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In this paper, an efficient and robust fluid modal method through the use of a CFD 

solver is proposed to reduce the fully-coupled aeroelasticity problem to a second-

order multi-degree-of-freedom (DOF) system while maintaining dominant 

nonlinearity and effects of all desired DOFs. A fully-coupled aeroelasticity problem 

is first formulated into a decoupled system, and a technique for rapid extraction of 

nonlinear fluid modal mass, damping, and stiffness from a CFD solver is developed. 

These fluid mass, damping, and stiffness are then used to construct a system of 

ordinary differential equations, thereby replacing the need for coupled CFD/CSD 

simulations. The proposed methodology is demonstrated on the AGARD 445.6 wing 

and a full aircraft. The fluid modal method simulations are shown to agree very well 

with CFD/CSD verification data. Validation again experimental data for flutter 

boundary of AGARD445.6 wing also showed good agreement. The proposed method 

provides a time-accurate, fast-running solution for describing the aeroelastic 

response of structures of air vehicles, including fighter aircraft, transport aircraft, 

and rotor blades. 

I. Introduction 

The accurate analysis of complex flows and the associated aeroelastic response is necessary for the design 

of next-generation flight vehicles. The coupling of computational fluid dynamics (CFD) solvers and 

computational structure dynamics (CSD) solvers can give accurate aeroelastic simulations. However, the 

increase in accuracy comes with a significant additional increase in computational cost. To mitigate this 

increased cost, the solution runs time, and the total number of solutions generated need to be minimized. 

Reduced-order modeling (ROM) is an accurate and cheap alternative to CFD/CSD simulations to study the 

dynamic aeroelastic response [1][2]  

 

In this paper, an innovative “nonlinear fluid modal method” was developed to rapidly predict and offer 

unique physical insight into the nonlinear aeroelasticity of aircraft. The distinguishing factors of this effort 

are: (1) It is physics-based so that changes in aerodynamics, mass, inertia, and center of gravity are 

accounted for. (2) It is time-accurate and fast running. The coupled CFD/CSD problem is reduced to a set 

of ordinary differential equations, which can be solved in a matter of seconds compared to several hundred  

CPU hours. (3) It is CFD/CSD code independent. Any existing CFD solver can be used to build the 

nonlinear fluid modal model. (4) It is applicable to any geometry and flight condition. 
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In this paper, the fully-coupled nonlinear Fluid-Structure Interaction aeroelasticity problem was first 

formulated into a decoupled time-accurate and fast running system of ordinary differential equations. 

Extraction techniques for the fluid modal properties from the high-fidelity CFD were then developed. The 

time-accurate and fast-running capability will then be demonstrated by numerically solving the constructed 

system of ODEs. The nonlinear fluid modal method was used to simulate the dynamic aeroelastic response 

of the AGARD 445.6 wing at several flight conditions. As shown, the simulated aerodynamic responses 

agree very well with CFD verification data and experimental validation data. 

 

1 Simulation Model 

The CFD mesh consists of 4.5 million cells of mixed elements and can be seen in Figure 1. An adiabatic 

no-slip wall boundary condition is applied on the Wing, Fuselage, and Tip Launcher Rail. A far-field 

boundary condition is applied on the outer boundary of the fluid domain. The freestream initial conditions 

are listed as follows: Mach = 0.96, Q (dynamic pressure) = 27 kPa, Density = 0.6 kg/m3, Velocity = 300 

m/s, and Altitude = 6864 m. 

 

       
Figure 1. CFD mesh of the Open Source Fighter 

 

The structural model shown in Figure 2 contains 10 modal shapes and has 3 structural components: 

Fuselage, Wing, and Stores. Stores are a pair of under-wing fuel tanks whose aerodynamic effects are 

neglected in the current CFD model.    

 
Efficient Procedure for the Flutter Prediction Using Our Fluid Modal Method 

The process employed for the demonstration of the nonlinear fluid modal method developed in this study 

can be broken down into the following five main steps: 

1. Extract the fluid stiffness matrix, k; 

2. Identify possible couplings between modes; 

3. Calculate the critical dynamic pressure Q values and frequencies with the nonlinear fluid modal 

method 

4. Run the fully-coupled FSI simulation; 

5. Analyze and compare the predictions from the fully-coupled solution and the fluid modal method 

solution.  
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Figure 2.    Structural Mode Shapes of the First Four Modes of the Open Source Fighter 

 

2 Efficient Flutter Prediction Using Fluid Modal Method 

In the following, we will demonstrate our procedure in obtaining the flutter boundary for the F-16 model.    

