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Numerical methods for ordinary differential equations, also known as time stepping methods, play an 

essential role in engineering and scientific computing. For Computational Fluid Dynamics (CFD), as 

mentioned in the NASA Vision 2030 report and agreed by most experts, time stepping is one of the 

remaining bottlenecks for the accurate numerical simulations of turbulent flows. Among time stepping 

methods, two important classes are Galerkin and collocation.  

The following proposition holds for the three most popular Galerkin time stepping methods: each is 

equivalent to a collocation counterpart up to an error of order higher than the order of the method. This 

observation provides intuition as well as simplifies the derivation of the resulting implicit Runge-Kutta 

method for a Galerkin scheme. To put it differently, the proposition establishes the relation between 

projection and interpolation, the key concepts of respectively the Galerkin and collocation approaches. 

The general scalar ordinary differential equation (ODE) is given by 

 𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡))  (1a) 

with initial condition  

 𝑢(𝑡0) = 𝑢0. (1b) 

Here, the focus is on one-step methods where, with time step of size Δ𝑡, the data 𝑢𝑛 at time 𝑡𝑛 = 𝑛Δ𝑡 

is known and the solution 𝑢𝑛+1 at 𝑡𝑛+1 is to be calculated.  

In addition, for ease of comparison, we also focus on methods resulting in implicit Runge-Kutta schemes 

of 𝑠 stages. In the case of collocation, these stages correspond to the 𝑠 collocation points. In the case of the 

Galerkin methods, they together with the data 𝑢𝑛 correspond to the 𝑠 + 1 coefficients of a polynomial 

solution of degree 𝑠. The exception, however, is the case of discontinuous Galerkin, where the 𝑠 stages 

correspond to a solution polynomial of degree 𝑠 − 1 (since the data 𝑢𝑛 is enforced only weakly). 

By rescaling, we may assume 𝑡𝑛 = 0 and 𝑡𝑛+1 = 1. The data at 𝑡𝑛 = 0 is denoted by 𝑢0, and the 

solution polynomial 𝑢𝑆(𝑡) on [0, 1] as well as 𝑢𝑆(1) = 𝑢1 are to be calculated. 

Concerning the collocation methods, all collocation points discussed are quadrature points on [0, 1]. 

The first Galerkin method seeks a solution polynomial 𝑢𝐺(𝑡) of degree 𝑠 with 𝑢𝐺(0) = 𝑢0. The 

remaining 𝑠 conditions to determine 𝑢𝐺 are given by employing the test space 𝑽0 of polynomials of degree 

𝑠 that vanish at 𝑡 = 0 (thus, 𝑽0 has dimension 𝑠). Concerning the corresponding collocation method, denote 

the 𝑠 + 1 left Radau points by 𝑐0, 𝑐1, … , 𝑐𝑠 where 𝑐0 = 0.   

Proposition 1. The Galerkin method with solution polynomial of degree 𝑠 and test space 𝑽0 is 

equivalent to the collocation method with the 𝑠 nonzero members of the 𝑠 + 1 left Radau points (namely 

 𝑐1, …,  𝑐𝑠) as collocation points. 

Next, the continuous Galerkin (CG) method seeks a polynomial solution of degree 𝑠 denoted by 𝑢𝐶𝐺 

with 𝑢𝐶𝐺(0) = 𝑢0. The remaining 𝑠 conditions to determine 𝑢𝐶𝐺 are given by employing the test space 𝑽 

of polynomials of degree 𝑠 − 1 (𝑽 has dimension 𝑠).  

Proposition 2. The CG method is equivalent to the collocation method with the 𝑠 Gauss points as 

collocation points. 
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Finally, the discontinuous Galerkin (DG) method seeks a polynomial solution of degree 𝑠 − 1 denoted 

by 𝑢𝐷𝐺 (usually 𝑢𝐷𝐺(0) ≠ 𝑢0, and 𝑢0 is enforced weakly). The 𝑠 conditions to determine 𝑢𝐷𝐺 are given by 

employing, like the case of CG, the test space 𝑽 of polynomials of degree 𝑠 − 1 (again 𝑽 has dimension 𝑠).  

Proposition 3. The DG method is equivalent to the collocation method with the 𝑠 right Radau points as 

collocation points. 

 

The proofs of these propositions as well as the stability and accuracy analyses of these methods will be 

provided in the paper. 

 

As an example, on [0, 1], solve 

 𝑢′(𝑡) = 𝑓(𝑡) = 1 + 8𝑡 − 12𝑡2 (2a) 

with initial condition 

 𝑢(0) = 𝑢0 = 1. (2b) 

The exact solution is straightforward: 

 𝑢exact(𝑡) = 1 + 𝑡 + 4𝑡2 − 4𝑡3. (3) 

The first Galerkin method seeks a quadratic solution  

 𝑢𝐺(𝑡) = 1 + 𝑎1𝑡 + 𝑎2𝑡2 (4) 

by employing the test space 𝑽0 of quadratics that vanish at 𝑡 = 0, i.e., 𝑏1𝑡 + 𝑏2𝑡2. (Note that 𝑢𝐺(0) = 1.) 

Denote (𝑣, 𝑤) = ∫ 𝑣(𝑡)𝑤(𝑡) 𝑑𝑡
1

0
. Using the basis 𝜙1 = 𝑡 and 𝜙2 = 𝑡2 for 𝑽0, the solution 𝑢𝐺 is given by  

 (𝑢𝐺 , 𝜙𝑘) = (𝑓, 𝜙𝑘),    𝑘 = 1, 2. (5) 

A little algebra yields  

 𝑢𝐺(𝑡) = 1 + 4.6𝑡 − 3.2𝑡2. (6) 

Concerning the corresponding collocation method, the three left Radau points on [0, 1] are 0, 𝑐1 ≈
0.3551, and 𝑐2 ≈ 0.8449. By a straightforward calculation with 𝑢𝐺

′(𝑡) = 4.6 − 6.4𝑡 and 𝑓 by (2a), 

 𝑢𝐺
′(𝑐1) = 𝑓(𝑐1) ≈ 2.3277    and     𝑢𝐺

′(𝑐2) = 𝑓(𝑐2) ≈ −0.8077. (7) 

The conditions 𝑢𝐺(0) = 1, 𝑢𝐺
′(𝑐1) = 𝑓(𝑐1) and 𝑢𝐺

′(𝑐2) = 𝑓(𝑐2) define a collocation method with 

collocation points 𝑐1 and 𝑐2, which are the two nonzero members of the three left Radau points on [0, 1]. 
Thus, the Galerkin method with test space 𝑽0 yields a result identical to the collocation method with the 

two nonzero members of the three left Radau points as collocation points. See figure below. 

 

 

  

Figure. The Galerkin method with test space 𝑽0 is identical to the collocation method with the two 

nonzero of the three left Radau points as collocation points; left, solutions; right, corresponding derivatives.  
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