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In direct and large eddy simulations, very small space steps are used close to the solid walls in order to resolve
the boundary-layer structures. Due to the restrictive CFL stability criteria of explicit time-stepping schemes, the
maximum allowable time step is also very small, leading to high computational costs, notably for converging flow
statistics. The use of an implicit integration scheme may overcome this limitation at the price of an increased
computional cost per step. Furthermore, the most commonly used fully implicit schemes induce higher errors due
to the necessary approximations and bad dispersion and dissipation properties. As a compromise, a fourth-order
implicit residual smoothing scheme (IRS4), succesfully validated for a finite volume solver in [1, 2], has been
implemented in a multiblock high-order finite-difference solver. For moderate CFL numbers, a similar accuracy
as the explicit method is obtained with substantial savings in terms of computational time.

Extension of 4th-order IRS scheme to curvilinear grids

The code solves the compressible Navier-Stokes equations for multiblock geometries, using a coordinate transform
for curvilinear grids. The inviscid fluxes are discretized with 10th-order standard centred differences whereas
4th-order is used for viscous fluxes. A 9th-order selective filtering or artificial dissipation is used to eliminate
grid-to-grid oscillations. The explicit time advancement is realised with a low-storage four-stage Runge-Kutta
(RK4). For the transformation (x, y, z)→ (ξ, η, z), the IRS4 operator is applied at each Runge-Kutta stage as:

U (0) = Un

J∆U (k) = −ak∆tR(U (k−1)), k = 1, ..., s
Un+1 = U (s)

with J =
d∏
l=1

[1 + θ4( ∆t
δxl

)4δl(λ
e
l
4δ3
l )] (1)

where J denotes the implicit operator, θ4 a tuning parameter determined to ensure stability [1], δxl the space step
(δξ = δη = 1) and λel the spectral radius of the flux Jacobian in the lth direction. For curvilinear coordinates, the
spectral radius is set as λeξ = λeη =
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||∇ξ||22 + ||∇η||22, with θξ and θη the contravariant velocities. A

particular attention has been paid to the boundary treatment, notably at the wall and at the interfaces of blocks
or MPI domains. The IRS4 operator J being a bilaplacian filter, a pentadiagonal linear system is inverted for
each implicited direction. Solving the global linear system distributed over the processors would be too costly,
since direct pentadiagonal solvers are difficult to parallelize. That is why local inversions are performed using 5
rows of ghost points (for the 11-pts stencil scheme in use). Close to physical boundaries or domain interfaces, the
implicit operator is degraded into IRS1 [3] at the first point and IRS2 at the second point:
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with δ+ the upward difference operator and δ− the backward difference IRS1 operator. Furthermore, the solution
increment is set to 0 at the wall. However, the simplified treatment at interfaces may introduce numerical
instabilities. To quantify the effect of boundary treatments, a stability study for a 1-D linear advection problem
has been carried out and will be presented. To avoid approximations at MPI interfaces, a full parallelization of
the linear solver would be necessary. Solutions based on the divide-and-conquer algorithm, such as the banded
solver of ScaLapack, has been tested but leads to an unacceptable overcost. Another possibility would be to
extend more efficient tridiagonal parallel solvers, such as Pascal library [4], to pentadiagonal systems. Some
approximations have still to be introduced in order to reduce the overcost.

Preliminary results and work in progress

Channel flow: The first case investigated is the turbulent channel flow at Reτ = 180, based on the friction
velocity and the channel half-height H. The computational domain of 4πH × 2H × 2πH is discretized with
192 × 180 × 160, leading to a DNS resolution (∆x+ = 11.9, ∆z+ = 7.1, ∆y+

w = 0.8 and ∆y+
c = 4). Isothermal
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Case ∆t+
tCPU,expl.

tCPU,case

Explicit 1.05 × 10−2 1.0
IRS4 5.26 × 10−2 4.06
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Figure 1: Comparison of the rms velocities profiles with the Vreman & Kuerten (V&K) reference [5] for the explicit and
IRS4 time integrations with ∆t+IRS4=5 × ∆t+explicit.

Case ∆t
tCPU,expl.

tCPU,case

Explicit 4.91 × 10−9 1.0
IRS4 14.74 × 10−9 2.3

1.06 1.54 2.02
x/D

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y/
D

Figure 2: Left: Snapshot of λ2 vorticity criterion. Right: comparison of the u′u′
Uin

profiles in the wake of the cylinder at
x
D

= 1.06, 1.54 and 2.02 for the 2 cases ( : Explicit, : IRS4).

no-slip conditions are applied at the walls and periodicity conditions along streamwise and spanwise directions.
The Mach number is set to M = 0.3. Results using an explicit time integration are compared with the use of
IRS4 implicitation for various CFL numbers. Figure 1 shows a comparison between the explicit solution using
a time step ∆t+ and IRS4 applied only in the wall-normal direction with 5∆t+. The two simulations are run
during the same physical time interval. A saving of a factor 4 is obtained (see table) for a similar accuracy, as
shown by the relative deviation with respect to the reference solution of [5] (Fig.1).

Cylinder flow: The IRS4 method is then validated for the flow past a circular cylinder at ReD = 3900 based on
the diameterD, and atM = 0.3, which is a common benchmark case for curvilinear geometries [6]. The simulation
is performed on a multi-block H-O-H grid topology with approximatively 5 millions points (∆yw = 1.16×10−6 m).
Non-reflecting Tam & Dong’s conditions are applied at free boundaries and a sponge zone is added at the outlet
boundary. Explicit and implicit simulations are started from the same initial field with dimensional time steps
given in the Table of Fig. 2. The IRS4 is applied in the ξ and η-directions with a timestep multiplied by 3.
Time-averaged fields, computed over the same physical duration, are in good agreement, as shown for instance
for streamwise rms velocity shown in the same figure. Small discrepancies are due to the limited averaging period
allowed by the explicit scheme. The flow regime is chaotic at this Reynolds number and it would require very
long averaging times to achieve well-converged statistics. The present implicitation leads a computational time
reduction of a factor 2.3 (see table), so that longer time integrations are made possible.
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