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Abstract: Fluid-Structure Interactions is a very active research field and its potential and reach
is out of question. In order to develop algorithms and coupling strategies to be employed in the
modelling of Fluid Structure Interaction problems in a partitioned scheme, it is of special interest
to gain insight in the regions where instabilities and other non-linear effects occur. The present
contribution analyzes a well suited FSI case, complex enough to present all the physical relevant
properties of the unstable region of interest, but simple enough to allow the use of linear stability
analysis to identify and characterize the general unstable mechanisms common to FSI cases. The
model will be introduced and results on the solid body trajectories, the synchronization mechanisms
and the numerical stability of a loosely coupling algorithm will be presented. Similitudes with the
canonical system of vortex induced vibrations of a two-degrees of freedom circular cylinder will be
pointed out, suggesting interesting lines of future research.
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1 Introduction
Fluid-Structure Interactions (FSI) govern so many physical problems, industrial devices, and biological sys-
tems that its relevance is evident. Two very complete overviews of the state of the art in FSI problems can
be found in [1], [2], and references therein. A very common strategy to solve FSI problems is the partitioned
or staggered approach, where the fluid and solid problems are solved in separated domains, and the solution
of the full problem is achieved by the correct use of the physical coupling conditions. Numerous studies
have focused in the development of this approach and have pointed out the most defiant problems of the
formulation, for example [3, 4, 5]. In the previous contributions, besides the general theoretical framework
for FSI, a very important difficulty is pointed out: the presence of the added mass effect, which is an insta-
bility arising for incompressible fluid flow and that depends on the fluid and solid densities, and can lead to
unstable staggered schemes [6] [7]. Usually, the instability issues arising from FSI problems in the staggered
approach have been treated numerically, with the use of relaxation factors or acceleration schemes [8].

In order to develop algorithms and coupling strategies to be employed in the modelling of Fluid Structure
Interaction problems in a partitioned scheme, it is of special interest to gain insight in the regions where
instabilities and other non-linear effects occur. The present contribution analyzes a well suited FSI case,
complex enough to present all the physical relevant properties of the unstable region of interest, but simple
enough to allow the use of linear stability analysis to identify and characterize the general unstable mecha-
nisms common to FSI cases. With a deeper physical understanding, the development of coupling algorithms
and physics-based stabilization techniques will be at hand. The proposed system is depicted in Fig.1 and is
inspired in previous numerical simulations to study a new design of wind energy generator.
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Figure 1: Typical instantaneous displacement and velocity fields for the studied system.

2 Problem Statement
The system under study is shown in Fig.1. It consists of a rigid mast of large aspect ratio AR = 11 fixed
in its base with a torsion spring. The mast is embedded in a Newtonian viscous flow with constant velocity
far upstream of the mast. The fluid is considered to be incompressible and to have constant viscosity. The
problem is modelled as follows.

2.1 Fluid component
In the present contribution, the fluid part of the FSI problem will be modelled as an incompresible Newto-
nian fluid. The Navier-Stokes equations written in the Arbitrary Lagrangian Eulerian (ALE) formulation
are employed. In this case the fluid conservation laws are written in a moving Eulerian domain and the
governing equations are written in this frame of reference. This formulation is widely used [9, 10, 8, 11]
therefore the steps to obtain the governing equations are not repeated herein. The resulting equations for a
Newtonian viscous fluid are

ρf
∂uf
∂t

+ ρf [(uf − um) · ∇]uf − µf∇2uf +∇p = ρff , (1)

∇ · uf = 0. (2)

Where uf is the fluid velocity field, ρf is the fluid density, µf is the fluid viscosity, p is the pressure, um
represents the domain velocity and f is the body force. In our implementation um is obtained from the
domain displacement, dm, computed as the solution of a diffusion equation of the form

