Conversely, it can be found
that the stagnation streamline has a leading-order impact on the drag functional, but the flow field typically
does not trigger any feature-based grid refinement such as one would apply to a shockwave.

Output-based mesh adaptation, however, offers a robust alternative to feature-based adaptation. Output-
based methods use the adjoint of a target functional, such as lift, drag, or heat transfer, and connects it to
the error of the discretization. In this way, the grid can be refined in regions of the flow with the strongest
influence on the output quantity of interest, and coarsened in regions with the weakest influence to keep the
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total degrees of freedom in the solution near a target level. In this paper, output-based mesh adaptation is
applied to two high-speed test cases, one inviscid and one viscous, using a finite-element-based flow solver
and multiple mesh generation tools. The results for the inviscid case are compared with finite-difference
solutions obtained using a more industrial approach with structured, shock-fitted grids. It is demonstrated
from these results that the output-based adapted unstructured meshes perform as well or better than the
shock-fitted structured grids, and reveal influential flow features otherwise missed by shock fitting alone.

2 Test Case
The primary test case used in this study is the inviscid cylinder case described by Bova et al. [1]. They
considered flow of ideal nitrogen at M∞ = 20. As the present work is concerned with the inviscid behaviors
at these flow conditions, the exact composition of the gas does not affect the equations so long as γ = 1.4. For
consistency across all methods considered, the domain is taken to be the windward half of the cylinder with
the outer boundary set to be a constant 2 radii from the surface. With the high free-stream Mach number,
this boundary location is sufficient to not intersect with the shock structure and cause undue influence on
the solution.

A viscous test case was also considered based on the Gnoffo’s cylinder [2]. For this case, the free-stream
Mach number is M∞ = 17.6 and the unit Reynolds number based on radius is approximately Re = 3.76×105.
However, difficulties were encountered in converging the OVERFLOW solver, so only partial results are shown
in this paper.

3 Flow Solvers

3.1 Solution Adaptive Numerical Simulator (SANS)
The MIT SANS code base includes both stabilized continuous (CG) and discontinuous (DG) Galerkin finite-
element methods. Results are presented for inviscid flows using VMSD (Variational Multiscale Method with
Discontinuous Subscales)[3, 4] discretization. While SANS supports higher-order discretizations, only the
2nd-order accurate discretization with linear P1 solution and linear Q1 geometric elements are considered
here.

A Homotopy Continuation (HTC) damped Newton’s method is used to solve the nonlinear FEM system
of equations where the complete residual is linearized using operator overloaded automatic differentiation[5].
The HTC method is used to improve the robustness of Newton’s method by interpolating the between a
simple L2 projection residual and the discrete Euler residual. The final iteration of the Homtopy algorithm is
a simple Newton solve. At each HTC iteration, the linear system is solved using direct LU via the PETSc[6,
7, 8]. The adjoint system is solved using the same linear solver as the primal linear solver. The linear and
non-linear system residuals are driven to approximately machine zero.

3.2 OVERFLOW

The OVERFLOW code [9] is used here to provide representative, industrial-type flow solutions as a basis of
comparison for the solution-adaptive, finite-element solutions. OVERFLOW is a structured, finite-difference
solver of the compressible Navier-Stokes equations. The viscous terms can be suppressed so that the Euler
equations can be solved instead. For this work, the flow equations are discretized using a 3rd-order accurate
MUSCL reconstruction of the primitive variables to the half-node locations. The HLLE++ scheme [10] is then
used to find the upwinded approximate Riemann flux. This flux is specially tailored for high-Mach number
flows, as it features additional dissipation in the vicinity of shocks to damp the formation of carbuncles. The
cut-in for the added dissipation is controlled by the DELTA parameter. The recommended value of DELTA = 5
from Ref. [10] is used here, as it was sufficient to damp the instability while still permitting machine-zero
convergence.
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4 Size Field Optimization and Mesh Generation

4.1 Metric Optimization via Error Sampling and Synthesis
The Metric Optimization via Error Sampling and Synthesis (MOESS) [11, 12, 13, 14] mesh adaptation
framework (implemented in the SANS software package) is used to generate optimal adapted meshes. These
meshes are optimal in the sense that an output error indicator is minimized for a given cost. The Dual
Weighted Residual (DWR) method [15] provides an error estimate for an output functional of interest,
which is then localized to allow the adaptation process to target areas with high output error. Since directly
optimizing the discrete mesh is intractable, the minimization is instead performed on a continuous metric
field: a smooth field composed of symmetric positive definite matrices M(x). This approach is possible due
to the duality between a discrete mesh, Th, and a continuous mesh represented by a Riemannian metric field
M = M(x)|x∈Ω, as demonstrated by Loiselle [16, 17, 18].

