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Abstract: In order to simulate fluid-body interaction, many studies have been 

conducted, and these are generally separated as several types according to its grid 

system such as body-fitted and Cartesian. When free surface is inserted in fluid-

body interaction, three different continuums (air, water, body) should be 

considered. In this case, Cartesian grid based methodology is most suitable in terms 

of convenience and efficiency. A robust and efficient method simulating 

monolithic fluid-rigid body interactions in Cartesian grid was proposed by Gibou 

and Min [1]. This approach solves the incompressible flow using semi-Largrangian 

time discretization with projection method, and strongly couples the fluid and rigid 

body via projection step by applying fractional time stepping to solid equations. 

Interestingly, this methodology is proved to be stable in the sense that its kinetic 

energy does not increase.  

We employ this unconditionally stable scheme to simulate fluid-rigid body 

interaction and combine this method with free surface utilizing volume-of-fluid 

(VOF) approach. To demonstrate applicability of our numerical method, several 

benchmark problems are simulated, and all results are validated. 
 

Keywords: Fluid-rigid body interaction, semi-Lagrangian time discretization, Projection 

method, Volume-of-Fluid method.  

 

1     Introduction 
 
In many engineering fields, the fluid-rigid body interaction with free surface is the important 

problems. The ship on the wave and dynamic motion of offshore structures are representative 

examples of this problem. In this problem, three different continuums, i.e. gas, liquid, and rigid-body, 

should be simultaneously simulated. Because it is very hard to be solved by applying analytical 

approach such as potential (ideal flow) theory, the CFD (computational fluid dynamics) simulation 

should be applied to solve this complex problem. 

In the CFD fields, the numerical method can be divided into two types according to its grid system. 

One is the body-fitted grid[2], and the other is the Cartesian grid[1,3-5]. Although the body-fitted grid 

system can well resolve the boundary layer so that friction forces are accurately predicted, it has 

limitation to analyze the moving object. In order to simulate the fluid-body interaction on body-fitted 

grid, mesh should be deformed or re-generated. On the contrary, the Cartesian grid method can 

efficiently consider moving body. Furthermore, free surface motion is also efficiently simulated in the 

Cartesian grid system. 

The IBM (immersed boundary method) [3,4] has been successfully applied to analyze the fluid-rigid 

body interaction in the Cartesian grid system. The fluid and the rigid body are weakly coupled in the 

standard IBM. Weakly coupling means that the fluid and the rigid-body are separately solved. 
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Although there are several studies for strongly coupling using iteration scheme, it is very hard to 

guarantee the stability of the IBM. Once, a robust and efficient method simulating monolithic fluid-

body interactions was proposed by Gibou and Min [1]. In this method, both governing equations for 

the fluid and rigid-body are solved by fractional step method also known as projection method so that 

the fluid and rigid-body motion are updated to next time step at the same time via projection step. 

This approach can guarantee numerical stability of fluid-body interaction. However, there is no study 

yet to combine this stable interaction algorithm with free surface flow. 

In this study, the stable fluid-rigid body interaction is combined with free surface flow. In order to 

compute the dynamic motion of the free surface, the THINC/WLIC (tangent of hyperbola interface 

capturing/weighted line interface calculation) [6] method is considered. There are several advanced 

methodology to accurately predict free surface flow such as VOF/PLIC (volume-of-fluid/piecewise 

linear interface calculation) [7] and MOF (moment-of-fluid) [8]. However, these methods are difficult 

to implement, especially for three-dimensional case. The THINC/WLIC is easy to implement, but it 

can effectively simulate free surface flow.  

Finally, in order to demonstrate validity of current approach, four different well-known benchmark 

problems are computed such as flow past a circular cylinder, free falling cylinder, dam-break, and 

water entry problems. All simulation results are validated with experimental and computational data 

presented by other researchers. 

