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Abstract: The direct discontinuous Galerkin method is used to calculate the 

viscous flux and the Arbitrary Lagrangian-Eulerian method is adopted so that the 

fluid analysis domain changes over time. To calculate the higher order numerical 

flux, we reconstructed the solution using the solution information. First, the Taylor-

Green vortex problem is analyzed to confirm the performance of the fluid solver 

without Arbitrary Lagrangian Eulerian. Second, the flow past a circular cylinder 

problem is analyzed to confirm the performance of Arbitrary Lagrangian Eulerian 

solver. 
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1     Introduction 

 

When an object having a thickness is enclosed by a fluid, a vortex is generated behind the object. The 

vortex occurs when the stagnation pressure acting on the front of the object is lost due to friction 

between the object and the fluid. This vortex appearance is highly nonlinear. Such non-forming fluid 

behavior causes the object to vibrate. Such a vibration phenomenon is referred to as a Vortex-Induced 

Vibration. 

The main mechanism by which the vortex-induced vibration occurs is the friction due to the viscosity 

of the fluid. Therefore, in order to numerically simulate the vortex-induced vibration, it is necessary to 

predict the viscosity of the fluid robustly and accurately. In this study, we try to simulate the viscosity 

of a fluid using Direct Discontinuous Galerkin method. If this method is used, it is expected that the 

viscosity of the fluid can be predicted with a high order of accuracy in a spatial domain.[1-3]  

 

2     Governing Equations 

 

Non-dimensionalized Navier-Stokes equations for incompressible flows in an arbitrarily moving 

domain can be written as follows, 

𝑑

𝑑𝑡∗
∫ 𝑸𝑑𝑉

𝛺

+ +
𝑑

𝑑𝑡
∫ 𝑼𝑑𝑉

𝛺

+ ∮ 𝑭 ∙ 𝒏𝑑𝑆

𝜕𝛺

= ∮ 𝑮 ∙ 𝒏𝑑𝑆

𝜕𝛺
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𝑤ℎ𝑒𝑟𝑒 𝑸 = {
𝑝

𝛽⁄

𝑢𝑖

} , 𝑼 = {
1
𝑢𝑖

} , 𝑭𝑗 = {
𝑢𝑗 − 𝑣𝑗

𝑢𝑖(𝑢𝑗 − 𝑣𝑗) + 𝑝𝛿𝑖𝑗
} , 𝑮𝑗 = {

0
1

𝑅𝑒
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)

} 

Where the unknowns are the velocity vector 𝒖, the pressure 𝑝, and the velocity vector of moving 

domain 𝒗. The above equations are rewritten by introducing the artificial compressibility term in 

pseudo time t∗.    

 

3     Finite Volume Formulation 

 

Governing equations are discretized using Finite Volume Formulation as follows: 

 

𝑑

𝑑𝑡∗
(𝑄̅𝑖Ω𝑖) +

𝑑

𝑑𝑡
(𝑈𝑖Ω𝑖) + ∑ 𝐹𝑗

𝑖𝑛𝑣𝑐(𝑄𝐿 , 𝑄𝑅; 𝑛𝑖𝑗) ∙ Δ𝑠𝑖𝑗

𝑁𝑛𝑒𝑖

𝑗=1

= ∑ 𝐺𝑗
𝑣𝑖𝑠𝑐(∇𝑄𝐿 , ∇𝑄𝑅; 𝑛𝑖𝑗) ∙ Δ𝑠𝑖𝑗

𝑁𝑛𝑒𝑖

𝑗=1

 

 

In the above equation 𝑄̅𝑖 , 𝑈𝑖 are volume averaged quantities such as, 

 

𝑄̅𝑖 =
1

Ω𝑖

∫ 𝑄(𝑥, 𝑦)𝑑𝑉

Ω𝑖

, 

𝑉̅𝑖 =
1

Ω𝑖

∫ 𝑉(𝑥, 𝑦)𝑑𝑉

Ω𝑖

 

 