The MOESS mesh adaptation problem in the continuous form is stated as

M∗ = argmin
M∈M(Ω)

E (M) , s.t. C (M) ≤ N, (1)

where E and C are surrogate models for the error and cost respectively. Here, C is defined as the number of
Degrees of Freedom (DOF) in the mesh and is constrained by some target upper bound N . The error model
is obtained by summing local error contributions:

E (M) =

∫
Ω

η (M (x) , x) dx. (2)

where the local error model, η, is assumed to be only a function of the local metric.
By definition, a metric conforming mesh has edge lengths e that are approximately unit under the metric,

i.e., eTM(x)e ≈ 1. To generate such a mesh, the metric field is passed to a metric-conforming mesh generator.
This work uses Pointwise for isotropic mesh generation and both avro [19] and refine software packages
are used for metric-conforming mesh generation.

To perform a mesh refinement study using the MOESS adaptation algorithm, a sequence of increasing
target DOFs is first selected. Then, a set number of MOESS adaptation iterations are executed for each target
DOF. Here and in Ref. [20], 50 adaptation iterations are used in order to ensure that the mesh adaptation
has found an optimal mesh for any given target DOF. Even after multiple adaptions at the target DOF
count, there is always some variation in the mesh. Hence, results presented are shown as the average over
the last 5 adaptation iterations along with the actual values over the same iterations. Finally, the last mesh
for a given target DOF is also used as the initial mesh for the next target DOF.

4.2 Pointwise

4.2.1 Isotropic Size Fields and Re-meshing

A size field is a discrete scalar field used to define the expected isotropic element size at any location over the
domain [21]. A solver-neutral approach to mesh adaptation utilizes unstructured point clouds to augment
the size field to improve the mesh avoiding unnecessary communication of solver data [22].

Mesh adaptation occurs by requesting a new mesh conformal to the updated size field and independent
of the previous mesh. The re-meshing process importantly maintains the association with the supporting
geometry. Mesh adaptation without conforming to the geometry, or even methods which conform to a discrete
approximation of the geometry, add systemic errors into the solution. Re-meshing is “user-independent” as
the Pointwise mesh generation software creates a mesh conforming to the updated size field from the original
mesh topology, with all the geometry associativity, meshing parameters, and CFD solver attributes.

4.2.2 Boundary Layer Meshing

An advancing layer scheme is used in Pointwise to generate high aspect ratio elements orthogonal to wall
boundaries. The layer generation scheme advances a layer point-by-point, which allows maximum flexibility
to alter local topology to circumvent, for example, sharp concave regions where fixed topology would fail or
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produce poor quality mesh. Because Pointwise re-meshes conformally to the updated size field, the surface
mesh is made conformal prior to the boundary layer advancement resulting in a mesh capturing the desired
size field transverse spacing in the viscous region.

4.3 avro

avro1 is a dimension-independent anisotropic mesh adaptation package originally developed at MIT and has
been demonstrated on up to 4D mesh generation problems [23]. It is based on local cavity operators inspired
by the work of Coupez [24] and Loseille [25] and uses a combination of edge split, edge collapse, edge swaps,
facet ((d− 1)-simplex) swaps and vertex smoothing to conform to a prescribed metric. While avro does not
use a re-meshing strategy, the mesh modifications are performed to always maintain a valid mesh. Hence,
the output mesh is always guaranteed to be valid upon termination of the mesh modification process. avro
associates each mesh vertex with an EGADS [26] geometry entity in order to check the topological validity of
each mesh operator and for projecting vertices to the geometry, and hence maintaining the original gometric
fidelity defined by the EGADS kernel.

4.4 refine

The refine open source anisotropic grid adaptation mechanics package was developed at NASA2. The
current version uses the combination of edge split and collapse operations proposed by Michal and Krakos
[27]. Vertex relocation is performed to improve adjacent element shape. A convex combination of these ideal
vertex locations is chosen to yield a new vertex location update that improves the element shape measure
in the anisotropic metric [28]. The vertices of elements with poor shape measures are also relocated with
the nonsmooth optimization of Frietag and Ollivier-Gooch [29]. Geometry is accessed through the EGADS
application program interface, and parallel execution is facilitated by EGADSlite [30].