∇ · [cm∇dm] = 0,

where cm is a diffusion coefficient. At the discrete level, dm is the node displacement and cm is computed
element-wise in order to control the stiffness of the elements. In our implementation, cm is a discontinuous
function computed as

cm = AR/V,

with AR the aspect ratio and V the volume of the element. In this way, small elements and elements with
large aspect ratio will be ‘stiffer’, which in practice is found to be useful in order to preserve the boundary
layer elements.
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2.2 Solid component
For the solid component of the coupled problem, the motion of the mast can be described as a top that is not
allowed to spin over its symmetry axis and is only allowed to deviate from the vertical axis in two directions
following a Hookean law in the angular displacements. A very convenient reference system to describe this
motion is the one shown in Fig. 2, where an inertial system of reference is shown in lower case letters and a
moving reference frame attached to the rigid body is shown in upper case letters.

Figure 2: Vortex bladeless reference systems. Lowercase letters correspond to the inertial reference system
and uppercase letters to the moving reference frame.

The Lagrangian function of such system can be obtained in a similar way as the one of the classical
symmetric top resulting

L = T − V =
1

2

[
I
(
θ̇2 + φ̇2 sin2 θ

)]
−mgh sin θ sinφ− kh2

2
((θ − π/2)2 + (φ− π/2)2), (3)

where T is the kinetic and V the potential energy of the system, θ is measured from the x axis and φ is the
angle between the projection of the symmetry axis of the rigid body to the yz plane and the y axis. I is
the inertia tensor and h is the distance between the center of mass of the body and the fixed point, k is the
spring stiffness and g the gravity acceleration. The resulting equations of motion are:

Iθ̈ − Iφ̇2 sin θ cos θ +mgh cos θ sinφ+ kh2(θ − π/2) = 0,

I sin2 θ φ̈+mgh sin θ cosφ+ kh2(φ− π/2) = 0. (4)

Equations (4) are valid for the cases where the only external forces are gravity and the resistance in the
fixed point of the body. In the case of the FSI problem, there will be a force coming from the interaction with
the fluid that can not be written as the derivative of a known potential, we will call this force F = (Fx, Fy, Fz)
and will assume its components are known in the inertial system of reference. In this case, the equations of
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motion will be derived from the general expression:

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj , (5)

where Qj are the generalized forces. In our case, we can separate the generalized forces in those that can be
written as the derivatives of a potential and those that can not in the form

Qj = −
∂V

∂qj
+Q∗

j .

With this separation, it is clear that the equations of motion will take the form

Iθ̈ − Iφ̇2 sin θ cos θ +mgh cos θ sinφ+ kh2(θ − π/2) = Q∗
θ,

I sin2 θ φ̈+mgh sin θ cosφ+ kh2(φ− π/2) = Q∗
φ. (6)

In eq.(6) Q∗
θ and Q

∗
φ are generalized forces that can not be calculated simply by applying a transformation

of coordinates to Fx, Fy, Fz because they are components of a vector and depend on the reference system in
which they are written. In order to calculate them, the virtual work done in virtual displacements δθ and
δφ will be calculated. First a virtual displacement δθ will be performed keeping φ fixed.

δw = (Fz cos θ − Fx sin θ)hδθ
The generalized forces are the coefficients that multiply the virtual displacements in order to get the

virtual work so:
Q∗
θ = (Fz cos θ − Fx sin θ)h (7)

If we perform a virtual displacement in the φ direction keeping θ fixed we obtain

Q∗
φ = (Fz cosφ− Fy sinφ)h (8)

And the equations of motion are then:

Iθ̈ − Iφ̇2 sin θ cos θ +mgh cos θ sinφ+ kh2(θ − π/2)− (Fz cos θ − Fx sin θ)h = 0,

I sin2 θ φ̈+mgh sin θ cosφ+ kh2(φ− π/2)− (Fz cosφ− Fy sinφ)h = 0.

(9)

2.3 Dissipative forces
The dissipative forces in the fixed point are considered to vary linearly with the angular velocity in the form

Dθ = −αθhθ̇,

Dφ = −αφhφ̇,
with αj as dissipation constants. The equations of motion are finally written as

Iθ̈ − Iφ̇2 sin θ cos θ +mgh cos θ sinφ+ kh2(θ − π/2)− (Fz cos θ − Fx sin θ)h+ αθh
2θ̇ = 0,

I sin2 θ φ̈+mgh sin θ cosφ+ kh2(φ− π/2)− (Fz cosφ− Fy sinφ)h+ αφh
2φ̇ = 0.

