Discrete exterior calculus based flow simulations on a sphere for
the modeling of Solar inertial modes

R. Ayoub1, P. Jagad1, R. Samtaney1, J. Philidet2 and L. Gizon2,3,4

Corresponding author: rama.ayoub@kaust.edu.sa

1 King Abdullah University of Science and Technology, Saudi Arabia.
2 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany.
3 Institut für Astrophysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
4 Center for Space Science, NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, UAE.

Abstract: Low-frequency modes of oscillation in the inertial frequency range
have recently been identified on the Sun. Previous studies focused on comput-
ing the linear eigenmodes. Additional work is needed to model the amplitudes
and the lifetimes of the modes. To address this question, we intend to perform
numerical simulations of forced 2D turbulence on a rotating sphere retaining
the nonlinear term in the momentum equation. To this end, we will use a
discrete exterior calculus (DEC) based method which has certain desirable
conservation and mimetic properties. Such discretizations are appropriate for
investigating flows dominated by long-lived coherent structures like Rossby and
inertial waves, due to its unique features. We extend our DEC based numerical
scheme to include a forcing term in the momentum equation.

Keywords: 2D Turbulence, Inertial waves, Discrete Exterior Calculus.

1 Introduction

A recent study \cite{1} reports detection of solar inertial modes in some helioseismic observations.
Numerical tools allowing identification and analysis of these modes have attracted interest of
researchers. Gizon et al. \cite{1} developed a 1D and 2D linear framework of incompressible Navier-
Stokes equations and succeeded to recover a good representation compared to the observations
of the equatorial Rossby modes and the high latitude inertial modes, while the critical latitude
inertial modes were not well represented. To evaluate the effect of nonlinear term on the predic-
tions, we envisage to perform a forced 2D turbulence on a rotating sphere taking into account
the nonlinear term and using a DEC method. DEC \cite{2} based numerical methods retain many of
the rules/identities of its continuous counterparts and are known to exactly conserve mass, vor-
ticity and kinetic energy. In the present work, we extend our DEC formulation of Navier-Stokes
equations \cite{3} by adding a forcing term to the momentum equation. The form of this term is
given in the following section.

2 Numerical Method

For an incompressible flow of a homogeneous fluid with unit density, subjected to external forcing
and large scale dissipation, the DEC notation of the governing equations, in a rotating frame of
The forcing vector is expressed as $F_u = d_0 F_\psi$, where F_ψ is obtained from $\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{F}_m(t_n) Y_j^{\ell m}(\theta, \phi)$. Here, $F_\xi(\theta, \phi, t)$ is the vector containing vorticity forcing function at the mesh primal nodes, and is represented by a Markovian process as

$$F_\xi(\theta, \phi, t^{n+1}) = R F_\xi(\theta, \phi, t^n) + \sqrt{1-R^2} \hat{F}(\theta, \phi, t^{n+1}),$$

where R is a memory coefficient related to memory timescale and \hat{F} is a vorticity source generated randomly at each time step in terms of the spherical harmonics $Y_j^{\ell m}(\theta, \phi)$ as follow

$$\hat{F}(\theta, \phi, t^n) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{F}_m(t_n) Y_j^{\ell m}(\theta, \phi),$$

with $\hat{F}_m(t_n)$ an expansion coefficient of \hat{F}, θ the colatitude, and ϕ the longitude. Hyperviscosity is used for the large scale dissipation. The set of nonlinear equations (1) - (3) is solved using Picard’s iterative method for the mass flux (U^*) and dynamic pressure (P^d) degrees of freedom.

3 Conclusion and Future Work

In the present work, the numerical simulation of solar convection is motivated. We extend our DEC method and add a forcing term to the momentum equation. We will perform the simulations and compute the energy and vorticity power spectra. We will identify the inertial and Rossby waves in the flow, and compare them with the ones derived from the observations and linear models.

References