For a viscous flux, 𝑮𝑗
𝑣𝑖𝑠𝑐 is computed by direct discontinuous Galerkin method[2,3] such as, 

 

𝑮𝑗
𝑣𝑖𝑠𝑐(𝑈𝐿 , 𝛻𝑈𝐿 , 𝑈𝑅 , 𝛻𝑈𝑅; 𝑛𝑗) = 𝐺𝑗

𝑣𝑖𝑠𝑐(𝑈̂𝑥 , 𝑈̂𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝑈̂𝑥 = 𝛽0

[𝑈]

∆
𝑛𝑥 + 𝜕𝑥𝑈̅̅ ̅̅ ̅ + 𝛽1∆([𝜕𝑥𝑥𝑈]𝑛𝑥 + [𝜕𝑥𝑦𝑈]𝑛𝑦), 

𝑈̂𝑦 = 𝛽0
[𝑈]

∆
𝑛𝑦 + 𝜕𝑦𝑈̅̅ ̅̅ ̅ + 𝛽1∆([𝜕𝑦𝑥𝑈]𝑛𝑥 + [𝜕𝑦𝑦𝑈]𝑛𝑦). 

 

In the above equations 𝜕𝑥𝑈̅̅ ̅̅ ̅, 𝜕𝑦𝑈̅̅ ̅̅ ̅ are the average, [𝑈] is the jump of solution 𝑈, [𝜕𝑥𝑥𝑈], [𝜕𝑥𝑦𝑈], 

[𝜕𝑦𝑥𝑈], [𝜕𝑦𝑦𝑈] are the jump of the second derivation of solution 𝑈, ∆ is the characteristic length of 

an interface, and 𝛽0, 𝛽1 are coefficient. 

For inviscid flux 𝑭𝑗
𝑖𝑛𝑣𝑐 is computed by Roe’s flux difference scheme such as, 

 

𝑭𝑅𝑜𝑒(𝑸𝐿
𝑘 , 𝑸𝑅

𝑘 ; 𝒏̂) =
1

2
(𝑭(𝑸𝐿

𝑘; 𝒏̂) + 𝑭(𝑸𝑅
𝑘 ; 𝒏̂)) +

1

2
|𝑨̂(𝑸𝐿

𝑘 , 𝑸𝑅
𝑘 ; 𝒏̂)|(𝑸𝑅

𝑘 − 𝑸𝐿
𝑘). 

 

4     Implicit Time Discretization 

 

The pseudo-time is discretized using 1st order Backward Differentiation Formula. And real-time is 

discretized using the 2nd order Backward Differentiation Formula. 

𝑉𝑖

∆𝑸𝑖
𝑛

∆𝑡∗
+ 𝑉𝑖

3𝑽𝑖
𝑛+1 − 4𝑽𝑖

𝑛 + 𝑽𝑖
𝑛−1

2∆𝑡
= −𝑹∗

𝑖
𝑛+1, 

where −𝑹∗
𝑖
𝑛+1 = ∑ 𝐺𝑗

𝑣𝑖𝑠𝑐(∇𝑄
𝐿
, ∇𝑄

𝑅
; 𝑛𝑖𝑗) ∙ Δ𝑠𝑖𝑗

𝑁𝑛𝑒𝑖

𝑗=1

− ∑ 𝐹𝑗
𝑖𝑛𝑣𝑐(𝑄

𝐿
, 𝑄

𝑅
; 𝑛𝑖𝑗) ∙ Δ𝑠𝑖𝑗

𝑁𝑛𝑒𝑖

𝑗=1

 

 

Right-hand side term of above equation 𝑹 is residual of a solution. Residual is can be expressed in 1st 

order formula like,  
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𝑹∗
𝑖
𝑛+1 = (𝑹𝑖

∗𝑛 +
𝜕𝑹𝑖

∗𝑛

𝜕𝑸
∆𝑸𝑖

𝑛). 

