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The moving discontinuous Galerkin finite element method with interface condition enforce-
ment (MDG-ICE) is an implicit shock fitting method capable of handling complex shock dy-
namics [1, 2]. The method is a unique variation of the well-known discontinuous Galerkin (DG)
method. Specifically, neighboring elements are not coupled through interfacial, single-valued,
numerical fluxes; instead, the conservation law and interface (Rankine-Hugoniot) conditions are
directly discretized and the discrete domain geometry is treated as a variable. By simultane-
ously solving for the flow field and discrete geometry, MDG-ICE is able to produce extremely
accurate solutions on very coarse grids as the grid points are automatically repositioned to fit
shocks and resolve smooth regions of the flow with sharp gradients. This has significant advan-
tages over traditional shock capturing approaches, such as artificial viscosity and limiting; the
former relies on tunable parameters and introduces low-order errors into nominally high-order
approximations, whereas the latter can obstruct iterative convergence and be difficult to apply
to high-order solutions on curved elements with arbitrary shapes. Furthermore, since MDG-ICE
adapts the grid to satisfy the the weak form, grid interfaces are automatically repositioned to
fit a priori unknown shocks with arbitrary topology, thus overcoming key limitations of earlier
explicit shock fitting methods.

Figure 1 presents results for supersonic viscous flow over a half-cylinder at Mach 5 and
Reynolds number 104. A DG(P1) solution (where Pp denotes the space of polynomials of total
degree p on simplicial elements) with artificial viscosity is compared with the MDG-ICE(P4) so-
lution without any additional stabilization. The shock in the DG solution is noticeably smeared,
and spurious oscillations are visible both at the shock and in the shock layer. On the other hand,
the shock profile in the MDG-ICE solution is sharp and free from oscillations. MDG-ICE has
also been demonstrated to achieve superior convergence rates and significantly higher accuracy
than standard DG in boundary-layer problems.

Solution accuracy for approximations of external viscous flows over high-speed vehicles is
highly sensitive to both grid alignment and grid resolution at the strong leading shock and within
the boundary layer. We equip MDG-ICE with enhanced grid modifications in order to robustly
compute high-order solutions on feature adapted grids from an initial coarse grid. In particular,
we make use of the mesh-implied metric, which encodes information about the local element
size and orientation (even on curved, anisotropic grids) [3]. We incorporate the metric into the
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Figure 1: Comparison of the DG(P1) (with artificial viscosity) (left) and MDG-ICE(P4) (right)
solutions to the viscous Mach 5 bow shock at Re = 104 [2].

Levenberg–Marquardt nonlinear least-squares solver through an anisotropic grid regularization
that inhibits grid motion in a manner that is inversely proportional to element lengths as defined
by the metric. These tools are combined with the residual, a natural error indicator of least-
squares methods, to drive anisotropic mesh refinement. This increases robustness and efficiency
and overcomes the generation of "sliver" elements, as illustrated in Figure 2, caused by splitting
edges of invalid elements that form as MDG-ICE adapts the grid to resolve the flow. These
sliver elements introduce unnecessary degrees of freedom and may be undesirable for parametric
studies in which, for example, the angle of attack is varied. Finally, we will apply these strategies
to robustly and accurately compute multidimensional high-speed viscous flows with minimal
degrees of freedom.
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Figure 2: Final mesh for MDG-ICE solution to viscous Mach 5 bow shock at Re = 104 [2].
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