 

2     Numerical Algorithm 

 

2.1     Governing equations for incompressible flow 

 
As governing equations for the fluid, incompressible continuity and Navier-Stokes Equations are 

defined as 

 

∇ ∙ 𝑼 = 0                                                                              (1)  
 

𝜌
𝐷𝑼

𝐷𝑡
= −∇𝑝 + 𝜇∇2𝑼+ 𝜌𝒈                                                             (2) 

 

where 𝑼 and 𝑝 respectively refer to fluid velocity and pressure as unknowns of governing equations, 

𝜌 is the fluid density, 𝜇 is the fluid viscosity, 𝒈 means the gravitational acceleration, and 𝐷/𝐷𝑡 means 

total derivative operator of time 

Semi-Lagrangian method is implemented at fixed grid, and departure points(𝒙𝑑
𝑛) of fluid particles 

arriving at grid points(𝒙𝑛+1) are backward tracked along the characteristic lines, i.e. 𝐷𝒙/𝐷𝑡 = 𝑼(𝒙, 𝑡). 
The second-order BDF (backward differentiation formula) is utilized to discretization of left hand side 

of Eq. (2). Therefore, Eq. (2) can be implicitly discretized in time as follows: 

 

𝜌

3
2𝑼

𝑛+1 − 2𝑼𝑑
𝑛 +

1
2𝑼𝑑

𝑛−1

∆𝑡
= (−∇𝑝 + 𝜇∇2𝑼+ 𝜌𝒈)𝑛+1,                                   (3) 

 

where variables which has superscript 𝑛 + 1 is defined at grid points, 𝒖𝑑
𝑛 and 𝒖𝑑

𝑛−1 are fluid velocities 

of departure points defined at time t𝑛 and t𝑛−1, respectively. Based on RK2 (Runge-Kutta 2) method, 

a departure point of time t𝑛 is computed as 

 

𝒙𝑑
𝑛+

1
2 = 𝒙𝑛+1 −

∆𝑡

2
𝑼𝑛(𝒙𝑛+1),                                                           (4) 

 

𝒙𝑑
𝑛 = 𝒙𝑛+1 − ∆𝑡𝑼𝑛+

1
2 (𝒙𝑑

𝑛+
1
2).                                                         (5) 
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Here, 𝑼𝑛+1/2 is estimated by linear extrapolation using the two previous time step, i.e. 𝑼𝑛+1 2⁄ =
3 2⁄ 𝑼𝑛 − 1 2⁄ 𝑼𝑛−1 . A departure point of time 𝒙𝑑

𝑛−1  can be similarly determined. Generally, 

departure point does not coincide with a grid point. In this case, bilinear interpolation is employed to 

determine the values of departure point.  

 

 

Figure 1: Staggered grid system 

 
In order to solve the implicitly discretized Navier-Stokes equations, standard projection method is 

employed together with staggered grid system shown in Figure 1. In this grid system, horizontal 

velocity (𝑢𝑖±1 2⁄ ,𝑗) is positioned at center of vertical plane (𝒙𝑖±1 2⁄ ,𝑗), vertical velocity (𝑣𝑖,𝑗±1 2⁄ ) is 

located at center of horizontal plane (𝒙𝑖,𝑗±1 2⁄ ), and pressure (𝑝𝑖,𝑗) is defined at center of grid (𝒙𝑖,𝑗). 

This grid system has an advantage to effectively satisfy the incompressibility.   

 

2.2     Governing equations for rigid-body 
 
The dynamic motion of rigid-body interacted with the fluid is described by  

 
𝑑𝑷

𝑑𝑡
= 𝑚𝒈+∮(−𝑝𝑰 + 2𝜇𝑫) ∙ 𝒏 𝑑𝛤,                                                    (6) 

 
𝑑𝑳

𝑑𝑡
= ∮𝒓 × (−𝑝𝑰 + 2𝜇𝑫) ∙ 𝒏 𝑑𝛤,                                                     (7) 

 

where 𝑚 is the mass of the rigid body, 𝑷 and 𝑳 represent respectively linear momentum and angular 

momentum of rigid-body, 𝒈  means gravitational acceleration, 𝒏  refer to outward-positive surface 

normal vector of rigid-body, 𝛤 is the interface between fluid and rigid-body, 𝒓 is the position vector 

whose origin is the center of rigid-body, 𝑰 is identity tensor, and 𝑫 is the strain rate tensor of fluid 

velocity that is defined as  

 

𝑫 =
1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
).                                                                (8) 

 

Using computed 𝑷 and 𝑳, the location of body`s center of mass 𝑪 and the orientation matrix 𝑹 of the 

rigid-body can be determined as  

 
𝑑𝑪

𝑑𝑡
=
𝑷

𝑚
   and  

𝑑𝑹

𝑑𝑡
= 𝜔 × 𝑹,                                                        (9) 

  

where 𝜔 = 𝐼−1𝑳 is the angular velocity of the rigid-body. 𝐼 means the inertia matrix of the rigid-body. 
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2.3     Fluid-rigid body interaction 
 

2.3.1     Heaviside function 
 

In order to efficiently treat irregular fluid domain induced by the rigid-body, the Heaviside function 

𝐻 which is 0 at the body region and 1 at the solid region is employed. Using relation for ∇𝐻 = 𝒏𝛿𝛤, 

the projection method that can be considered at following subsection can be robustly applied in the 

entire domain. Furthermore, the fluid forces and moments acting on the rigid-body also simply 

computed in the entire domain. In finite volume approach, Heaviside function is defined as length 

fraction at two-spatial dimension and area fraction at three-spatial dimension. 