4.5 Structured Mesh Generation and Shock Fitting
Single-block structured meshes for use with the OVERFLOW solver were generated parametrically based on the
analytical definition of the cylinder surface. Points along the surface were distributed uniformly along the
surface between θ = [π/2, 3π/2]. Wall-normal points were distributed using an algebraic mapping function,

rj =
r1r2

r2 + ξp (r1 − r2)
(3)

along lines of constant θ, with

ξ =
j − 1

jmax − 1
(4)

The inner and outer radii are taken to be r1 = 1 and r2 = 3, respectively. The exponent p controls the
clustering near the wall, with larger values providing tighter spacing. A value of p = 1 was found to be
sufficient for the inviscid case, while p = 3 produced grids suitable for the viscous case based on typical best
practices. Images of the coarsest (97× 49) and finest (257× 129) grids for the inviscid case are shown below
in Fig. 1.

The shock fitting algorithm employed here is heuristic in nature, and begins with a converged (or partially
converged) flow solution. A search is performed along each wall-normal line from the outer boundary
inward to find the shock. For this application, the shock is identified as the radial station where the static
pressure first rises at least 5% above that of the free stream. The azimuthal array of shock locations are
stored and then smoothed using Gauss-Seidel sweeps. Next, the grid is redistributed for each azimuthal
station so that a specified number of points are located between the shock and the surface using a bicubic
distribution. Outward from the shock, the remaining points are distributed using a constant stretching ratio
while maintaining the same boundary location. The total number of points remains unchanged through the
fitting process.

1avro is available via gitlab.com/philipclaude/avro under GNU LGPL, Version 2.1.
2refine is available via github.com/NASA/refine under the Apache License, Version 2.0.
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(a) 97× 49 Grid. (b) 257× 97 Grid.

Figure 1: Algebraically generated structured meshes.

All shock-fit OVERFLOW solutions presented here began on a uniform grid and were subject to the fitting
procedure three times, each after fully converging the solution on the prior grid. It was not found to be
necessary to interpolate the solution onto the new grid before restarting.

5 Results

5.1 Inviscid, “Bova cylinder”
A full set of grid refinement studies were performed for the M∞ = 20 “Bova cylinder” [1] case using OVERFLOW
with the algebraic and shock-fit grids, and SANS with adapted grids obtained using Pointwise, avro, and
refine. Density contours from the final converged Euler solutions with the finest shock-fit and adapted
meshes are shown in Fig. 2. The initial and final meshes for each mesh generator are shown in Figs. 3 and 4
respectively. The OVERFLOW initial algebraic mesh is much finer since the shock fitting procedure employed
here does not alter the grid dimensions, whereas the output-based adaptation successively refines the meshes
based on a target limit to the number of DOFs.

The final meshes strongly reflect the underlying physics used in adaption as well as constraints of the
mesh-generation tool. For instance, the structured, shock-fit mesh is feature-based, and it responds strongly
to the shock all the way to the outflow boundaries at the top and bottom of the cylinder and produces a
single grid line aligned with the feature. As a consequence, the OVERFLOW solution produced a very crisp
shockwave as was seen in Fig. 2. The avro and refine meshes respond to the shock feature all the way to
the boundary, and owing to their anisotropic capabilities, are able to produce a much more crisp shock than
Pointwise, which is constrained to be fully isotropic and have more limited gradation between elements than
what is permissible by avro and refine. For all three output-based adapted meshes, there is a prominent
reduction is element density in triangular regions between the surface and the shock at the top and bottom of
the cylinder. This is a direct result of the adaptation functional being a surface-integrated quantity, as this
region of the grid is outside of the domain of dependence for the surface. It is downstream of the sonic line
(which itself is refined), so the solution is hyperbolic in nature in this region. An additional feature of note
in the output-based adaption is the response to the stagnation streamline. All three of these solutions placed
an emphasis on this region, but this is unsurprising as it both experiences the strongest jump conditions
across the shock wave and corresponds to the region of the surface whose normal is completely aligned with
the drag direction.

The integrated drag coefficient as it varies across mesh refinement level for all four adaption strategies is
shown in Fig. 5. The two sets of OVERFLOW solutions (non-fitted and shock-fit) exhibit monotonic convergence
of the drag. The shock-fitting procedure does appear to reduce the functional error in that the slope is reduced
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on these axes, implying a reduced error coefficient. The avro and refine results show a marked improvement
in solution quality with adaptation. As the DOF count became more similar to that used with OVERFLOW,
the curves rapidly flatten towards grid independence. The Pointwise results, on the other hand, deviate
substantially until the grid is much finer than was used with the other methods. The slower convergence is
attributed to Pointwise being constrained to isotropic meshes for this case, while the structured, avro, and
refine grids can all support arbitrarily strong levels of anisotropy in the mesh.

