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Abstract: To increase the order of the time-discretization without significant ad-
ditional computational work, we consider adding a pre- and/or post- filtering step
as suggested in [1]. We develop and implement pre- and post-filtering of the sec-
ond order Backward Differentiation Formula (BDF) scheme for simulations of the
Navier-Stokes/Euler equations characterized by a slow varying characteristic times.
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1 Introduction

To improve the efficiency one can use high order spatial schemes in order to reduce the mesh size and/or use
an implicit scheme to allow the use of large time steps while maintaining accuracy and stability, To keep the
accuracy we need a high order temporal integration scheme. Implicit RK is a good candidate for the high order
scheme. However, it requires internal stages which cost CPU time. The BDF scheme is a commonly used
one-step implicit scheme. However, for A-stability it can be at most second order. We add a pre- and/or post-
filtering step so that the BDF is increased to third order accuracy, without significant additional computational
work. Results will be presented for both inviscid and viscous flow simulations.

2 Numerical method

We consider the three dimensional, compressible Navier-Stokes equations in conservative form and solve it
with a dual-time stepping method. In space we use a finite volume approach. We approximate the physical
time derivative by a second order BDF and get the semi-discrete scheme
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W is the conservative variables, τ is the pseudo-time, R∗ is the residual, F is the inviscid flux and Fv is the
viscous flux. For each physical time step we solve (1) using a Runge-Kutta scheme in pseudo-time replacing
the residuals R∗(W (k)). W (k) is the solution in the k-th RK step, by a smoothed residual (see for example [2]).

1



To increase the order of the time-discretization, without significant additional computational work, we
add a pre- and/or post- filtering step by including previous time-steps. In recent work [1] families of general
linear methods (GLM) have been used to filter a variety of methods. They characterized the behavior of the
coefficients of the equivalent GLM in terms of the filter parameter and the GLM starting point. They used this
characterization to optimize properties of the equivalent GLM by choosing the filter parameters. For example,
a BDF scheme can be pre- and post-filtered with the inclusion of two prior steps and written in the GLM form
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To enlarge the A(α) stability region while increasing the order of accuracy we test a four step, three stage,
method with a linear stability region A(α) with α ≈ 89.62, given in [1]. The coefficients are:

d1 = 2.670130894410204, d2 = −3.311517498805319, d3 = −3.489799303077245,

d4 = 5.131185907472361, θ1 = 0.370742163920604, θ2 = −0.631064728171402,

θ3 = −0.729528261935270, θ4 = 1.989850826186068, b = 0.120568773483737.

The values y(1) and y(2) correspond to the solution at the intermediate time-levels tn + c1 and tn + c2, respec-
tively, c2 = 3.930023404911324, c1 = c2 − 2

3 . This method was optimized for A(α) stability. The linear
stability region includes the entire real axis, and the majority of the left half-plane, but not the imaginary axis.

3 Results

For a formal order verification of the method we consider the linear equation du
dt = −u with the initial condition

u(0) = 1. Figure 3.1 presents the error for the filtered BDF combined with a dual-time stepping approach. We
see that 3rd order is achieved. Figure 3.2 presents the comparison between the solutions of a moving isentropic
vortex problem, simulated with the filtered three time step BDF to the solution from a reference solution. The
improvement of the solution as the time step decreases can be seen.

Figure 3.1: Order verification for
filtered BDF for linear scalar equation.

Figure 3.2: center-line cut of solution of
isentropic vortex problem with filtered BDF-2
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