In the case of two-spatial dimension, the Heaviside function at vertical surface is defined as  

 

𝐻
𝑖+
1
2
,𝑗
=

𝜙
𝑖+
1
2
,𝑗+

1
2

+ − 𝜙
𝑖+
1
2
,𝑗−

1
2

+

𝜙
𝑖+
1
2
,𝑗+

1
2
− 𝜙

𝑖+
1
2
,𝑗−

1
2
 
                                                        (10) 

 
where 𝜙 means signed distance function of rigid-body, and 𝜙+ = max (𝜙, 0). If both 𝜙𝑖+1/2,𝑗+1/2 and  

𝜙𝑖+1/2,𝑗−1/2 are positive, the Heaviside function is 1. On the contrary, if both are negative, then the 

Heaviside function is 0. Similarly, the Heaviside function at horizontal surface can be computed. 

In the case of three-spatial dimension, the Heaviside function is defined as the sum of area fraction of 

two triangles composing the rectangular surface. If 𝜙0, 𝜙1, 𝜙2, 𝜙3 are considered as signed distance 

function at four grid points of the cell surface, the area fraction of triangle Δ𝑃0𝑃1𝑃2 is computed as  

 

𝐻(𝜙0, 𝜙1, 𝜙2) =

{
 
 

 
 𝜙0

+ − 𝜙1
+

𝜙0 − 𝜙1
∙
𝜙0
+ − 𝜙2

+

𝜙0 − 𝜙2
𝑖𝑓 𝜙0  > 0, 𝜙1 < 0 , 𝑎𝑛𝑑 𝜙2 < 0,

1 −
𝜙0
− − 𝜙1

−

𝜙0 − 𝜙1
∙
𝜙0
− − 𝜙2

−

𝜙0 − 𝜙2
𝑖𝑓 𝜙0  < 0, 𝜙1 > 0 , 𝑎𝑛𝑑 𝜙2 > 0,

              (11) 

 
where 𝜙− = min(𝜙, 0) . Similarly, the area fraction of other triangle Δ𝑃0𝑃3𝑃2  can be calculated. 

Finally, the Heaviside function of rectangular surface is defined as  

 

𝐻(𝜙0, 𝜙1, 𝜙2, 𝜙3) =
1

2
(𝐻(𝜙0, 𝜙1, 𝜙2) + 𝐻(𝜙0, 𝜙3, 𝜙2)).                             (12) 

 
The aforementioned discretization of the Heaviside function in two-spatial dimension produces about 

1.5 order of accuracy. However, discretization in three-spatial dimension has second order of 

accuracy. 

 
2.3.2     Projection method for fluid  

 

The incompressible Navier-Stokes equations are solved by the standard projection method [9]. In the 

projection method, the single time evolution is divided into two stages, i.e. intermediate state and 

projection step.  

Firstly, intermediate state(*) of semi-Lagrangian Navier-Stokes equation is given by  

 

𝜌

3
2𝑼

∗ − 2𝑼𝑑
𝑛 +

1
2𝑼𝑑

𝑛−1

∆𝑡
= 𝜇∇2𝑼∗ + 𝜌𝒈𝒏+𝟏,                                          (13) 

 

where 𝑼∗=𝑼𝑏𝑜𝑑𝑦
𝑛+1  at body surface. The fluid velocity at intermediate state 𝑼∗  cannot satisfy the 

incompressibility (∇ ∙ 𝑼 = 0), thus it has no physical meaning. The equations of intermediate state can 

be defined to velocity Poisson equation. In order to efficiently solve the this Poisson equation with 

satisfying no-slip boundary condition at body surface, a second-order accurate discretization method 
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of Poisson equation on irregular domain proposed by Gibou et al.[10] is applied. Because this method 

produces symmetric positive definite system, the conjugate gradient method is applied as appropriate 

solver. 

