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Abstract: CDF and its uncertainty quantification are computationally demanding. 

We use neural network (NN) and Gaussian Process (GP) methods to demonstrate 

machine learning can build efficient and accurate surrogate models with limited runs 

of flow models. We apply the method to Hagen-Poiseuille and Womersley flows that 

involve spatial and spatial-tempo responses, respectively. Training points are 

generated by calling the analytical solutions multiple times with evenly discretized 

spatial or spatial-temporal variables. Then NN and GP surrogate models are built 

using supervised machine learning regression. Meanwhile, we use GPU-accelerated 

lattice Boltzmann code to perform the same task. The results indicate that surrogate 

models predict the analytical solutions as accurate as CFD but much faster than CFD. 

We also discuss uncertainty quantification when uncertainty exists in the surrogate 

models and model input. 
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1 Introduction 

Computational Fluid Dynamics (CFD) plays an important role to solve various real-world flow systems, 

but a heavy computational burden often causes a trade-off with the physical accuracy. Surrogates built 

from machine learning regression for the expensive flow models have the potential to achieve both fast 

fluid simulations and high accuracy. Although surrogate models are inexpensive, they may still have 

some model error. When they are used for applications, the model input may also be random. It is also 

a need to quantify the effects of uncertainty on the model prediction. In this study, we demonstrate that 

physics-supervised regression can produce efficient and accurate surrogate models, which can 

significantly reduce the computational time without compromising the physical accuracy of CFD, if 

the uncertainty is properly considered.  

2 Problem Statement 

We develop two surrogate models for predicting steady Hagen-Poiseuille flow and unsteady 

Womersley flow, both of which have analytical solutions when the flow is laminar. The existence of 

analytical solutions allows us to demonstrate the effectiveness of surrogate models and the use of 

uncertainty quantification. The flow domain is a long pipe with diameter � and length �. The analytical 

solutions are � = �1 − �	
  and � = �1 − �	
 + �4
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Hagen-Poiseuille flow and unsteady Womersley flow, respectively, where �, �, and 
 are normalized 

velocity, distance to center, oscillating magnitude, respectively; � and �� are the Wormsley number and 

the Bessel function of the first kind of order zero, respectively. The surrogate models are built via 

machine learning regression. For unsteady flows, time is also included as a dimension of the input 

training points.  The CFD is performed using volumetric lattice Boltzmann method [1] through an in-

house GPU accelerated code [2]. We impose pressure gradient as a body force, rigid wall, and periodic 

condition at inlet and outlet. The flow is incompressible with density = 1025 kg/ �3 and kinematic 

viscosity = 3.415 × 10%&  m2/s. We compare the surrogate prediction and CFD simulation for the 

velocity profile along a radius, with the analytical solutions. The  results are plotted in Fig. 1 for steady 



Hagen-Poiseuille flow and Fig. 2 for unsteady Womersley flow. For the steady flow, both surrogate 

prediction and CFD simulation achieve nearly identical profiles to the analytical solutions. For the 

unsteady Womersley flow, all the velocity profiles from surrogate model at representative time points 

in an oscillation are again identical to the analytical solutions whereas CFD results have noticeable 

deviations from the analytical solutions. The prediction error can be estimated by the model uncertainty 

represented by the standard deviation of the prediction if the surrogate model is created by Gaussian 

Process regression. It is also possible to estimate prediction error for a surrogate model built with neural 

network regression [3].  

 
Figure 1: Steady Hagen-Poiseuille flow 

 
Figure 2: Unsteady Womersley flow 

 

3 Conclusions and Future Work 

In all the cases we tested, the computational time of surrogates is much less than that of CFD. The 

predictions from surrogates are also accurate. Uncertainty quantification results can also help users 

understand the effects of uncertainty on the prediction, assisting more reliable decision making. Our 

further work will be developing general surrogate models based on CFD samples, aiming to 

significantly reduce the computational time. We will train surrogate models for more realistic steady 

and unsteady flows and perform a full-scale uncertainty quantification analysis.  
 

References 

[1] H. Yu et al., "Mass-conserved volumetric lattice     Boltzmann method for complex flows with 

willfully moving boundaries," Physical Review E, vol. 89, no. 6, p. 063304, 2014. 

[2] X. Zhang, J. Gomez-Paz, J. McDonough, M. M. Islam, Y. Andreopoulos, and H. Yu, 

"Volumetric Lattice Boltzmann Method for Wall Stresses of Image-based Pulsatile Flows," 
Scientific Reports, vol. In press, 2022. 

[3] H. Li, J. Yin, and X. Du, "Label Free Uncertainty Quantification," AIAA SCITECH 2022 

Forum, AIAA SciTech Forum: American Institute of Aeronautics and Astronautics, 2021. 
 

Acknowledgment  

The research is supported by NSF through grant CBET 1803845. This work used the Extreme Science 

and Engineering Discovery Environment (XSEDE), which is supported by National Science 

Foundation Grant No. ACI-1548562. The first author would like to also acknowledge the IUPUI 

University Fellowship. 

0 0.2 0.4 0.6 0.8 1

Normalized r 

0

0.2

0.4

0.6

0.8

1
Prediction

CFD

Analytical


