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Abstract: In this abstract, we present improvements in computing steady-
state adjoint-based sensitivities using inexact linearizations of fixed-point itera-
tions used to solve the nonlinear problem. This method guarantees convergence
of the adjoint solution, provided that the solution the of the nonlinear primal
problem converges. The method is enhanced by introducing a nonlinear update
tolerance and an automatic nonlinear constraint tolerance to allow for cheaper
and more robust sensitivity computation as well as cheaper design algorithms.
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1 Introduction

In aerodynamic shape optimization, gradient based approaches are used to solve the minimiza-
tion problem:

min
D

L(u(D), D), s.t. R(u(D), D) = 0. (1)

L is the objective function (such as lift or drag), R is the residual operator (the error in the
discretized form of the governing equations), u is the conservative variable vector, and D is
the design variable vector. The classic approach is that of partial differential equation (PDE)
constrained optimization –also known as the nested approach – in which the PDE is solved at
each iteration and the sensitivities about the converged state are used to change the design
variables to generate a new design. The sensitivity equation is

dL

dD
=
∂L

∂D
+
∂L

∂u

du

dD
, (2)

where an expression for du
dD is required for the sensitivity to be computed. Since the nested

approach proceeds off the assumption that R = 0, we can say that[
∂R

∂u

]
du

dD
+
∂R

∂D
= 0. (3)

Substituting equation for du
dD into the sensitivity equation yields

dL

dD
=
∂L

∂D
− ∂L

∂u

[
∂R

∂u

]−1 ∂R

∂D
, (4)
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We then define an adjoint variable Λ according to the equation below[
∂R

∂u

]T
Λ = −

[
∂L

∂u

]T
, (5)

which scales with the number of objective functions rather than the number of design variables.
The other approach to the optimization problem is often referred to as the one-shot approach
[1], in which the PDE, the adjoint system and the design problem are solved in tandem:

uk+1 = N(uk, D),

Λk+1 = B(uk,Λk, D),

Dk+1 = Dk + F (uk,Λk, Dk).

(6)

Where N(uk, D) is a fixed-point iteration meant to drive R(uk, D) to 0, B is an operator which
in the context of "piggy-back" iterations is defined to be Lu+NuΛk, and F is a preconditioner to
guarantee convergence for the coupled iterations. Much of the previous work on these piggy-back
iterations used explicit iterations of the form

N(uk, D) = uk +
∆t

vol
R(uk), (7)

where ∆t and vol were the local time step and volume respectively. The differentiation of such
a fixed-point iteration is straight-forward and work on implicit iterations of the form

N(uk, D) = uk − [Pk]
−1R(uk), (8)

where Pk is an approximate residual Jacobian is less common due to the need to differentiate the
approximate inversion of the Pk matrix. In order to address the differentiation of the approximate
matrix inverse previous work looks at the use of inexact linearizations in the context of coupling
only the PDE constraint and adjoint equations [2]. The approximate linearizations are the
Newton-Chord linearization and the inexact-quasi-Newton linearization and are defined as

∂ [Pk]
−1

∂u NC
= 0,

∂ [Pk]
−1

∂u IQN
= [Pk]

−1 ∂ [Pk]

∂u
[Pk]

−1 .

(9)

These methods showed desirable convergence behaviors in both mathematical proof and numer-
ical experiment, in that the error due to such approximations decreases at the same rate as the
solution of the PDE itself. We will apply the piggy-back iterations to convergent iterations only
in order to decrease the computational expense of such techniques. Specifically we define a con-
traction at each iteration k, where ρk is defined as ρk =

∥∥R(uk−1)
∥∥ /∥∥R(uk)

∥∥, and for ρk < τρ
the adjoint iteration is performed. To restrict the adjoint iterations only to convergent itera-
tions, we can set τρ = 1.0, in this work we also augment this control by automatically performing
the adjoint computation for iterations where

∥∥R(uk)
∥∥ ≤ 1e − 12 regardless of the convergence

behavior of the nonlinear problem at that iteration. In the full paper we will combine this with
an adaptive tolerance controller and with the work on inexactly constrained linearizations [3] so
that we may lower the cost of the design process.



2 Preliminary Results

We use the case of a NACA0012 airfoil in Mach = .7 and α = 2o in compressible inviscid flow
for verification and preliminary results. We compare the sensitivities, the expense (measured by
time taken to solve the adjoint problem), and the number of nonlinear iterations (out of 300)
skipped for the adjoint solution methods. The choice to skip certain iterations is not harmful
to the accuracy of the final sensitivities and decreases the cost with both inexact linearizations
becoming more economical than the steady-state adjoint solution method.

Design Variable 1 Design Variable 2 Time (s) nskip

Complex -0.4507974688123841 0.4465241035044418 N/A N/A
NC(τρ =∞) -0.450797468910912 0.446524103534101 163.16 0
NC(τρ = .9) -0.450797468777518 0.446524103463391 96.97 120
IQN(τρ =∞) -0.450797468899974 0.446524103530128 187.09 0
IQN(τρ = .9) -0.450797468767427 0.446524103460009 112.68 120
Steady State -0.450797468918543 0.446524103535613 116.43 N/A

Table 1: Comparison of sensitivities computed by various methods

3 Final Paper

In the final paper, we will complete a study about the impact of the nonlinear iteration tolerance
as well as an automated tolerance controller as we believe the choice of a constant value of τρ is
undesirable. We will use the results of these investigations to guide our choices in the inexactly
constrained design methodology in the final paper.
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