Following projection step is  

 

𝑼𝑛+1 = 𝑼∗ −
∆𝑡

𝜌
∇𝑞𝑛+1,                                                          (14) 

 

where 𝑞 is the scalar quantity to enforce the incompressibility of the fluid. If Eq.(14) is substituted 

into Eq.(13), it should be same as original Navier-Stokes equation Eq.(3). Using this relation, the 

pressure can be calculated by  

  

𝑝𝑛+1 =
3

2
𝑞𝑛+1 − 𝜇∇ ∙ 𝑼∗.                                                        (15) 

 

The scalar quantity 𝑞 is determined by Poisson equation that will be described in following sub-

section 2.3.4. 

 

2.3.3     Projection method for rigid-body 

 

The governing equations for the rigid-body are also solved by fractional step method. As mentioned 

in previous sub-section, the single time evolution is divided into two step, i.e. intermediate state and 

projection step. The reason why this fractional time stepping can be applied to the rigid-body equation 

is that the projection step of the rigid body satisfies Hodge decomposition (the vector field can be 

uniquely decomposed into a divergence-free and an irrotational part).  

The intermediate state of governing equations of the rigid body is 

 
3
2
𝑷∗ − 2𝑷𝑛 +

1
2
𝑷𝑛−1

∆𝑡
= 2𝒇𝑣

𝑛 − 𝒇𝑣
𝑛 + 𝜌𝒈𝒏+𝟏,                                          (16) 

 
3
2𝑳

∗ − 2𝑳𝑛 +
1
2𝑳

𝑛−1

∆𝑡
= 2𝝉𝑣

𝑛 − 𝝉𝑣
𝑛−1,                                                  (17) 

 

where 𝒇𝑣 = ∫(2𝜇𝑫) ∙ 𝒏𝑑𝛤  and 𝝉𝑣 = ∫𝒓 × (2𝜇𝑫) ∙ 𝒏𝑑𝛤 . Using the linear extrapolation, 𝒇𝑣
𝑛+1  and 

𝝉𝑣
𝑛+1 are approximated by 2𝒇𝑣

𝑛 − 𝒇𝑣
𝑛 and 2𝝉𝑣

𝑛 − 𝝉𝑣
𝑛−1, respectively. Because the linear and angular 

momentum at intermediate state are updated by only viscous forces and moments of the fluid, they 

have no physical meaning. 

The following projection step is 

 

𝑷𝑛+1 = 𝑷∗ − ∆𝑡∮ 𝑞𝑛+1

Γ

𝒏 𝑑𝛤 = 𝑷∗ − ∆𝑡∫ 𝑞𝑛+1

Ω

∇𝐻𝑛+1𝑑Ω,                          (18) 

 

𝑳𝑛+1 = 𝑳∗ − ∆𝑡∮ 𝒓 × 𝑞𝑛+1

Γ

𝒏 𝑑𝛤 = 𝑷∗ − ∆𝑡∫ 𝒓 × 𝑞𝑛+1

Ω

∇𝐻𝑛+1𝑑Ω.                  (19) 

 
As described in section 2.3.1, ∇𝐻 = 𝒏𝛿𝛤 so that the surface integral can be simply computed in entire 

domain.  

 
2.3.4 Poisson equation for scalar quantity 𝒒 

 

If the scalar quantity 𝑞  is determined, governing equations for the fluid and the rigid-body are 

simultaneously solved without any numerical coupling method. It means that the fluid and the rigid-
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body are monolithically interacted. This strongly coupled interaction algorithm is proved to be stable 

in the sense that its kinetic energy does not increase by Gibou and Min [1]. 

Based on incompressibility of the fluid and non-penetration condition at body surface, the Poisson 

equation for 𝑞 is derived by  

 

∇ ∙ (𝐻𝑛+1(𝑼𝑛+1 −𝑼𝑏𝑜𝑑𝑦
𝑛+1 )) = ∇ ∙ (𝐻𝑛+1𝑼𝑛+1) − ∇𝐻𝑛+1 ∙ 𝑼𝑏𝑜𝑑𝑦

𝑛+1 = 0.                  (20) 

 
Substituting Eqs. (14) and (18)-(19) into Eq.(20), the Poisson equation for 𝑞 is defined as 

 

