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Abstract: Stable and non-dissipative kinetic-energy and entropy preserving
(KEEP) schemes have recently been proposed for compressible flows. The
KEEP schemes significantly improve numerical robustness compared to the
kinetic energy preserving (KEP) schemes, which are widely recognized as non-
dissipative and stable numerical schemes. The present study comprehensively
discusses the KEEP schemes, including the derivation background and numer-
ical formulations.
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1 Introduction
It is crucial to use non-dissipative numerical schemes to perform high-fidelity flow computations,
such as direct numerical simulation and large eddy simulation (LES). Recently, we have proposed
stable and non-dissipative kinetic-energy and entropy preserving (KEEP) schemes [1-3] for com-
pressible flows. Although kinetic energy preserving (KEP) schemes [4] are widely recognized as
non-dissipative and stable numerical schemes, the KEEP schemes significantly improve numeri-
cal robustness compared to the KEP schemes, particularly when compressible effects appear. In
the KEEP schemes, the enhancement of numerical robustness is achieved by exactly preserving
the kinetic energy and approximately preserving the entropy. A recent work [5] has succeeded
in performing a wall-modeled LES of a full aircraft configuration using the KEEP schemes.

2 KEEP schemes and numerical test
The second-order accurate KEEP schemes for Cartesian grids were proposed first [1,2]. Then,
the high-order accurate KEEP schemes in generalized curvilinear coordinates were also proposed
[3]. For example, the second-order KEEP numerical fluxes proposed in Ref. [1] are
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where C̃, M̃, K̃, Ĩ, G̃, and P̃ are the numerical fluxes of the mass, momentum, kinetic energy,
internal energy, pressure-gradient, and pressure-diffusion terms of the Euler equations, respec-
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(a) Total kinetic energy
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(b) Total entropy

Figure 1: Time evolution of total kinetic energy and total entropy in inviscid Taylor-Green
vortex test on a curvilinear grid at M0=0.4.
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) − Ĩj |(m− 1

2
)

∆xj
,
∂pδij
∂xj

≃
G̃ij |(m+ 1

2
) − G̃ij |(m− 1

2
)

∆xj
,
∂ujp

∂xj
≃

P̃j |(m+ 1
2
) − P̃j |(m− 1

2
)

∆xj
.

m is the computational node index, ρ is the density, ui is the Cartesian velocity component
in the ith-direction, p is the pressure, k is the kinetic energy, and e is the internal energy,
respectively. Those numerical fluxes are derived to numerically replicate the three analytical
relations that the governing equations (i.e., Euler equations) analytically hold: 1) the kinetic
energy equation is derived from the mass and momentum equations, 2) the internal energy and
kinetic energy are convected by the same convective velocity, and 3) the pressure diffusion term
in the total energy equation is the sum of the pressure work term in the kinetic energy equation
and the pressure dilatation term in the internal energy equation. Tamaki et al. [6] described the
numerical meaning of the analytical relations in terms of discrete entropy conservation error.

Figure 1 shows the time evolution of the total kinetic energy and total entropy (∆ρs=ρ0s0-
ρs, where s is the entropy) in an inviscid Taylor-Green vortex test conducted on a largely-
distorted wavy computational grid. The initial Mach number is set at M0=0.4. The second-
and eighth-order KEEP schemes [3] conduct long-time stable computations without the aid of
numerical dissipation, whereas the KEP schemes [4] computationally diverge. At the conference,
we will comprehensively discuss the KEEP schemes, including the derivation background and
the detailed numerical formulations of the KEEP schemes.

References

[1] Y. Kuya, K. Totani, and S. Kawai. J. Comput. Phys., 375:823-853, 2018.
[2] Y. Kuya and S. Kawai. Comput Fluids, 104427, 2020.
[3] Y. Kuya and S. Kawai. J.Comput.Phys., 442:110482, 2021.
[4] S. Pirozzoli. J.Comput.Phys., 230:2997-3014, 2011.
[5] H. Asada and S. Kawai. AIAA Paper 2022-0449, 2022.
[6] Y. Tamaki, Y. Kuya, and S. Kawai. (under review), 2022.


