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Abstract

Cut-cell methods allow for the use of Cartesian meshes to resolve phenomena occurring
in complex geometries. The advantage of cut-cell methods over approaches requiring body
fitted meshes (either structured or unstructured) is that the former do not require a costly
mesh generation step or complicated code infrastructure. However, cut-cell methods have been
typically limited to low orders of accuracy. In the present work, we extend our previous efforts
to expand our unique high-order, stable and conservative cut-cell method to three-dimensional
geometries. To test their efficacy for flow problems, the schemes are used for elliptic, parabolic,
and hyperbolic systems with simple boundary conditions.

Introduction

The cut-cell method [3] allows for the solution of partial differential equations (PDEs) defined on
complicated domains to be computed numerically on simple Cartesian meshes. This method has
seen extensive use in the fluids community, so we define the domain of interest, Ωf , as the fluid
domain which is bounded by Γf ∪Γs, where the Cartesian and solid object boundaries are given by
Γf and Γs, respectively. A schematic of this is shown in Fig. 1. Thus, the non-Cartesian physical
boundaries are embedded into the simpler Cartesian mesh leading to computational cells which
have been cut by the embedded object. Rather than modifying the physical equations to implicitly
account for this object, the cut-cell approach modifies the discrete derivative operators and imposes
boundary conditions directly on Γs.

The allure of cut-cell type methods has attracted the attention and effort of a number of re-
searchers for many years (see [4] for a review). In theory, cut-cell methods obviate the need for un-
structured meshes and allow for the use of robust, accurate and conservative finite difference/volume
schemes with only slight modifications near the boundary. However, the current solutions to the
severe numerical challenges of cut-cell schemes typically lead to significant modifications of both
the discrete algorithms and the physical equations. The discrete algorithms are modified by requir-
ing significant extra procedures to evaluate derivatives near the boundary since a straightforward
evaluation leads to instabilities. The physical equations are typically modified by requiring some
sort of stabilization procedure which manifests itself as a source term in the governing equations
(even if not explicitly written as such).

In recent work [1, 2], we have demonstrated an approach to cut-cell methods that uses an offline
optimization procedure to achieve stability, rather than relying on ad-hoc stabilization procedures.
This has allowed for the development of discretizations of up to 8th order.

Preliminary Results

Extensive stability analysis of the cut-cell schemes for planar geometries is shown in Refs [1, 2].
Initial work on extending the method to three dimensional geometries can be seen in Fig. 1. To
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Figure 1: Left: Schematic of solid object, bounded by Γs, embedded in a fluid domain, Ωf . Right:
Solution to the Laplace equation, resolving 5,000 randomly placed spheres using the 8th order
cut-cell method. The spheres are randomly assigned a Dirichlet boundary condition in the range
[1, 30].

demonstrate the efficacy of the proposed approach, the Laplace equation is solved on a computa-
tional domain of 10243 . Neumann boundary conditions are imposed on the domain walls. 5,000
spheres are placed at random locations into the domain and resolved using our 8th order cut-cell
approach. The spheres are assigned randomly with chosen Dirichlet boundary conditions in the
range [1, 30]. The slices through the domain show that the computed solution is smooth even
though no small-cell correction is used. We will present 3D results covering a range of PDEs and
boundary conditions along with rigorous convergence studies.
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