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Abstract: Current trends in computational fluid dynamics (CFD) include the use of 

graphics processing units (GPUs) as parallel co-processors to CPUs in order to 

accelerate numerical operations and algorithms common to CFD solvers. The first 

topic will examine advances in GPU method development for various CFD software 

including FUN3D from NASA and OpenFOAM from OpenCFD. The second topic 

will introduce novel CFD methods in artificial intelligence (AI) capable of encoding 

the Navier-Stokes equations into physics-informed neural networks (PINNs), while 

being agnostic to geometry, or initial and boundary conditions. Examples will 

include NVIDIA use of such techniques applied in electronics cooling design. 
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1 Introduction 

Efficient use of computational resources and CFD simulation turn-around times are critically important 

factors behind engineering decisions to expand CFD technology to support more product design. Recent 

developments in GPU-based high performance computing (HPC) and AI have improved computational 

speeds by orders of magnitude for a broad range of CFD simulations relevant to engineering practice. 

2 HPC Developments 

HPC systems with GPUs can provide significantly increased levels of parallel processing for CFD 

software that is developed using a GPU programming model such as CUDA, OpenACC, or various API 

approaches. The programming strategies of choice can depend on several factors, and examples will be 

presented that include:   

• FUN3D: GPU developments in CUDA where 1 GPU (V100) achieves equivalent performance 

of 24 CPUs (SKL, 11 nodes) for a NASA CRM configuration of 14M cells. Strong scaling for 

~500 x V100 GPUs for a 6.5B cell Mars lander model on ORNL Summit system, #1 on Top500. 

• OpenFOAM: GPU developments in CUDA that demonstrate nominal ~3x speedups single GPU 

(V100) over single CPU, and intranode strong scaling efficiency of 65% for a 25M cell model. 

NVIDIA developed libraries are also available, and provide GPU acceleration at the math kernel level, 

(cuBLAS, cuSPARSE, etc.) and full linear solver level with cuSOLVER and open source AmgX with 

a variety of Krylov and multigrid methods for unstructured grid CFD solutions. 

3 AI Developments 

AI research has given rise to applications of physics-informed neural networks (PINNs) that leverage 

the underlying laws of physics, often described in the form of partial differential equations (PDEs), to 
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solve forward, inverse/data-assimilation and model discovery problems. Advantages over traditional 

methods of solving PDEs include (i) usability: not requiring arduous meshing, (ii) speed: ability to solve 

multiple geometries simultaneously, (iii) scalability: embarrassingly parallel across clusters of GPUs, 

and (iv) expertise: ability to leverage training experience. 

 

 

Figure 1: Validation of PINN Predicted results vs. True by an open source CFD solver, for a lid 

driven cavity, and PINN Predicted thermal results of an NVIDIA GPU heat sink design candidate. 

NVIDIA thermal management engineers are applying PINN research in an evaluation to improve the 

design and effectiveness of heat sinks where thousands of design configurations can be analyzed within 

hours as opposed to weeks with traditional CFD simulations. The PINN method provides a forward 

solution of parameterized, multi-physics problems, starting with only the geometry and other physical 

parameters like material properties, boundary conditions, etc., typical of any RANS-based CFD solver. 

Standard neural networks that are driven by data alone are inadequate for modeling such engineering 

multi-physics problems on various geometries. Considerations must include specific features of a neural 

network architecture, such as – sampling insensitivity, impact of the order of derivatives on the network 

structure, weighting the various PDEs for loss convergence acceleration, activation functions that do 

not reduce down to constants, or vanish when differentiated, and gradients and discontinuities due to 

geometrical effects and considerations of local versus global mass balance equations. Requirements 

will be examined and tradeoffs presented for this PINN approach vs. a conventional CFD approach. 

4 Conclusion and Future Work 

As CFD simulation demands increase and motivate the need for more transients, higher-resolutions, and 

multi-scale, multi-physics simulations, GPUs will become an essential HPC technology. Based on 

current trends, GPU-based HPC combined with novel AI techniques will enable a level of applied CFD 

that can grow as a common practice to support engineering design and optimization procedures. 
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