(10)

2.4 Non-dimensional equations
Selecting the maximum diameter of the mast d as unit length and the magnitude of the inflow velocity u0 as
characteristic velocity we can define the non-dimensional variables t∗ = u0 t/d, x∗ = x/d, u∗ = u/u0. Using
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this set of variables the eqs. (1), (2) and the system (10) can be written as follow:

∂u∗
f

∂t
+ [(u∗

f − u∗
m) · ∇]u∗

f −
1

Re
∇2u∗

f +∇p∗ = f∗, (11)

∇ · u∗
f = 0, (12)

with Re = ρfuod/µf the Reynolds number based on the maximum diameter of the mast.

θ̈ − φ̇2 sin θ cos θ + mgd2h

u20 I
cos θ sinφ+

kd2h2

u20 I
(θ − π/2)− d2 h

u20 I
(Fz cos θ − Fx sin θ) +

dh2αθ
u0 I

θ̇ = 0,

sin2 θ φ̈+
mgd2h

u2o I
sin θ cosφ+

k d2h2

u20 I
(φ− π/2)− d2 h

u2o I
(Fz cosφ− Fy sinφ) +

dh2αφ
u0 I

φ̇ = 0.

It is important to notice that the aerodynamic forces Fx, Fy and Fz will be result of the interaction of
the mast with the fluid and will be of the form

Fi =
1

2
ρf u

2
oCiA

where A is a reference surface, approximated by A = dl in our case, with l > h the lenght of the mast. Then,
it is possible to write the external force term in (13) as

2

πm∗
r

(Cz cos θ − Cx sin θ),

with the reduced mass coefficient defined as

m∗
r =

I/dh

π(d/2)2lρf
,

which compares the mass of fluid displaced by the mast with its moment of inertia, and acts as an effective
mass of the system. In a similar way, we can define the non-dimensional parameter:

m∗
gr =

u2oI

mgd2h
,

that compares the influence of the gravity potential energy of the mast with the kinetic energy provided by
the flow. Also, it is possible to define the reduced velocity

u∗r =
2πuo√
k/(I/h2)d

,

which is the natural frequency of the system scaled by the factor u0/d. And for the dissipative forces the
following non-dimensional parameter is defined

ζ∗i =
αi

2
√
kI/h2

With all the previous in mind the system (10) is written in non-dimensional form as

θ̈ − φ̇2 sin θ cos θ + 1

m∗
gr

cos θ sinφ+

(
2π

u∗r

)2

(θ − π/2)− 2

πm∗
r

(Cz cos θ − Cx sin θ) +
(
4π

u∗r

)
ζ∗θ θ̇ = 0,

sin2 θ φ̈+
1

m∗
gr

sin θ cosφ+

(
2π

u∗r

)2

(φ− π/2)− 2

πm∗
r

(Cz cosφ− Cy sinφ) +
(
4π

u∗r

)
ζ∗φφ̇ = 0.

(13)
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This system of equations is very similar to the canonical case of the vortex induced vibrations (VIV) of
a circular cylinder with two degrees of freedom studied in [12, 13, 14, 15] and references therein.

2.5 FSI coupling
In this contribution, it is of particular interest to explore the numerical unstable regions of the present
mechanical system. Thus, no stabilizing techniques will be used and a loosely coupled algorithm will be
employed. In one time step, the fluid mechanics problem is solved, the drag and lift are calculated and used
to solve the rigid body equations, with the new location of the rigid body the fluid mesh is moved and the
time step is advanced.

