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Abstract: A moving discontinuous Galerkin (DG) finite element method with 
Interface Conservation Enforcement (MDG-ICE) is further developed and 
extended for solving compressible multi-material flow problems, where both 
conservative quantities and grid geometry are considered as independent variables. 
A space-time DG formulation is used to solve the multi-material compressible 
Euler equations in the standard discontinuous solution space and the discrete grid 
geometry is solved using a variational formulation in a continuous space. A self-
adaptive Levenberg-Marquardt method is utilized to solve the resulting over-
determined system of nonlinear equations arising from the MDG-ICE formulation.  
A number of numerical experiments are conducted to assess the accuracy and 
performance of the MDG-ICE method. Numerical results obtained indicate that the 
MDG-ICE method is able to deliver the designed order of both h- and p-
convergence even for discontinuous solutions, and detect all types of interfaces, via 
interface condition enforcement and satisfy, via grid movement, the compressible 
multi-material Euler equations and the associated interface condition. 
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1 Introduction 
The discontinuous Galerkin (DG) finite element methods are widely used in computational fluid 
dynamics. The discontinuous Galerkin methods have many attractive advantages like 1) its ability to 
achieve high-order (>2nd) accuracy on fully unstructured grids; 2) useful mathematical properties 
with respect to conservation, stability and convergence; 3) its adjoint consistency to be powerful for 
adjoint-based optimization. In addition, the methods can also handle non-conforming elements, where 
the grids are allowed to have hanging nodes. Furthermore, space-time discontinuous Galerkin 
methods provide discretization of systems of conservation laws by simultaneously discretizing space 
and time. Like other DG methods, the space-time DG method also offers the prospect of both 
arbitrary-order accuracy in space and time and adjoint consistency. However, the DG methods have a 
number of weaknesses that have not yet be addressed. Besides of computational cost and storage 
requirement, one aspect is how the properties behave in flows that are not smooth and contain 
discontinuous interfaces, such as material interface and shocks. Even though DG explores a set of 
discrete function space with discontinuous, piecewise polynomials and it can represent the 
discontinuous interfaces in principal, this requires that the interfaces be aligned with the grids. The 
stability of the DG approach may fail when misaligned grid is used. Actually, it has been an issue in 
how to effectively control spurious oscillations in the presence of strong discontinuities. Recently, a 
moving discontinuous Galerkin finite element method with interface condition enforcement, termed 
MDG-ICE, was developed by Corrigan et al. for compressible flows with interfaces [1]. Unlike the 
traditional DG methods, this MDG-ICE method treats both conservative quantities and discrete grid 
geometry as independent variables. A space-time DG formulation is used to solve the governing 



equations in the standard discontinuous solution space, and the geometry variables are determined by 
enforcing the interface condition in its discontinuous solution trace space. Two attractive features of 
the MDG method, among others, are 1) no strategies in the form of a limiter or an artificial viscosity 
are required to eliminate spurious oscillations in the vicinity of discontinuities and thus maintain the 
nonlinear stability of the DG methods, as interfaces are detected by the interface condition 
enforcement, and tracked by the grid movement and the interface condition; and 2) no numerical 
fluxes in the form of a Riemann solver are needed to maintain linear stability of the DG methods. 
However, this MDG-ICE formulation can lead to an over- or under-leads t-determined system of 
nonlinear equations.   

A variant of the MDG-ICE formulation [2], was developed to solve the conservation laws, where 
space and time are not treated in the same way. Meshes are set uniform in time, i.e., cannot move in 
the t-direction. Furthermore, the geometric variables are determined by enforcing the interface 
conservation using a continuous variational formulation. Our numerical experiments demonstrate that 
this MDG-ICE method can achieve an exponential rate of convergence for Sod and Lax-Harden shock 
tube problems and obtain highly accurate solutions without overheating to both double-rarefaction 
wave and Noh problems. The objective of the efforts presented in this work is to extend and further 
develop this MDG-ICE method for compressible multi-material flows. Numerical experiments for a 
number of benchmark test cases indicate that our MDG-ICE method is able to deliver the designed 
order of accuracy for multi-material flow problems, detect interfaces, via interface condition 
enforcement and satisfy, via grid movement, the conservation law and its associated interface 
condition. As an illustrative example, numerical results for a two-material supersonic flow past a 
wedge, which forms the problem of so-called regular refraction with a reflected shock wave, are 
presented in Figure 1 where one can observe that our MDG-ICE method is practically able to obtain 
the analytical solution, fitting both the transmitted shock and weak reflected shock, and forming an 
RRR shock refraction patters on slow/fast interfaces exactly. The description of the developed MDG-
ICE method and numerical results for a number of test cases will be presented in the final manuscript. 

 

 

 

 

 

 

 

Figure 1: Initial grid and density field (left) and final converged mesh and density field obtained by 
the MDG-ICE solution (right) Shock wave refraction problem at a slow-fast gas interface 
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