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1 Introduction and Problem Statement

Overset approaches in Computational Fluid Dynamics (CFD) have become widely adopted for simulating ap-
plications with complex geometries and moving bodies. The HPCMP CREATETM-AV Helios framework[1],
developed for rotorcraft simulations, is a successful example of the overset, multi-solver paradigm; simulation
components are meshed individually and overset within a background Cartesian Adaptive Mesh Refinement
(AMR) grid.

A typical rotor simulation solution from Helios is shown in Fig. 1. The near-blade region is solved using
the strand-based solver mStrand and the background region is solved using the octree-based AMR solver
Orchard [2]. Figure 1(a) shows the respective domains near the blade as well as the overset interface. Each
solver uses its own spatial and temporal discretizations; a domain connectivity module in Helios performs
hole-cutting and interpolation at domain boundaries.

Helios de-couples the timestepping between each solver resulting in first-order temporal accuracy near the
overset region. Higher-order temporal accuracy cannot be achieved using this methodology, regardless of
the time-marching scheme used in each solver. For the entire overset simulation to be high-order accurate
in time the time-stepping scheme would have to include communication between solvers at the non-linear
solver iteration level of the governing equation. Furthermore, if a multi-stage RK-type scheme is used, any
grid motion and corresponding domain re-connectivity has to be recomputed for each stage.

(a) Blade cross-section pressure (b) Rotor Q-Criterion solution

Figure 1: Overset solution of PSP rotor using Helios with mStrand and Orchard.

Figure 1(b) shows the top view of the Q-criterion solution in the background Cartesian grid for a rotor
simulation. Orchard uses high-order finite-difference stencils up to 5th-order accurate for inviscid terms
and 4th-order accurate for viscous terms. Refinement is prescribed around the rotor to capture the rotor
wake. In neighboring blocks of the same refinement level, fringe communication involves no interpolation. At
coarse-fine interfaces, however, cell-centered quantities must be interpolated and sent to neighboring blocks.
Fringe interpolation in Orchard (as well as most other AMR codes) is only 2nd order accurate. The low
interpolation accuracy affects the overall accuracy of the full simulation. Increasing the interpolation order
is not a trivial task, since widening any interpolation stencil will extend to include ghost cells as donors.
When a ghost cell becomes a donor in an interpolation stencil to another ghost cell this can be thought of
as “implicit” interpolation. Implicit interpolation can have negative impacts on convergence or linear solver
performance.
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2 Recent and Projected Work

Internally the Cartesian AMR solver, Orchard, can use either standard backwards-Euler (BDF-type) or
Singly Diagonal Implicit Runge Kutta (SDIRK) schemes for time integration. For a vortex convection case,
as shown in Fig. 3, Orchard attains up to 4th-order accuracy in time. The same SDIRK schemes are
being implemented at the framework level in Helios with communication between overset solvers within each
stage. An important consideration for cases with moving grids will be to ensure the grids are updated (and
reconnected) at each stage of the SDIRK scheme.

Orchard uses balanced octrees for prescribing refinement and guarantees a maximum ratio of 2:1 difference
between the levels of neighboring octants. Currently with 2nd-order interpolation, a 2-step procedure is used
to avoid implicit interpolation at fringes. For high-order interpolation with larger stencils, avoiding implicit
interpolation can be done by including points from the domain of the receiver fringe cell. An example stencil
for higher-order interpolation is shown in Fig. 2, where a coarse (blue) fringe is interpolated from red cells
in the neighboring mesh as well as blue cells in the current mesh. Interpolation weights can be computed
using different methods, for example high-order least-squares or tensor-product interpolation.

Figure 2: 4th-order interpolation stencils at coarse-fine block
boundaries. The fine and coarse grids are shown in red and blue
respectively.

Figure 3: Vortex convection: temporal accu-
racy convergence.

The final paper will include:

• Methodology for achieving high-order temporal accuracy using SDIRK schemes with moving, overset
meshes.

• Methodology for interpolating and exchanging fringe information for AMR meshes using 4th order
interpolation stencils.

• Time-accuracy validation up to 4th order for a shedding sphere or triangular wedge.

• Spatial-accuracy validation of the AMR fringe interpolation up to 4th order.

• Application of the high-order space and time methodologies to a hovering rotor solution.
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