 

Due to the above relation, the unknowns of the equation changed from solutions to solution increment 

like,  

(
𝑰

∆𝑡∗ 𝑉𝑖 +
𝜕𝑹𝑖

∗𝑛

𝜕𝑸
) ∆𝑸𝑖

𝑛 = −𝑹𝑖
∗𝑛 − 𝑉𝑖

3𝑽𝑖
𝑛+1−4𝑽𝑖

𝑛+𝑽𝑖
𝑛−1

2∆𝑡
. 

 

5     Results 

 

5.1     Taylor Green vortex 
 

The Taylor-Green vortex analysis was performed to verify the unsteady solver. The analytical 

solution of Taylor-Green vortex is as follows.  

𝑢 = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) 𝑒−
2𝑡

𝑅𝑒, 

𝑣 = − cos(𝑥) sin(𝑦) 𝑒−
2𝑡

𝑅𝑒, 

𝑝 =
1

4
𝑐𝑜𝑠(2𝑥) 𝑐𝑜𝑠(2𝑦) 𝑒−

4𝑡
𝑅𝑒 

 

5.2.1     Structured mesh 

 

First, the analysis was performed on the structured mesh which has good uniformity, that is, Cartesian 

mesh. In the case of such a grid, the maximum performance of the algorithm can be confirmed. The 

Reynolds number in this analysis is set at 1000,000. 

The analysis was performed on a more fine mesh to check the order of accuracy. The results are 

shown in Figure 2 and Table 1. The result was measured when the real time was 1.  

 

 
Figure 1. Structured mesh 
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(a) 1st order reconstruction 

 
(b) 2nd order reconstruction 

Figure 2. Results of mesh refinement and order of convergence study using the structured mesh 

 

Table 1. Errors and order of accuracy at each step of mesh refinement using structured mesh. 

 
ncells 

p u v 

L2 Error 
order of 

accuracy 
L2 Error 

order of 

accuracy 
L2 Error 

order of 

accuracy 

P1 

256 1.79E-02 - 1.14E-02 - 1.14E-02 - 

1024 3.02E-03 2.57 1.97E-03 2.53 1.97E-03 2.53 

4096 5.66E-04 2.42 5.10E-04 1.95 5.10E-04 1.95 

16384 1.20E-04 2.24 1.39E-04 1.88 1.39E-04 1.88 

65536 2.77E-05 2.12 3.67E-05 1.92 3.67E-05 1.92 

P2 

256 1.54E-02 - 1.43E-02 - 1.43E-02 - 

1024 2.08E-03 2.89 1.85E-03 2.95 1.85E-03 2.95 

4096 2.64E-04 2.98 2.31E-04 3.00 2.31E-04 3.00 

16384 3.31E-05 3.00 2.89E-05 3.00 2.89E-05 3.00 

65536 4.22E-06 2.97 3.66E-06 2.98 3.66E-06 2.98 
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From the analysis results, it can be seen that the order of accuracy at p1 is almost 2 and that at p2 is 3.  

 

5.2.1     Unstructured mesh 

 

Second, the analysis was performed on the unstructured mesh. The Reynolds number in this analysis 

is set at 1000,000. 

The analysis was performed on a more fine mesh to check the order of accuracy. The results are 

shown in Figure 4 and Table 2. The result was measured when the real time was 1.  

 
Figure 3. Unstructured mesh 

 
(a) P1 
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(b) P2 

Figure 4. Results of mesh refinement and order of convergence study using unstructured mesh 

 

Table 2. Errors and order of accuracy at each step of mesh refinement using unstructured mesh. 

 
ncells 

p u v 

L2 Error 
order of 

accuracy 
L2 Error 

order of 

accuracy 
L2 Error 

order of 

accuracy 

P1 

160 1.65E-01 - 1.05E-01 - 1.29E-01 - 

498 4.12E-02 2.45 3.22E-02 2.08 3.28E-02 2.41 

1802 2.61E-02 0.71 1.13E-02 1.63 1.14E-02 1.64 

7246 3.08E-03 3.07 3.03E-03 1.89 3.04E-03 1.90 

P2 

160 4.23E-02 - 3.10E-02 - 3.56E-02 - 

498 1.00E-02 2.54 7.54E-03 2.49 7.34E-03 2.78 

1802 1.44E-03 3.01 1.12E-03 2.97 1.10E-03 2.95 

7246 2.20E-04 2.71 1.68E-04 2.72 1.70E-04 2.69 

 

Vorticity value was calculated from the analysis results. Vorticity is defined as follows: 

𝜔 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 

 

The vorticity contour is shown in figure 5. 

