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Abstract: CFD-based multidisciplinary models are the fundamental building blocks
of multidisciplinary design optimization frameworks. Linear and nonlinear solutions
of these coupled models are difficult, especially when the Jacobian matrices repre-
sent a saddle point problem, where a block-diagonal corresponding to a discipline
is non-invertible. These scenarios necessitate the use of a coupled solver algorithm
such as the Newton’s method instead of the popular block Gauss–Seidel-based meth-
ods because of this non-invertible block. To address this challenge, we introduce a
nonlinear Schur complement solver suitable for CFD-based multidisciplinary mod-
els. The solver leverages the specialized linear and nonlinear solvers of the CFD
code, and therefore, does not require the solution of a large coupled linear system
as the coupled Newton’s method. Furthermore, because the solver primarily uses
the specialized linear and nonlinear solvers of the CFD code, it does not suffer from
the same robustness limitations as the coupled Newton’s method. In this work, we
will implement this solver in NASA’s OpenMDAO framework and demonstrate its
effectiveness using a CFD-based aeropropulsive model.

1 Introduction

To reduce the environmental impact of aviation, new aircraft concepts rely on advanced technologies
such as boundary layer ingestion or distributed electric propulsion. However, we do not have any
prior experience in the design of these systems, and therefore, we must rely on multidisciplinary design
optimization (MDO) frameworks to maximize the interdisciplinary benefits of these technologies [1].

Solving the linear and nonlinear systems of equations that arise from multidisciplinary models is
challenging. The most common solution approaches for these problems are based on the linear and
nonlinear block Gauss–Seidel methods. However, there is a class of multidisciplinary models where
Gauss–Seidel-based methods cannot be used. To introduce this class of problems, we will use an
aeropropulsive model from previous work as an example (Fig. 1) [2].

(a) Contours of normalized stagnation
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(b) Simplified XDSM diagram of the coupled aeropropulsive
model.

Figure 1: CFD solution and the XDSM diagram of the podded fan aeropropulsive model [2].

1



This model results in a coupled nonlinear system of equations, which can be written as:

R(u) =

[
Raero(uaero, uprop)
Rprop(uaero, uprop)

]
= 0, (1)

where Raero and Rprop are the residual functions for the aerodynamic and propulsion models, re-
spectively. In the general case, both of these residuals depend on both the aerodynamic (uaero) and
propulsion (uprop) models’ states; however, for this aeropropulsive model that uses boundary conditions
to model the effect of the fan on the flow, the propulsion model residuals (Rprop) only depend on the
aerodynamic model’s states (uaero). As a result, the block diagonal term ∂Rprop/∂uprop term on the
Jacobian matrix is zero:

∂R
∂u

=

[
∂Raero/∂uaero ∂Raero/∂uprop
∂Rprop/∂uaero ∂Rprop/∂uprop

]
=

[
∂Raero/∂uaero ∂Raero/∂uprop
∂Rprop/∂uaero 0

]
. (2)

This feature of the Jacobian matrix prevents the use of the linear and nonlinear block Gauss–Seidel
methods in the linear and nonlinear solutions of this saddle point problem [3].

In previous work [2], we addressed the challenge of converging the propulsion model residuals by
adding them as equality constraints to the optimization problem, which avoids the requirement of solv-
ing them at each model evaluation. This approach is not ideal, because we cannot perform standalone
analyses using this model, and any balanced analysis requires the solution of a small optimization prob-
lem. An alternative solution here would be to use the coupled Newton’s method to solve the nonlinear
system; however, forming and solving a large linear system for the Newton’s method is difficult, and
the method suffers from robustness issues when the initial guess is far away from the solution. The
ideal solution here would achieve Newton-like convergence rates while relying on the specialized linear
and nonlinear solvers of the CFD solver as much as possible.

2 Proposed Work
In this work, we will develop a nonlinear solver based on the Schur complement method to solve the
saddle point problems arising from multidisciplinary models. To achieve this, we will combine the ideas
from the approximate Newton–Krylov solvers [4] and nonlinear preconditioning approaches [5]. As a
result, this approach will utilize the specialized nonlinear and linear solvers of the CFD code and does
not require forming and solving a larger linear system.

We will implement this solver in NASA’s OpenMDAO framework [6] and demonstrate its capabil-
ities with the aeropropulsive design optimization problem from our previous work [2]. This solver will
enable robust analyses of CFD-based multidisciplinary problems that exhibit saddle point properties
and will accelerate future design optimization studies that rely on CFD-based multidisciplinary models.
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