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Abstract: We derived the first-ever 3-D kinetic-based discrete dynamic system 
(DDS) from lattice Boltzmann equation (LBE) for incompressible flows through a 
Galerkin procedure. The DDS involves four bifurcation parameters including the 
relaxation time from the LBE and wavevector components from the Fourier space.  
Numerical simulations are presented in terms of time series and power spectra. The 
DDS can capture laminar behaviors of periodic, subharmonic, n-period, and quasi-
periodic and turbulent behaviors of noisy periodic with harmonic, noisy 
subharmonic, noisy quasi-periodic, and broadband power spectra. We expect to 
apply this DDS in the large eddy simulation of turbulent pulsatile flows to provide 
dynamic sub-grid scale information. 
 
Keywords: Lattice Boltzmann method, poor-man’s lattice Boltzmann equation, time 
series, power spectra, turbulence modeling. 

1 Introduction 
Discrete dynamical systems (DDSs) have long been of interest for their ability to capture 
complicated turbulent-like behaviors while being very simple from a mathematical 
standpoint[1]. The “poor man’s Navier--Stokes (PMNS) equation”, introduced by 
Frisch[2], is an established DDS derived from the incompressible Navier--Stokes (N-S) 
equations. However, there are deficiencies in the DDS derived from N-S equations that 
are limited to small Knudsen numbers. In this work, we derive a first-ever 3-D kinetic-
based DDS, i.e., “poor man’s lattice Boltzmann (PMLB) equation” using the lattice 
Boltzmann method (LBM)[3]. We perform numerical experiments to explore the 
capability of the DDS to predict both laminar and turbulent flow behaviors. 

2 Formulation of the 3-D kinetic-based DDS 
The formulation of the PMLB equation consists of the following steps: 
1) Decompose the distribution function 𝑓௜ (i=0, 1,…,b) into large scale (𝑓ሚ௜) and sub-

grid scale (SGS) (𝑓௜
∗)   

2) Perform a Fourier expansion for the distribution function to represent the large and 
small scales as  
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3) Construct the PMLB equation through a Galerkin procedure  
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The four bifurcation parameters are the three components of the wavevector 𝑘ሬ⃗  and the 
relaxation time 𝜏. 

3 Results and Future Work 
Numerical results for two representative behaviors—subharmonic (left) and noisy 
subharmonic (right) —for laminar and turbulent flow respectively, are shown below. The 
top and bottom rows are for the time series of 𝑎௜,௞ሬ⃗  and the corresponding power spectral 
density (PSD), respectively.  For the laminar subharmonic (left), the bottom of the time 
series for adjacent periods are different and there are one-period doublings in the 
corresponding PSD. For the turbulent subharmonic behavior (right), the time series are 
more complicated, and more frequencies are appearing in the PSDs. 

 

   
 

Besides the two behaviors above, the DDS captures laminar and turbulent behaviors 
from periodic, n-period, quasiperiodic, to noisy periodic with harmonics, noisy 
quasiperiodic, and broadband. These results imply the possibility of applying the DDS 
in a large-eddy simulation (LES) model to predict the SGS physics. In the next step, 
we will investigate the effects of the bifurcation parameters beyond the basic 
description provided in the current work. Also, it will then be possible to build the 
complete LES model based on LBM and validate its performance against physical 
measurements and direct numerical simulation results for problems of interest. 
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