 

Extraction of Stiffness Matrix 

First, the fluid stiffness is extracted by displacing each mode by a specified value 𝑥0 and holding that 

modal displacement until a steady-state solution is reached. An appropriate value for 𝑥0 can be 

approximated using the following equation: 

 
𝑚𝑜𝑑𝑒 1 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑤𝑖𝑛𝑔 𝑡𝑖𝑝

𝑤𝑖𝑛𝑔 𝑠𝑝𝑎𝑛
∗ 𝑥0 = 1% 

 

This ramp and hold simulation was conducted for each mode individually at the specified free-stream 

conditions. A “zero perturbation” simulation was also executed to obtain the modal load biases. This was 

achieved by forcing all the modes in the system to stay at an amplitude of 0 until a steady-state solution 

was reached. All simulations were conducted using the SA (Spalart-Allmaras) turbulence model. 

 

Once the modal force is obtained, the stiffness is calculated using the following equation: 

 

𝑘𝑓 =
−(𝐹𝑓−𝑠 − 𝐹𝑏𝑖𝑎𝑠)

𝑥0
 

𝐹𝑓−𝑠 is the resulting modal load for each mode. 𝐹𝑏𝑖𝑎𝑠 is the resulting modal load of each mode from the 

“zero perturbation” simulation. Upon reaching a steady-state these modal loads values are extracted, and 

the nonlinear fluid modal stiffness is calculated. Table 1 shows the format of the modal stiffness matrix. 
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Table 1. Format of the Fluid Modal Stiffness Matrix 

𝒌𝒇 Mode 1 Mode 2 … 

Mode 1 
Mode 1 response to 

Mode 1 displacement 

Mode 1 response to 

Mode 2 displacement 
… 

Mode 2 
Mode 2 response to 

Mode 1 displacement 

Mode 2 response to 

Mode 2 displacement 
… 

… … … … 

 

 

Table 2 presents the resulting fluid modal stiffness matrix of the Open Source Fighter.  

 

Table 2.  Fluid Modal Stiffness Matrix of Open Source Fighter at M = 0.96 and Q = 27kPA 

𝒌𝒇 
Mode

1 

Mode

2 

Mode

3 

Mode

4 

Mode

5 

Mode

6 

Mode

7 

Mode

8 

Mode

9 

Mode1

0 

Mode1 -21.25 -3.75 -3.75 26.25 -2.5 -3.75 162.5 1.25 162.5 -1.25 

Mode2 0 76.25 -65.75 0 0 -3 0 -215 0 173.75 

Mode3 0 57.5 
-

31.625 
0 0 -1.875 0 -129.5 0 72.25 

Mode4 -27.5 0 0 -262.5 0 0 -87.5 0 -3.75 0 

Mode5 -0.625 -0.2 -0.125 
-

0.4625 
-0.125 -0.125 2.5 

-

0.0625 
3 -0.125 

Mode6 0 
-

1.0875 
0 0 0 

-

0.3375 
0 2.8375 0 -1.1625 

Mode7 -56.25 -1.25 -0.5 -105 0 0 178.75 8.75 278.75 1.25 

Mode8 0 -105 100 0 5.625 5.625 0 290 0 -257.5 

Mode9 -48.75 0 0 
-

156.25 
0 0 12.5 0 145 0 

Mode1

0 
0 

-

34.625 
-7.7 0 0.875 0.875 0 53.375 0 -6.6 

 

Identification of Mode Coupling 
The possible coupling modes are identified by the color marks. These modes are coupled because they have 

opposite signs in the off-diagonal terms. These are highlighted in the table above and listed here: 

  

• k1,4 and k4,1 

• k1,7 and k7,1 

• k1,9 and k9,1 

• k2,3 and k3,2 

• k2,10 and k10,2 

• k3,8 and k8,3 

• k3,10 and k10,3 

• k5,8 and k8,5 

• k5,10 and k10,5 

• k6,10 and k10,6 

• k8,10 and k10,8

 

Calculate the Critical 𝑄 Values and Frequencies 
Our fluid modal method needs the following inputs for each modal coupling: omega1, omega2, kappa11, 

kappa12, kappa21, kappa22, and gmass. Where 1 represents the first mode of the coupling and 2 the second. 