−∇ ∙ (
𝐻𝑛+1

𝜌
∇𝑞𝑛+1) + ∇𝐻𝑛+1 ∙

1

𝑚
(∫ 𝑞𝑛+1

Ω

∇𝐻𝑛+1𝑑Ω) + 𝑱𝑛+1 ∙ ((𝑰−1)𝑛+1) (∫ 𝑞𝑛+1

Ω

𝑱𝑛+1𝑑Ω) 

= −
1

∆𝑡
∇ ∙ (𝐻𝑛+1𝑼∗) +

1

∆𝑡
∇𝐻𝑛+1 ∙ 𝑼𝑏𝑜𝑑𝑦

∗ ,                                                                                                  (21) 

 

where 

𝑱𝑛+1 = 𝒓 × ∇𝐻𝑛+1  and  𝑼𝑏𝑜𝑑𝑦
∗ =

𝑷∗

𝑚
+ ((𝑰−1)𝑛+1𝑳∗) × 𝒓.                            (22) 

 
Although the Poisson equation for 𝑞  produces symmetric positive definite system, the geometric 

Multigrid solver is applied to solve this Poisson equation. We believe that the geometric Solver is the 

most fast solution method for the linear system. 

 

2.4     Free surface simulation 

 
2.4.1     THINC/WLIC method 

 
The VOF (volume-of-fluid) method is the most preferred approach to simulate multiphase flow due to 

the mass conservation. The characteristic of fluid is distinguished by characteristic function, 𝜒, in the 

VOF method. The characteristic function is 0 at the gas and 1 at the liquid. In finite volume approach, 

the volume-averaged value should be needed, thus volume fraction function, 𝑓, is considered and its 

value is 0 at the gas region, 1 at the liquid region, and between 0 and 1 at the interface region.  

In order to satisfy the mass conservation of the fluid, the characteristic function should satisfy 

 
𝐷𝑓

𝐷𝑡
=
𝜕𝑓

𝜕𝑡
+ ∇ ∙ (𝑼𝜒) − 𝜒∇ ∙ 𝑼 = 0,                                                     (23) 

 
where 𝑼 is the velocity vector of the fluid.  

Based on a dimensional splitting algorithm, volume fraction function 𝑓 is updated in time as follows: 

 

𝑓𝑖,𝑗
∗ = 𝑓𝑖,𝑗

𝑛 −
𝐹𝑥,𝑖+1/2,𝑗
𝑛 − 𝐹𝑥,𝑖−1/2,𝑗

𝑛

∆𝑥
− 𝑓𝑖,𝑗

𝑛
𝑈𝑥,𝑖+1/2,𝑗
𝑛 − 𝑈𝑥,𝑖−1/2,𝑗

𝑛

∆𝑥
∆𝑡,                         (24) 

 

𝑓𝑖,𝑗
𝑛+1 = 𝑓𝑖,𝑗

∗ −
𝐹𝑦,𝑖,𝑗+1/2
𝑛 − 𝐹𝑥,𝑖,𝑗−1/2

𝑛

∆𝑦
− 𝑓𝑖,𝑗

∗
𝑈𝑦,𝑖+1/2,𝑗
𝑛 − 𝑈𝑦,𝑖−1/2,𝑗

𝑛

∆𝑦
∆𝑡,                       (25) 

 

where  𝐹𝑥,𝑖+1/2,𝑗  and 𝐹𝑦,𝑖,𝑗+1/2  are the fluxes of characteristic function about 𝑥 - and 𝑦 -direction, 

respectively. There are many studies to accurately compute the flux of characteristic fraction function. 

Among these methods, we employ the THINC/WLIC (tangent of hyperbola for interface capturing / 

weighted line interface calculation) method in order to efficiently simulate the free surface flow.  

The original VOF method uses Heaviside step function to express the characteristic function of the 

each cell. However, the smoothed Heaviside function is utilized in the THINC method. Due to 

smoothed variation of characteristic function, THINC method is known for effectively preventing the 
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flotsam. By using hyperbolic tangent function, the characteristic function, 𝜒, of the one-dimensional 

THINC scheme is defined as   

 

𝜒𝑥,𝑖 =
1

2
(1 + 𝛼𝑥tanh (𝛽 (

𝑥 − 𝑥𝑖−1/2

∆𝑥
− �̃�𝑖))),                                      (26) 

 
where 𝛼𝑥  and 𝛽  mean the interface direction and smoothing of the characteristic function, 

respectively. �̃�∆𝑥 is same as the distance between 𝑥𝑖−1/2 and the interface.  

