
Multidimensional HLLC Riemann solver for the Eulerian
droplet equation system

H. Beaugendre∗, T. Vigier∗ and F. Morency∗,∗∗

Corresponding author: heloise.beaugendre@math.u-bordeaux.fr

∗ Univ. Bordeaux, INRIA, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France
∗∗ Mechanical Engineering Department, Ecole de technologie supérieure, Montréal, Canada.

Abstract: In clouds and under cold weather conditions, water droplets impact
and freeze on aircraft structures. The Eulerian model for the air-droplet flow
predicts the drolet impingement. The model equations are close to the Euler
equations but without a pressure term. Consequently, the resulting system
is not strictly hyperbolic and standard Riemann solvers can not be used. To
circumvent this problem, the system is modified to include the divergence of
a particle pressure. The main purpose of this work is to implement a multi-
dimensionnal HLLC Riemann solver for the modified formulation of the Eule-
rian droplet model. The method should preserve physical properties such as
the density positivity and must produce accurate results compared to existing
codes.

Keywords: Multi-phase flow, Pressureless Euler equations, Riemann solver,
In-flight icing.

1 Problem Statement

In-flight icing is still responsible for many crashes and accidents. Predicting the droplets im-
pingement is one of the mandatory step needed to design aircraft ice protection devices. In
clouds, the air flow around the wing transports suspended water droplets. Due to their high
inertia, they impact aircraft surfaces and may freeze. The Eulerian model for the air-droplet
flow involves two variable fields: the droplet velocity (U) and the volume fraction of water (α).
The mass and momentum conservation equations are

∂α

∂t
+∇ · (αU) = 0

∂αU
∂t

+∇ · (αU⊗U) = Fa + Fg .
(1)

The gravity, Fg = α(1 − ρa
ρw

)g, and the air friction, Fa = α
3µaCRed
4ρwd2

(Ua − U), act on the

droplets. Red is the Reynold number of the droplets in the air flow, Ua the air velocity, C the
experimental drag coefficient, d the average droplet diameter and ρa, µa, ρw the air density, the
air viscosity and the water density.

This Eulerian model is a weakly hyperbolic system and classical Riemann solvers are not
applicable [4]. Many approaches have been developed to solve this problem such as using a
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Figure 1: Local collection efficiency on a turboprop aircraft, d = 60µm, Mach=0.2, AoA=0o

Jordan decomposition or introducing a small term to artificially restore hyperbolicity [1, 2].
However, if a droplet pressure is added, the system becomes strictly hyperbolic. In order to
solve a mathematical problem equivalent to (1), a droplet pressure is added and subtracted to
the left hand side, such that

∂α

∂t
+∇ · (αU) = 0

∂αU
∂t

+∇ · (αU⊗U + αgd)−∇ · (αgd) = Fa + Fg

(2)

The term ∇ · (αgd) is added to the source terms. The particle pressure αgd in the convective
terms allows the use of a classical Riemann solver.

Figure 1 shows impingement on an aircraft surface. In the shadow areas behind the aircraft,
the volume fraction can be close to zero. Vacuum states can arise where α = 0 and the velocity is
undefined. Non-physical negative volume fraction may easily appears if an appropriate Riemann
solver is not used. As a consequence, this issue is the main concern to develop positivity-
preserving Riemann solvers. The HLLC approximate Riemann solver satisfies this property and
has been chosen and adapted to this problem by [2].

2 Conclusion and Future Work

In this work, we will investigate the use of a multidimensional HLLC Riemann solver[5]. This
solver should only slightly increases the computational complexity per time-step. However, it is
expected to nearly double the CFL number.

References

[1] N. K. Garg, M. Junk, S.V. Raghurama Rao, M. Sekhar. An upwind method for genuine weakly
hyperbolic systems. arXiv:1703.08751, 2017.

[2] S.K. Jung, R.S. Myong. A second-order positivity-preserving finite volume upwind scheme for air-
mixed droplet flow in atmospheric icing. Comput Fluids 86, p. 459-469, 2013.

[3] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer 2009.

[4] S. Ketai, and Y. Bourgault. Eulerian Models with Particle Pressure for Air-Particle Flows. European
Journal of Mechanics / B Fluids 78, p. 263-75, 2019

[5] D. S. Balsara, M. Dumbser, and R. Abgrall. Multidimensional Hllc Riemann Solver for Unstructured
Meshes – with Application to Euler and Mhd Flows. Journal of Computational Physics 261, p. 172-
208.


