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Abstract: The goal of this work is to study the dynamics of floating platforms that are
designed for marine energy generation. This work is done in collaboration with Tecna-
lia R&I, a company settled in the Basque Country which designs this kind of platforms.
To our purpose we present a method for the simulation of two-phase flow with the pres-
ence of floating bodies. We consider the variable density incompressible Navier-Stokes
equations and discretize them by the finite element method with a variational multiscale
stabilization. A level-set type method is adopted to model the interphase between the
two fluids. The mixing or smearing in the interphase is prevented with a compression
technique. Turbulence is implicitly modeled by the numerical stabilization. The floating
device simulation is done by a rigid body motion scheme where a deforming mesh approach
is used. The mesh deforms elastically following the movement of the body. Simulation of
a decay test on a cube is performed and the results are presented in this paper. All the
simulations are done with the open source finite elements parallel software FEniCS-HPC.

Keywords: Two-phase flow , finite elements, floating bodies, FEniCS-HPC.

1 Introduction
Free surface flows have been modeled by different methodologies, some of them being marker-and-
cell, volumes of fluid, level-set, etc. A quite complete overview of the different methods can be
found in [1]. In this work we consider the variable density incompressible Navier-Stokes equations
and take a level-set type approach to model the interface between the two fluids. The space
discratization is done by the finite element method (FE) with a variational multiscale stabilization
(VMS) and a discontinuity capturing technique. In the level-set approach the mixing or smearing in
the interphase is prevented with a compression technique [10, 2]. Turbulence is not modeled by an
explicit Large eddy simulation (LES) scheme but implicitly modeled by the numerical stabilization
as in the VMS-LES approaches. The floating device simulation is done by a rigid body motion
scheme where a deforming mesh approach [3] is used. Time discretization is done by a Crank-
Nicholson scheme, Newton’s iterations are used for linearization, and velocity and pressure are
solved separately by a projection method [4]. Implementation and simulations are done with the
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open source software framework FEniCS-HPC [5].
The present paper is organized as follows. In section 2 we present the method for the simulation

of two-phase flows. Simulation results of a decay test on a cube are presented in section 3 being
the final goal of this work the study of the dynamics of floating platforms related to marine energy
generation in collaboration with Tecnalia R&I. Finally conclusions and future work are given in
section 4.

2 Problem Statement
Two-phase flow is modeled in this work by means of the variable density incompressible Navier-
Stokes equations that expressed in dimensionless form read

ρ ∂tu + ρ (u · ∇)u− 1
Re
∇ · (µ∇u) +∇p− 1

Fr2 ρ eg = 0 (1)

∇ · u = 0 (2)

∂tρ+ u · ∇ρ = 0 (3)

The equations (1)-(3) are defined in some space time domain, the unknowns being the velocity
vector u, the pressure p, and the density ρ. System (1)-(3) is composed of the equation for the
conservation of the momentum, the continuity equation, and a transport equation for the density
here used to track the interface as in the level-set type schemes. In the momentum equation µ
is the dynamic viscosity, Re = ρchLchuch

µch
is the Reynolds number, and Fr = uch√

g Lch
is the Froude

number, where u is the velocity norm, L is the length, and the subindex (·)ch has the meaning of
characteristic or reference quantity that depends on each particular problem, g = 9.81m/s2 is the
gravity norm, and eg is a unit vector in the direction of gravitation. The initial condition for the
density is ρ = ρ1 in the domain occupied by the first fluid and ρ = ρ2 in the domain occupied by
the second fluid, where ρ1 < ρ2.

System (1)-(3) is discretized in space by the finite element method. A variational multiscale
stabilization (VMS) is applied to the finite element discrete form and turbulence is implicitly
modeled by the stabilization diffusion-like terms. To prevent instabilities in the interface between
the two fluids a discontinuity capturing technique is considered. And finally to avoid smearing in
the interface, a compression technique is used. This leads to the following weak form of system
(1)-(3):

(ρ ∂tu, v) + (ρ (u · ∇)u, v) + 1
Re

(µ∇u, ∇v) + (∇p, v)− 1
Fr2 (ρ eg, v) (4)

+ (∇ · u, q) + (τ R(u, p), L∗(v, q)) + (µDC,m ∇u,∇v) = 0

(∂tρ, η) + (u · ∇ρ, η) + (τρ u · ∇ρ, u · ∇η) + (µDC,ρ ∇ρ,∇η) = 0 (5)