3 Numerical formulation
The following discretization schemes for the fluid and the rigid body mechanics problems were used: The
Navier-Stokes equations were discretized using the stabilized finite element method, with Variational Mul-
tiScale stabilization, which is considered an implicit Large Eddy Simulation method, as explained in [16].
The unknowns of the problem are separated into grid scale components and subgrid scale components with
the possibility of tracking the subgrid components in time and space to give more accuracy and stability to
the numerical model. The momentum equation is separated from the continuity equation using the Schur
complement for the pressure, each equation is solved independently and the solution of the coupled system
is obtained in an iterative way. The time integration scheme used is a Backward Differentiation Formula of
second order using a time step which guaranteed a CFL number lower than 10. The details and validation
of the solution strategy are provided in [17, 18]. The rigid body equations were integrated in time using a
fourth order Runge-Kutta method. A similar set-up adequate for turbulent FSI cases was used in [15] where
validation an comparison with numerical and experimental results can be found.

The computational domain of the fluid represents a wind tunnel of 22 length units in the cross-flow
direction and 220 length units in the in-flow direction, the mast is located at 55 length units of the wind
tunnel entrance, where a unitary constant inflow velocity is imposed. The outflow is a free surface, the
bottom wall and the mast are considered non-slip surfaces while the side and top walls of the wind tunnel
are considered slip surfaces. The computational domain is discretized with 2.6 million elements, most of
them tetrahedra. The simulation was run using 144 cores of the MareNostrum IV super computer.

4 Results

4.1 Numerical results
A fixed value of the Reynolds number with Re = 100 is selected with four combinations of the reduced
velocity and mass. Also, without loss of generality, the influence of gravity is neglected and attention is
focused in the balance between the aerodynamic forces and the restitutive forces of the spring. In future
work, a more extensive study of the parameter space will be carried out. The parameters used at present
are summarized in Table 1.

Case m∗
r u∗r ζ∗θ , ζ

∗
φ

1 5.49 6.05 0.015
2 3.29 4.69 0.022
3 2.63 4.19 0.025
4 2.19 3.83 0.027

Table 1: Parameters explored in the present work with a fixed value of the Re = 100 and negligible influence
of gravity.
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Figure 3: Temporal evolution of the displacement of the tip of the mast for case 1. The synchronization
between the aerodynamic forces and the solid displacement provokes a rapid increase in the amplitude of
the oscillation response of the body.
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Figure 4: Temporal evolution of the displacement of the tip of the mast for case 2. After a short transient
synchronized state is reached and regular oscillations are obtained.

An initial developed velocity field with Re = ρfuod/µf = 100 with the mast fixed was chosen as initial
condition for case 1, then the FSI simulation was started and evolved until a final periodic state was reached.
Then this state was used as initial condition for case 2, the final oscillatory state of case 2 was used as initial
condition of case 3 and similarly the final oscillatory state of case 3 is used as the initial state for case 4. The
temporal evolution of the displacement of the tip of the mast for the studied cases for the first 100 time units
in the x, y and z directions are shown in Figs.3-6, where small variations in the final total amplitude of the
displacement is observed but clear differences in the frequency of the oscillatory response are obtained. This
shows that the system is able to synchronize at different frequencies in a very similar way as the two-degrees
of freedom circular cylinder does, see for example the results in [13]. It is noted that the loosely coupling
algorithm is not robust enough for case 4, where a quick crash is obtained in the simulation.
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Figure 5: Temporal evolution of the displacement of the tip of the mast for case 3. As in case 2, a short
transient followed by a regular oscillatory state is reached quickly.
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Figure 6: Temporal evolution of the displacement of the tip of the mast for case 4. The loosely coupled
algorithm is not robust enough and a quick crash in the simulation is obtained.

The synchronization mechanism of this system is illustrated in Fig. 7, where the lift coefficient and the
y direction displacement of the tip of the mast for case 2 are plotted. The equivalent graphs for the other
cases show similar trends. It is pointed out that there is a shift in the phases of both curves. The dark area
shows the time lapses when the lift force favours the displacement of the mast, while the clear area shows
the lapses where the lift force opposes the movement of the body. The differences in the length of the lapses
provides the necessary work to induce the vibrations.