(a) OVERFLOW (b) Pointwise (c) avro (d) refine

Figure 2: Density contours on final adapted meshes for the Bova cylinder with M∞ = 20, Inviscid

(a) OVERFLOW (b) Pointwise (c) avro (d) refine

Figure 3: Initial meshes for the inviscid Bova cylinder
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(a) OVERFLOW (b) Pointwise (c) avro (d) refine

Figure 4: Final adapted meshes with comparable DOF counts for the inviscid Bova cylinder

Figure 5: Grid convergence with mesh adaptation of the inviscid Bova cylinder integrated drag coefficient

5.2 Viscous, “Gnoffo cylinder”
The viscous “Gnoffo cylinder” case provided an increase in problem complexity by requiring the resolution
of a boundary layer in addition to the shock structure. The final adapted meshes obtained using Pointwise
and avro are shown in Fig. 6 with a close-up of the cylinder surface in Fig. 7 to illustrate the clustering in the
boundary layer. The avro results for this case show qualitatively very similar behavior away from surface
as it did for the inviscid case. The shock structure is captured very similarly, with the same triangular
regions outside of the domain of dependence being much coarser. The zoomed-in image shows an arc of
mesh clustering around ϕ 3π/4, which corresponds to the sonic line behind the bow shock. The Pointwise
adapted grid uses a priori boundary layer insertion to capture the boundary layer, but does not capture a

7



Eleventh International Conference on
Computational Fluid Dynamics (ICCFD11),
Maui, HI, USA, July 11-15, 2022

ICCFD11-2022-0302

distinct refinement region around the shockwave as it did for the inviscid case. This is attributed to the use
of a predefined boundary-layer insertion method that consumed much of the target DOF count. The grid
refinement results for drag coefficient with Pointwise and avro are plotted in Fig. 8. The behavior is again
qualitatively similar to what was observed with the inviscid case, with the Pointwise meshes requiring much
higher DOF counts for the same accuracy.

Simulations performed with OVERFLOW for this case did not exhibit strong iterative convergence. While
the flow fields for each grid resolution set up to be qualitatively reasonable, the L2-norm of the right-hand
side showed approximately 0.5-orders of residual drop relative to the initialization from a much lower Mach
number. By comparison, the inviscid solutions showed approximately 13 orders of magnitude residual drop.
Consequently, the OVERFLOW solutions were not deemed to be suitable for comparison for the viscous case.

(a) Pointwise (b) avro

Figure 6: Final “Gnoffo cylinder” adapted meshes with comparable target DOF counts
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(a) Pointwise (b) avro

Figure 7: Closeup of “Gnoffo cylinder” final adapted meshes

Figure 8: Grid convergence with mesh adaptation of the “Gnoffo cylinder” integrated drag coefficient
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6 Conclusion and Future Work
The comparison between feature-based mesh adaptation (heuristic shock fitting) and output-based mesh
adaptation for an invisicd cylinder at hypersonic conditions revealed important insights about the nature of
the flow and what is required to obtain the highest-quality solution. First, the shock-fitting approach tracks
the shock feature in the entire domain, for better or for worse. Shock fitting does improve the apparent
accuracy of the integrated drag coefficient and improve the resolution of the shockwave itself, but it also
refines regions that have no influence on the output functional.

The output-based adaptation was observed to be much more targeted in its refinement regions. The
methods that permit anisotropic cells responded to the shockwave, but also reduced resolution outside of
the domain of dependence. In a stark contrast with the shock-fit grids, the drag output functional led to a
strong emphasis being placed on the stagnation streamline, and to a lesser extent, the sonic line. Although
very influential to the flow field (as confirmed by the drag adjoint), they lack distinct features that would
trigger a feature-based adaptation method.

Although deeply converged viscous solutions for the “Gnoffo cylinder” are unavailable from OVERFLOW
at this time, the partial results from SANS and avro show that output-based mesh adaptation responds
just as well to the boundary layer as it does to the shock wave at hypersonic conditions. Future work will
focus on obtaining converged OVERFLOW solution to provide the basis of comparison against more-industrial
approaches.
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