
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-373

Developing 2-D Stretching in a High Order DNS Code:
Application to Turbulent Flow in a Square Duct

C. Moulinec∗, Sylvain Laizet∗∗ and David R. Emerson∗

Corresponding author: charles.moulinec@stfc.ac.uk

∗ STFC Daresbury Laboratory, Warrington, UK.
∗∗ Imperial College London, London, UK.

Abstract: A Direct Numerical Simulation open-source software supporting high order
finite difference schemes, with 1 direction of stretching in space is modified to support
stretching in 2 directions in space. The path to change the code is explained for general
turbulent flows and some preliminarly results are presented.
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1 Introduction
Square and rectangular ducts are very much used in industry, as for heating, ventilation and air conditioning
(HVAC) and, nuclear engineering for instance. With the raise in computing power, it is now possible to
envisage to run nearly industrial Direct Numerical Simulations (DNSs) using high order finite difference
software. The objective of this work is to explain how to retain 6th order accuracy in space for flows better
represented by stretching in 2 directions. The original code, namely Incompact3d [1] [2] is first presented,
followed by the modifications to allow for stretching in 2 directions. The flow in a square duct (see Fig. 1)
is used as a test case to demonstrate the new capability. The performance of the code is presented before
drawing some final remarks.

2H

L

Figure 1: Sketch of the square duct.

2 1-D stretching

2.1 Brief introduction to the code
Incompact3d is an open-source high order flow solver that can undertake turbulence-resolving simulations
of fluid flow phenonema on Tier–0 systems [2]. It solves the incompressible Navier–Stokes equations on a
Cartesian mesh using up to 6th order schemes for spatial discretisation and a conventional 4th order Adams–
Bashforth scheme for time advancement. To ensure incompressibility, a fractional step method is used. It
requires to solve a Poisson equation, which is fully performed in the spectral space.

1



Combined with the concept of the modified wave number [3], a direct (i.e. non-iterative) technique allows the
implementation of the divergence-free condition up to machine accuracy. A partially staggered mesh [4] is
used where the pressure grid is shifted from the velocity grid in each direction. This type of grid organisation
leads to physically realistic pressure fields without unwanted spurious oscillations.
As the pressure is computed in the spectral space, stretching there is built from an approximation of a double
convolution product between 2-D homogeneous operators (considering that the 1-D grids are regular) and
the operators used to account for stretching. The stretching is defined by an analytical function. To account
for refinement at walls in the case of a channel for instance, the derivative h′ of this function reads [1] [4]:
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where α, β and γ are coefficients to be tuned to control y+, also accounting for the number of nodes in a
given direction.

2.2 Parallelism - Performance at scale
For the conventional version of the code, a high level of parallelism is achieved up to over 1 million MPI–
processes thanks to a highly scalable 2-D domain decomposition library and a distributed Fast Fourier
Transform (FFT) interface [2]. The computational domain (X, Y, Z) is divided in pencils in each direction,
X being usually the streamwise direction. The pressure Poisson equation is solved in the spectral space, and
for a straight channel flow, 1-D FFTs are computed in each homogeneous direction, whereas 5-band matrix
systems are solved in the stretched direction, by means of an internal direct solver.
Table 1 shows the performance of the 1-D stretched version for a 17 B node mesh. A very good speedup
of 2.91 is observed going from 262,144 to 1,048,576 MPI tasks of an IBM Blue Gene/Q (MIRA, Argonne
Laboratory, US).

MPI Tasks Time per time-step Speedup Ideal speedup
262,144 5.39 s 1.00 1.00
524,288 2.88 s 1.87 2.00
1,048,576 1.85 s 2.91 4.00

Table 1: Performance at scale. Simulation for a 17 B node mesh.

3 Modifications to allow for 2-D stretching
Allowing for stretching in 2 directions prevents from using FFTs in these 2 directions, when solving the
pressure in the spectral space. The pencil technique (see Fig. 2 (left)) described above implies that extra
MPI communications are required to solve the pressure in the 2 stretched directions, whereas a slab-based
approach (see Fig. 2 (right)) would not. The current code (supporting 1-D stretching) is designed with the
assumption that the homogeneous streamwise direction is X. Unfortunately, the 2-D domain decomposition
in pencils (rows, cols) does not support ’serial’ slabs, e.g. slabs with no MPI communication inside them.
However, if the homogeneous streamwise direction is changed to Z, and the number of rows set to 1, the
code does support ’serial’ slabs, where stretching in X and Y is possible without communication within the
slabs.
The pressure being solved in the spectral space, 1-D FFTs are used in the streamwise direction and a series
of 2-D systems built from an approximation of a double convolution product between 2-D homogeneous
operators (considering that the 2-D grids are regular) and the operators used to account for stretching in
the 2 other directions. This leads to a series of 9-band matrices which are solved using a direct solver.
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Figure 2: Left: Pencil decomposition. Right: Slab decomposition.

4 Simulations in a square duct

4.1 Laminar FLow
The first test case is run laminar at Re=100, where the Reynolds number is based on the bulk streamwise
velocity and the duct height (2H). The stretching is applied in both X and Y directions and Fig. 3 shows
the stretched grid. The isocontours of the streamwise velocity are also plotted.

Figure 3: Laminar flow - Cross section.

4.2 Turbulent flow - Comparison for X-stretching and Y-stretching
A DNS is conducted in a square duct at Re=4, 400 based on bulk streamwise velocity and duct height. Two
cases are considered to show that stretching works in X or Y direction, with stretching in X (resp. Y) and
an homogeneous distribution of nodes in Y (resp. X). Figures 4 show a snapshot of the instantaneous fully
developed flow, with the isocontours of the streamwise velocity. The grids are added to both figures to show
the stretching in the X direction (left) and in the Y direction (right).
Figures 5 left and right present the mean streamwise (Z) component of the velocity. On the vertical (resp.
horizontal) walls, when the strecthing is applied in X (resp. Y) direction, the boundary layers are better
represented than on the walls of the opposite direction. This is also confirmed on Figs. 6 left and right where
the secondary vectors are more shifted towards the walls where stretching applies. However, if symmetry
along X=Y would be applied to Fig. 5 (resp. 6) left, it would match Fig. 5 (resp. 6) right.
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Figure 4: Instantaneous streamwise velocity. Left: stretching is applied in X and not in Y. Right: stretching
is applied in Y and not in X.

Figure 5: Mean streamwise velocity. Left: stretching is applied in X and not in Y. Right: stretching is
applied in Y and not in X.

Figure 6: Secondary vortices. Left: stretching is applied in X and not in Y. Right: stretching is applied in
Y and not in X.

4.3 Parallelism
When double stretching is used, parallelism with MPI is only carried out in the streamwise (Z) direction.
Figure 7 shows the speedup for a 257 × 257 × 256 node test case, where good performance is observed up to
64 MPI tasks, even if some speedup still happens for 128 MPI tasks. The machine is a Bull Sequana X1000
supercomputer.
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Figure 7: Speedup for a DNS using slabs for a 257 × 257 × 256 node test case.

5 Final remarks
Adding stretching in a second direction of a high order finite difference has been briefly presented. Switching
the streamwise (X) direction used with pencils to Z as the new streamwise direction allows to use X-Y slabs.
Some first results have been obtained in the case of a laminar flow in a square duct with a grid with double
stretching. More comparisons with [5] will be presented at the conference for turbulent flows, focusing on
mean and secondary flows.
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