 
(a) mesh level 1 – P1 
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(b) mesh level 1 – P2 

 
(c) mesh level 2 – P1 

 
 (d) mesh level 2 – P2 

 
(e) mesh level 3 – P1 
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(f) mesh level 3 – P2 

 
(e) mesh level 4 – P1 

 
(f) mesh level 4 – P2 

Figure 5. Vorticity contour  

 

 

From the analysis results, it can be seen that the order of accuracy at p1 is less than that of the 

structured mesh. Especially, at level 3, the order of accuracy is small, which seems to be due to the 

uniformity of the mesh. 

The vorticity contour shows the effect of high-order flux reconstruction. Analysis results show that 

2nd order reconstruction at the same mesh level can better capture the vortex. 

 

5.2     Flow past a circular cylinder 

 
The flow past a circular cylinder analysis was performed to verify the arbitrary Lagrangian-Eulerian 

solver. 

 
5.2.1     Fixed circular cylinder 
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First, the flow past a fixed circular cylinder analysis was performed. Figure 6 shows how the Strouhal 

number varies with Reynolds number. 

 

 
Figure 6. Change of the Strouhal number according to the Reynolds number(Fixed cylinder) 

 

The analysis results show that the Strouhal number is similar to that of other researchers. 

 

5.2.2     Moving circular cylinder (1 degrees of freedom) 

 

Second, the flow past a moving circular cylinder analysis was performed. The motion of the cylinder 

is assumed to be one degree of freedom as the following equation. 

 

𝑦̈ + (
4𝜋2

𝑈𝑟𝑒𝑑
2 ) 𝑦 = (

1

2𝑀𝑟𝑒𝑑
) 𝐶𝐿(𝑡) 

Where Ured =
𝑈∞

𝑓𝑛
, Mred =

𝑚

𝜌∞𝐷2 
 

𝑀𝑦̈ + 𝐾𝑦 = 𝑅 

 

The fluid analysis solver and the cylinder motion analysis solver are coupled as shown in the 

following algorithm. Figure 9 shows how the Strouhal number varies with Reynolds number. From 

the analysis results, it can be seen that the Strouhal number is smaller than that of 5.2.1 which fixed 

the cylinder. This seems to be because the force acting on the cylinder by the fluid was used to move 

the cylinder. 

 

 
Figure 7. Schematic diagram of numerical analysis 
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Figure 8. Coupling algorithm 

 

 
Figure 9. Change of the Strouhal number according to the Reynolds number (Moving cylinder) 

 

 

5     Conclusion and Future Work 

 

The direct discontinuous Galerkin method is used to calculate the viscous flux and the 

Arbitrary Lagrangian-Eulerian method is adopted so that the fluid analysis domain changes 

over time. To calculate the higher order numerical flux, we reconstructed the solution using 

the solution information.  

First, the Taylor-Green vortex problem is analyzed to confirm the performance of the fluid 

solver without Arbitrary Lagrangian Eulerian. From the results of the analysis, it can be seen 

that although the performance is slightly degraded according to the uniformity of the mesh, 

the order of accuracy is generally good. 

Second, the flow past a circular cylinder problem is analyzed to confirm the performance of 

Arbitrary Lagrangian Eulerian solver. The motion of the cylinder was fixed with one degree 

of freedom, and the results of the analysis showed that the result was generally reasonable. 

However, since the simulation case is rather small, additional simulation is necessary to 
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make a conclusion. 
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