In (4)-(5), v, q, and η are the finite element test functions for the momentum, continuity, and
density equations, respectively. Test functions are here first order Lagrange polynomials. The
seventh term in (4) and the third term in (5) are VMS stabilization terms [6, 7]. The last term in
(4) and the fourth term in (5) are discontinuity capturing terms [8, 9]. A compression condition is
also applied to the transport equation for the density [10, 2]. The strong residual of the momentum
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and continuity equations are

R(u, p) =
(

Rm

Rc

)
= −

(
ρ (u · ∇)u− 1

Re ∇ · (µ∇u) +∇p− 1
Fr2 ρ eg

∇ · u

)
, (6)

and the corresponding space differential dual operator writes

L∗(v, q) =
(
−ρ (u · ∇)v− 1

Re ∇ · (µ∇v)−∇q
−∇ · v

)
. (7)

System (4)-(5) is discretized in time by a Crank-Nicholson scheme, linearization is done by Newton’s
iterations, and velocity and pressure are computed separately using a projection method [4].

3 Floating cube decay test
We simulate three-dimensional two-phase flow on a floating cube. The decay test consists of giving
a downwards initial velocity to the cube and study the oscillation that occurs. We call x1, x2,
and x3 the three space coordinates. This is a preliminary test case were the force of the fluid on
the cube is only taken into account in the vertical direction x2, then the cube only moves in this
direction. To this purpose, a simplification of the rigid body motion [11] is used here and briefly
described in what follows. We compute the vertical force applied by the fluid on the cube boundary
by F = ρc Vc g +

∫
Γc p e2 ds, where ρc, Vc, and Γc are the density, the volume, and the boundary of

the cube, respectively, and e2 is the unit vector in the x2 direction. By the Newton’s second law
F = ρc Vc ∂tw, we compute w which is the vertical velocity of the cube. The mesh moves by an
ALE approach, the boundary of the cube is tracked with the mesh using the cube velocity w and
the rest of the nodes of the mesh move following an elasticity equation [3].

The dimensions of the computational domain are −4 ≤ x1 ≤ 4, −4 ≤ x2 ≤ 4, and −4 ≤ x3 ≤ 4.
A mesh of 353, 740 grid points and 2, 075, 923 tetrahedra is used for this simulation.The minimum
edge lenght of the mesh being 0.0308. The mesh near the cube on a vertical cut and on the cube
surface is represented in Figure 1. The floating cube is initially defined by −0.5 ≤ x1 ≤ 0.5,
−0.5 ≤ x2 ≤ 0.5, and −0.5 ≤ x3 ≤ 0.5, being the center of mass of the cube placed at the origin
(0, 0, 0) when the simulation starts. The flow is initially at rest and the cube has an initial vertical
velocity of (0, -2.5, 0). The non dimensional form of the Navier-Stokes equations (1)-(3) are used
in this paper. Then the non dimensional densities of the two flows are ρ1 = 1e − 3 and ρ2 = 1,
and the non dimensional density of the cube is set to ρc = 0.5. The interphase between the two
fluids is the plane x2 = 0.0, then the initial density is ρ2 when x2 ≤ 0.0 and ρ1 otherwise. In
this preliminary test case we prescribe a uniform non dimensional viscosity of µ = 1.0e− 6, in the
future we should use different viscosities for the two fluids. The characteristic scales used in this
test case for the nondimensionalization of the equations are: ρch = 1000 kg/m3, µch = 1000 kg/sm,
Lch = 1m, Uch = 1m/s. Slip boundary conditions are set everywhere.

In Fig. 2 we plot the filled contours of the density on a x1x2-plane passing through the origin
of the domain, for different times: 0 s, 0.28 s, 0.84 s, and 1.44 s. In Fig. 3 we plot the vertical
displacement of the center of mass of the cube over time until a final time of 8 s. We observe the
expected decay of the vertical movement of the cube when time advances.
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Figure 1: Mesh near the cube on a vertical cut and on the cube surface.

4 Conclusion and Future Work
A level-set type approach with compression has been introduced for the simulation of two-phase
flows. A finite element method has been used for space discretization, stabilized by a VMS sta-
bilization and a discontinuity capturing technique has been applied as well. Time integration has
been done by a Crank-Nicholson scheme. Results of a decay test on a cube have been presented.
As future work, the present method has to be further validated and applied to the simulation of
floating platforms for marine energy generation.
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(a) t = 0.0 s (b) t = 0.28 s

(c) t = 0.84 s (d) t = 1.44 s

Figure 2: Filled contours of the density on a slice of the domain on the x1x2-plane, for different times, from t = 0.0 s
to t = 1.44 s.
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Figure 3: Vertical displacement of the floating cube.
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