The WLIC scheme is based on similar interface reconstruction manner like the SLIC (simple line 

interface calculation) method. In SLIC method [11], vertical and horizontal interfaces are respectively 

considered for calculating 𝑥 - and 𝑦 -directional fluxes in two-spatial dimension. However, both 

vertical and horizontal interfaces are used to compute fluxes of each direction in the WLIC method. 

Instead, a weight is given for the direction. This weight 𝝎 is computed using surface normal vector 𝒏. 

Therefore, two-dimensional characteristic function can be defined as  

 

𝜒𝑖,𝑗 = 𝜔𝑥,𝑖,𝑗(𝒏𝑖,𝑗)𝜒𝑥,𝑖,𝑗 +𝜔𝑦,𝑖,𝑗(𝒏𝑖,𝑗)𝜒𝑦,𝑖,𝑗.                                         (27) 
 

The fluxes can be determined by integration of characteristic function. The details are described in [6].  

 

2.4.2     Numerical test : Reversible 𝑺-shape flow 

 

The character 𝑆 -shape flow presented in Ahn and Shashkov [8] is considered to validate 

THINC/WLIC method. The divergence free nonlinear velocity field  

 

𝒗 = (
1

4
((4𝑥 − 2) + (4𝑦 − 2)3), −

1

4
((4𝑦 − 2) + (4𝑥 − 2)3) )                       (28) 

 

changes a circular region into a character 𝑆-shape. After 𝑆-shape is completed, reversible velocity 

field is applied to return to the original circular shape. Then, the volume fraction of the recovered 

region is compared to the volume fraction of the original one in order to validate THINC/WLIC 

method. 

The computational domain [0,1]2  is considered, and the circle whose radius is 0.25 is located at 
(0.5,0.5). Three different grid levels, i.e. coarse(100 × 100), medium(200 × 200), fine(400 × 400), 

are used to computation. At time = 3.0s, the character 𝑆-shape is  completed. Therefore, velocity field 

𝒗 is applied until time=3.0s, then reversible velocity field −𝒗 is  employed.  

Figure 2 depicts the time series of snapshots for reversible 𝑆-shape flow. Convergence of the volume 

differences between original- and recovered region is shown in Table 00. It is confirmed that the 

THINC/WLIC method produces first-order accurate results based on 𝐿1-error. In this analysis,  𝐿1-

error is defined as  

 

𝐿1 𝑒𝑟𝑟𝑜𝑟 =
∑ |𝑓𝑖,𝑗

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
− 𝑓𝑖,𝑗

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑|𝑖,𝑗

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠
.                                                     (29) 

 

Table 1: Convergence of the volume differences between original- and recovered region  

Grid 𝐿1-Error Order 

100x100 0.007412 - 

200x200 0.003153 1.23 

400x400 0.001567 1.01 
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Figure 2: Snapshots of reversible S-shape flow in the case of uniform 400 × 400 mesh 
 

3     Simulation results  
 
To demonstrate validity of our numerical method, several benchmark problems are simulated in this 

section. Firstly, flow past a circular cylinder is computed to validate fluid-body coupling. Secondly, 

falling cylinder problem is solved to confirm the validity of algorithm of fluid-body interaction. 

Thirdly, dam-break problem is analyzed to validate violent motion of free surface. Finally, water 

entry of circular cylinder is computed to demonstrate validity of fluid-body interaction with free 

surface.   

 

3.1    Fluid-body coupling : Flow past a circular cylinder 

 
The computational domain of flow past a circular cylinder problem is set as shown in Figure 3. Total 

domain size is considered as [−8, 24]  ×  [−8, 8], and a center of circular cylinder which has radius of 

0.5 is located at (0,0). We impose Dirichlet boundary condition of 𝑢 = 𝑈∞ = 1 at the left, the slip 

boundary condition at top and bottom, the convective boundary condition (convection velocity is 

average value of right boundary) at the right, and non-slip wall boundary condition at the cylinder`s 

boundary. A 1024 × 512 Cartesian mesh is used in the entire computational domain to well resolve 

the cylinder body. Because semi-Lagrangian based fluid solver can employ large time step, CFL 

number(𝑈∞∆𝑡/∆𝑥) is set to 4 in this computation. The fluid density is considered as 1, and the 

viscosity is set with respect to Reynolds number. 