The equations for these inputs are as follows: 

 

• 𝜔𝑥 = 2 ∗ 𝜋 ∗ 𝑓𝑥1, where 𝑓𝑥1 is the natural frequency of mode x, 

• 𝜅𝑥𝑥 = 𝑘𝑥𝑥/𝑄, where 𝑘𝑥𝑥 comes from the stiffness matrix and 𝑄 is the dynamic pressure, 

• and 𝑔𝑚𝑎𝑠𝑠  is the generalized mass term and for this case it has a value of 1. 

 

The algebraic equation for the Nonlinear Fluid Model Method is as follows: 
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Solving for 𝑟 (root) will result in a pair of critical 𝑄 values (due to the ±) which can then be used to 

calculate corresponding critical frequencies. If a 𝑄 value is negative, it is expected not to exist, but this 

will need verification. 

 

The output of the Nonlinear Fluid Modal Method for the Open Source Fighter is shown in Table 3. Note 

that the – and + represent the solution from using either the – or + before the square root in the equation. 

All cells highlighted in grey either have a negative 𝑄 value or a corresponding frequency that resulted in 

NAN (not a number). The modal couplings with these results are expected to not occur.  

 

Table 3. Results of the Nonlinear Fluid Modal Method 

Coupled Modes 𝑸 − 𝑸 + 𝒇 − 𝒇 + 

k1,4 and k4,1 75,919 119,431 3.8 2.9 

k1,7 and k7,1 -12,989,777 -291,754 NAN 6.8 

k1,9 and k9,1 10,737,977 -366,807 26.4 7.2 

k2,3 and k3,2 24,107 -368,578 4.8 3.9 

k2,10 and k10,2 783,993 -2,581,353 11.5 4.8 

k3,8 and k8,3 -1,186,052 -203,057 NAN 7.3 

k3,10 and k10,3 8,172,596 -2,507,093 NAN 12.5 

k5,8 and k8,5 -243,563 -241,580 8.0 8.0 

k5,10 and k10,5 19,597,892 24,057,391 8.2 7.3 

k6,10 and k10,6 16,621,896 32,417,051 8.7 5.0 

k8,10 and k10,8 130,838 1,118,370 13.4 17.6 

 

 

Based on our theory, the possible mode couplings sorted in ascending 𝑄 value (dynamic pressure) are 

shown in Table 4. From the table, it can be seen that at a dynamic pressure of 24K, one can expect modes 

2 and 3 to be coupled together and have a coupling frequency of 4.8 Hz. Even though several other mode 

couplings are listed, this coupling is the most important since it will occur first.  
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Table 4. Possible Mode Couplings of the Open Source Fighter 

Coupled Modes 𝑸 𝑓 

k2,3 and k2,3 24 kPa 4.8 Hz 

k1,4 and k4,1 76 kPa 3.8 Hz 

k1,4 and k4,1 119 kPa 3.0 Hz 

k8,10 and k10,8 131 kPa 13.4 Hz 

k2,10 and k10,2 784 kPa 11.5 Hz 

k8,10 and k10,8 1.1 MPa 17.6 Hz 

k1,9 and k9,1 10.7 MPa 26.4 Hz 

k6,10 and k10,6 16.6 MPa 8.7 Hz 

k5,10 and k10,5 19.6 MPa 8.2 Hz 

k5,10 and k10,5 24 MPa 7.3 Hz 

k6,10 and k10,6 32.4 MPa 5.0 Hz 

 

 

3 Verification of Predicted Flutter Values Using Fully Coupled Solution 

The fully coupled FSI simulation will be used to verify the accuracy of the nonlinear fluid modal method. 

The fully coupled aeroelastic simulation can be conducted in two steps: 1) obtaining a steady-state solution 

of the flow field and 2) ping the structure (start of FSI) and observing the unsteady response.  