The trajectories described by the tip of the mast, as well as their projections to the xy and the xz planes
are shown in Figs.8-11 for all the studied cases. It is pointed out that the projections to the xy plane of the
trajectories of cases 1-3 are remarkably similar to those found in the two-degrees of freedom circular cylinder
case, for example see the results in [15]. However, an extra degree of freedom is present in the studied system
and the resulting trajectories are 3D. The extra degree of freedom links the effect of the areodynamic forces,
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Figure 7: Synchronization mechanism in case 2. The dark area shows the time lapses when the lift force
favours the displacement of the mast. The clear area shows the lapses where the lift force opposes the
movement of the body.
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Figure 8: Trajectory of the tip of the mast for case 1. An initial deviation from the starting position in
the in-flow direction followed by the amplification of the oscillations in the cross-flow direction are observed.
The final closed trajectory is shown in the xy and xz projections.

as can be seen from eq. (13). This suggests that important differences with the two-degrees of freedom
circular cylinder may be found and further research in this direction is needed. Also, considering all the
mentioned similarities, it is of great interest to explore if a three branches response as the one described in
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[12, 14, 15] is present in this system as well.
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Figure 9: Trajectory of the tip of the mast for case 2. After a short transient state, a final closed trajectory
is reached and shown in the xy and xz projections.

On the other hand, case 4 shows a high frequency oscillatory deviation from the expected trajectory and
a final crash on the simulation is obtained. It is very interesting that the deviation of the expected trajectory
observed in Fig. 11 occurs in such a way that suggests that the displacement of the mast creates a pressure
gradient in the fluid that opposes its movement. This pressure gradient results to be large enough to displace
the mast in the opposite direction, creating an even larger pressure gradient which opposes the movement
again and so on. In the authors’ opinion, this is the same instability as the well known added mass effect
in FSI problems. This configuration results in a numerical instability triggered by physical means, so the
authors propose to investigate this numerical instability from a physical perspective.

4.2 Stability properties of the solutions
The stability analysis of the system will be carried out in a similar way as done in [19], and the numerical
instability of the loosely coupled algorithm will be investigated from a physical perspective. The linear
stability problem will be posed using eqs. (11), (12) and (13) and the solutions obtained in Sec. 4.1 will be
used as the base FSI configuration. Numerical eigenfunctions will be constructed and the stability problem
will be solved.

This is an on-going work, but some results are already available. In order to construct the numerical
eigenfunctions, a rapidly decaying perturbation will be applied to the base flow. The perturbation will be a
high frequency external force applied to the mast with the following form

Fpi = Fi (1 + ε e−t
∗/τ∗

sin(ωpt
∗))
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Figure 10: Trajectory of the tip of the mast for case 3. After a short transient state, a final closed trajectory
is reached and shown in the xy and xz projections.
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Figure 11: Trajectory of the tip of the mast for case 4. A high frequency oscillatory deviation from the
expected trajectory and a final crash on the simulation is obtained
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where ε is a non-dimensional parameter very small compared with unity, τ∗ is a non-dimensional param-
eter to control the perturbation’s amplitude decay and ωp is its non-dimensional frequency. In the present
work a value of ωp = 17 is selected, which means that the perturbation will have a frequency ∼ 20 times
larger than the Cl coefficient of case 1. Then the system will be allowed to evolve in time for a lapse of 5τ
and the last cycle solution will be saved. The normalized difference between this solution and the base flow
will be the numerically generated eigenfunction and will be the initial condition of the linear stability analysis.

5 Conclusion and Future Work
A three dimensional FSI model was introduced and mathematically described. The governing equations
were solved numerically and results on the solid body trajectories, the synchronization mechanisms and the
numerical stability of a loosely coupling algorithm were presented. Similitudes with the canonical system
of VIV of a two-degrees of freedom circular cylinder where exposed and interesting lines of research are
proposed. In the authors’ opinion, the numerical instabilities encountered are triggered by physical means
and a physics based linear stability analysis is proposed as future work. Some results available in this
direction were also presented.
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