 

 
 

Figure 3: Layout of 2D flow past a circular cylinder problem 
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Figure 4: Vorticity contours for 𝑅𝑒 = 100(top) and 200(bottom). The size of captured domain is 
[−1,18] × [−3 × 3].  Contours are presented from -4 to 4 with 41 intervals. 

 

In order to validate our numerical solution, simulation results are compared with experimental or 

numerical results presented by other researchers.  

 

 
Figure 5: Time history of drag and lift coefficient. Left is for 𝑅𝑒 = 100, and Right is for 𝑅𝑒 = 200. 

The solid line refers to drag coefficient, and dotted line indicates lift coefficient. 
 

Firstly, drag and lift coefficients at 𝑅𝑒 = 100, 200 is compared with both experimental and numerical 

results.  The drag and lift coefficients are defined as  

 

𝐶𝐷 =
𝐹𝑥

0.5𝜌𝑈∞
2 𝑑

  and𝐶𝐿 =
𝐹𝑦

0.5𝜌𝑈∞
2 𝑑
 ,                                                (30) 

 
where 𝐹𝑥 is drag force, 𝐹𝑦 is lift force, and 𝑑 means diameter of circular cylinder. In our simulation 

condition, 𝐶𝐷 and 𝐶𝐿 is simply defined as 2𝐹𝑥 and 2𝐹𝑦, respectively. Figure 5 shows the time history 

of drag and lift coefficient, and Table 2 presents unsteady drag and lift coefficients of current study 

and other studies. As shown in Table 2, our numerical results are in good agreement with other 

studies. 
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Table 2: Drag and lift coefficients of current results and other researcher`s results 

 
𝑅𝑒 = 100 𝑅𝑒 = 200 

𝐶𝐷 𝐶𝐿 𝐶𝐷 𝐶𝐿 

Choi et al [3] 1.34 ± 0.011 ±0.315 1.36 ± 0.048 ±0.64 

Ng et al [5] 1.37 ± 0.016 ±0.36 1.37 ± 0.050 ±0.72 

Braza et al [12] 1.36 ± 0.015 ±0.25 1.40 ± 0.050 ±0.75 

Liu et al [13] 1.35 ± 0.012 ±0.339 1.31 ± 0.049 ±0.69 

Present 1.34 ± 0.012 ±0.37 1.40 ± 0.050 ±0.73 

 
Secondly, the Strauhal number (𝑆𝑡) is compared at low Reynolds number(< 200). The Strauhal 

number is important parameter in designing cable such as deep-sea riser since Strauhal number is 

directly related with vortex induced vibration. The Strauhal number is defined as  

 

𝑆𝑡 =
𝑓𝑑

𝑈∞
 ,                                                                        (31) 

 
where 𝑓 is shedding frequency which is same as frequency of lift oscillation. In order to compare 

Strauhal number, additional simulation is conducted at 𝑅𝑒 = 120,140,150,160,180. 

Figure 6 shows that our results are well-matched to results of other studies. 

 

Figure 6: Comparison results of Strauhal number versus Reynolds number  

 

3.2    Fluid-body interaction : Falling cylinder problem 
 
To validate numerical algorithm of fluid-rigid body interaction in single phase flow, falling cylinder 

problem is computed in this section. The size of computational domain is  [−𝐿, 𝐿]  × [0, 8𝐿], and a 

center of circular cylinder which has radius, 𝑟, of 0.25𝐿 is located at (0,6.5𝐿). We impose convective 

boundary condition at top, and no-slip boundary condition at other boundaries. The length parameter 

𝐿 is set to 2 × 10−2𝑚, gravitational acceleration 𝑔 is 9.8𝑚/𝑠, fluid`s density, 𝜌𝑓, is 1 × 103𝑘𝑔/𝑚3, 

and cylinder`s density, 𝜌𝑠 , is 2 × 103𝑘𝑔/𝑚3 . An analytical solution [16] of the terminal falling 

velocity, 𝑉, can be derived utilizing the Stokes assumption of low Reynolds number :  

 

𝑉 = 
(𝜌𝑠 − 𝜌𝑓)𝑔𝑟

2

4𝜇
{− ln (

𝑟

𝐿
) − 0.9157 + 1.7244(

𝑟

𝐿
)
2

− 1.7302(
𝑟

𝐿
)
4

},                  (32) 
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where 𝜇  is fluid`s viscosity. Because the validity of Stokes assumption is confirmed at very low 

Reynold number (< 0.1), we take 𝜇 = 0.5kg/s. The 128 × 512 Cartesian grid is utilized, and Figures 

0-0 depict simulation results. Figure 7 shows snapshots of velocity magnitude contour and streamlines 

with respect to time. Figure 8 presents comparison results between current simulation and analytical 

solution. As shown in Figure 8, simulation results are well matched to analytical solution. 

