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In this paper, we will establish consistency and formal second-order accuracy of a novel edge-based 

viscous (EBV) method on two-dimensional and three-dimensional simplicial grids. The EBV method 

has recently been introduced as an efficient alternative to a second-order accurate cell-based viscous 

(CBV) method currently used in NASA's FUN3D code  [1], the latter is equivalent to the Galerkin linear 

finite-element method [2] on simplicial grids. The EBV method demonstrates significant speedup in 

practical aerodynamic simulations with no significant changes in the solutions but currently lacks a 

theoretical foundation for its accuracy. This paper reports on analytical and computational studies to 

build confidence in EBV solutions.  

The CBV method computes diffusion fluxes in a loop over cells. At each cell, the solution gradients are 

computed using the solution at cell vertices. This approach results in a compact discretization stencil 

that is suitable for massively parallel computations and conveniently supports the exact linearization of 

the residual. The main disadvantage of the cell-based approach is a relatively high computational cost 

of the cell loop. A new EBV method has been recently derived [3] following the approach proposed by 

Barth [4]. In this EBV method, the viscous residual is more efficiently computed in an edge loop, and 

its compact stencil involves only edge neighbors. The EBV method requires a modest memory increase 

to store a few precomputed coefficients per edge.  

The EBV method has been applied to the viscous kernel of the Reynolds-averaged Navier-Stokes 

(RANS) equations [3] that evaluates the viscous fluxes of the meanflow equations, the diffusion term 

of the turbulence-model equation, and the corresponding Jacobian terms. The time spent on the viscous-

kernel computations has been reduced by more than a factor of three, and the fraction of viscous-kernel 

computations has been reduced from over 33% to 13% of a typical nonlinear iteration. A recent further 

optimization improves the EBV speedup of the viscous-kernel computations to a factor of six and 

reduces the fraction of viscous-kernel computations to less than 2.5%. An extension of the EBV method 

to mixed-element grids and chemically reacting flows is reported in Ref. [5]. Figure 1 compares EBV 

and CBV iterations that are performed by the baseline solver of FUN3D on a three-dimensional 

tetrahedral grid with about 4.6 million cells and 800 thousand grid points. The benchmark is an 

energetic, high-altitude, chemically reacting, hypersonic flow around a model crew-exploration vehicle 

with two temperature models and eleven air species. The EBV and CBV solutions show a consistently 

similar residual convergence per iteration, while the wall time required for the EBV solution is at least 

20% less than the wall time required for the CBV solution. 

  

        Figure 1. Baseline FUN3D iterations for benchmark hypersonic simulation. 

Unlike the CBV method, the EBV method is cast as summation of edge-based solution differences and 

does not have a clear association with flux conservation. The viscosity coefficients at the edges are 

computed by averaging viscosity at the edge endpoints. The authors are not aware of any theoretical 



foundation that can readily and rigorously support the consistency and accuracy of the EBV method for 

non-constant viscosity. The verifiable similarity of the EBV and CBV solutions and significant 

efficiency improvements offered by the EBV method warrant efforts to establish such a foundation.  

References [3, 5] focus on verification of the EBV implementation and efficiency assessment for RANS 

solutions. This paper focuses on establishing consistency and formal second-order accuracy of EBV 

solutions. The full paper will present the EBV discretization for a scalar diffusion equation in detail and 

compare its complexity to the complexity of the CBV discretization. Analytical and computational 

studies will be reported to compare accuracy and grid convergence of the CBV and EBV methods on 

simplicial grids in application to linear and nonlinear scalar diffusion equations and to the laminar 

Navier-Stokes equations.  

The truncation error analysis based on Taylor expansions will be conducted for the CBV and EBV 

methods on regular isotropic and anisotropic grids. A preliminary study shows that both methods 

provide the leading second-order truncation-error terms for the diffusion equation:  

div(𝜇𝛁𝑢) = 𝑔,                                                                                          (1) 

where 𝑢  is a differentiable function,  𝜇  is a viscosity, and 𝑔  is a force function. A method of 

manufactured solutions has been applied to establish second-order convergence of the EBV and CBV 

discretization errors on families of irregular grids. See Figure 2. The linear Eq. 1 corresponds to 𝜇 = 1, 

and the nonlinear Eq. 1 corresponds to  𝜇 = 1 + 𝑢2. Second-order convergence of discretization errors 

is evident. The analysis for the Navier-Stokes equations will be reported in the full paper. 
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Figure 2. Irregular isotropic tetrahedral grids. 
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