 

Steady-State Solution 

Obtaining a steady-state solution ensures a good initial condition before any structural motion occurs. This 

can be done by running a fully coupled CFD and structural code with global time-stepping or by using a 

larger time-step with startup iterations with local time stepping. An example steady-state solution result can 

be seen in Figure 3. The free-stream conditions of this case are: Mach = 0.96, Q = 60 kPa, Density = 0.6 

kg/m3, Velocity = 447 m/s, and Altitude = 717 m. Note that the dynamic pressure for this example is a little 

more than double that which was used for extracting the stiffness matrix. Lift, drag, and pitch coefficients 

are all converged. As expected, several shocks are present in the flow field along the fuselage and on the 

wing. 

 

      
Figure 3. Steady-State Flow Field and Convergence Properties of the Q = 60 kPa Run 
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Ping the Structure and Observe the Unsteady Response 
The structure can be “pinged” by supplying an initial velocity to all modes. With the ping, each mode will 

begin to oscillate. After some time, the modes will either decay or grow. The modes that grow are unstable. 

For example, the modal displacements of Modes 2 and 3 for the same case from Figure 3 are shown in 

Figure 4. The predicted critical Q value for flutter onset was calculated to be 24 kPa. Since the simulation 

was conducted well above that region at a dynamic pressure of 60 kPa, one should expect the modes that 

lead to instability to grow without bound, as shown in Figure 4. 

 

 
Figure 4. Modal Displacements of Modes 2 and 3 for the Q = 60 kPa Run 

 

 

Capturing the Critical Q value and Frequency of Flutter Onset 

For this study, flutter was defined as when the coefficient of Roll of the simulation resulted in a damping 

factor of zero. A total of 8 dynamic pressure values ranging from 10 kPa to 60 kPa were simulated to narrow 

in on the critical Q value. Figure 5 shows the damping factors of the 27.5 kPa, 30 kPa, and 35 kPa runs. A 

quadratic fit was employed to extrapolate the critical Q value. The critical Q value extrapolated from the 

simulation runs is very close to that predicted by the nonlinear fluid modal method, resulting in a percent 

error of less than 2%. To determine the flutter frequency, the FFT (fast Fourier transform) of the coefficient 

of Roll of the Q = 40 kPa simulation run is shown in Figure 6. The theoretical critical frequency determined 

by the nonlinear fluid modal method was 4.8 Hz, as given in Table 5. The plot of Figure 5, which determines 

the frequency content of the cRoll data, shows a peak at 4.8 Hz as well.  
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Figure 5. Extrapolation of the Simulated Critical Q Value of the Open Source Fighter at          Mach = 

0.96 

 

 

 

 
Figure 6. FFT of the Coefficient of Roll of the Q = 40 kPa Simulation Run 

 

 

Table 5 shows the comparison of dynamic flutter pressure and flutter frequency from the fully coupled 

solution and the current fluid modal method. One can see very good agreements.  

   

Table 5.   Comparison of Flutter Dynamic Pressure and Flutter Frequency 

 Current Fluid Modal 

Method 

Fully Coupled Solution 

Flutter Dynamic Pressure (kPa) 24.1 24.4 

Flutter Frequency (Hz) 4.80 4.80 

 

 

4 Prediction of Flutter Boundary 

All results up to this point have only been dealing with the onset of flutter at a Mach number of 0.96. 

However, from past aeroelastic analysis, the critical Q value has been shown to be dependent on Mach 

number. Several methods for predicting flutter have been developed over the years. One such method 

known as the Schur method was implemented on the Open-Source Fighter Geometry by Marques et al. [5]. 

These results are presented in Figure 7, along with the calculated critical Q value determined by the 
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nonlinear fluid modal method. Since the Schur method included Euler solutions, the stiffness matrices for 

each Mach number were extracted using an Euler solver. As seen in the figure, the nonlinear fluid modal 

method compares well with the Shur method. The critical Q values calculated for the nonlinear fluid modal 

method were determined using only the coupling between Mode 2 and Mode 3. 

 

 
Figure 7. Flutter Boundary for the Open-Source Fighter with Comparisons between the Schur and 

Nonlinear Fluid Modal Methods   
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