 

 
Figure 7: Velocity magnitude contours and streamlines around the falling cylinder with respect to 

time. From the left, 𝑡 = 0.0𝑠, 0.1𝑠, 0.5𝑠, 1.0𝑠.  
 

 
Figure 8: The variation of Falling velocity 𝑉 with respect to time. Circle means present simulation, 

and solid line refers to analytical solution based on Eq. (32). 
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3.3    Free surface flow : Dam-break problem 
 

In order to demonstrate unsteady motion of free surface flow, classical free surface problem, namely 

dam-break, is computed. In this simulation, liquid and gas is considered as water and air, respectively. 

The size of computational domain is [0,5𝑎]  × [0, 1.25𝑎], and the configuration of water dam is 

initially set to  [0, 𝑎]  ×  [0, 𝑎]. We take length parameter 𝑎 as 0.05715𝑚. All boundaries conditions 

are imposed as no-slip wall. In the dam-break problem, the density difference, which is about 1000 

times, between water and air under gravitational acceleration causes the water to collapse and water to 

spread into the air. The dam-break problem is computed with different grid level such as 

coarse(128 × 32), medium(256 × 64), and fine(512 × 128).  

Snapshots taken at three different non-dimensional time T(= 𝑡√𝑔/𝑎) of breaking procedure are 

presented as shown in Figure 9. The surge front position, 𝑆, and column height parameter, 𝐻, is 

employed to be compared with experimental data. These parameters are defined as  

 

𝑆 =
𝑥(𝑡)

𝑎
  and  𝐻 =

𝑦(𝑡)

𝑎
,                                                          (33) 

 
where 𝑥(𝑡) is maximum 𝑥-directional displacement of water configuration at bottom wall, and 𝑦(𝑡) is 

maximum y-directional displacement of water configuration at left wall. For your better understand, 

Figure 10 is presented.  

 

 
Figure 9: Snapshots of dam-break procedure. Snapshots are taken at non-dimensional time T=1.0(top), 

2.0(middle), 3(bottom). Mesh lines mean initial configuration of water dam. 
 

 
Figure 10: Definition of (𝑡), 𝑦(𝑡), and 𝑎. The initial configuration of the water dam is indicated by the 

mesh lines 
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The variation of surge front position and column height versus non-dimensional time is compared 

with experimental data. As shown in Figure 11, our simulation results are in good agreement with 

experimental data [17]. 

 

 
Figure 11: Comparison of surge front position (left) and column height (right) with experimental data 

 

3.4    Fluid-body interaction with free surface : Water entry problem 

 
The problem that the rigid body enters into the free surface is known as the water entry problem. The 

water entry problem is typical benchmark test that can validate algorithm for simulating fluid-body 

interaction with free surface. In our water entry test, a rigid circular cylinder is initially positioned at 

air region, and then it freely falls to free surface due to gravity. If the density of the body is smaller 

than fluid`s density, the body floats at free surface. Since the terminal vertical position and falling 

velocity can be analytically computed by hydrostatics, simulation results of these two parameters are 

compared with analytical solution. 

 

 
Figure 12: Computational set up of water entry problem  

 
The computational set up of water entry problem is shown in Figure 12. A computational domain of 

[0,1]  ×  [0,1] is considered. The diameter of circular cylinder is 0.2𝑚, and the density of cylinder is 

set to half of fluid`s density. The cylinder is positioned at 0.8𝑚 from the bottom, and free surface is 

located at 0.5𝑚 from the bottom. Pressure outlet boundary condition is imposed to top boundary, and 

all other boundaries are considered as no-slip wall. Gravitational acceleration is 9.8𝑚/𝑠 . The 

128 × 128 Cartesian mesh is used in this simulation. 
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Figure 13: Snapshots of violent motion of free surface during water entry 

 

Figure 13 shows snapshots of violent motion of free surface while cylinder enters into the free surface. 

The variation of free surface shown in snapshots is in good agreement with physical plausibility. The 

analytical terminal vertical position of center of cylinder is 0.5157𝑚 from the bottom since body`s 

density is set to half of fluid`s density in this simulation. Of course, the analytical terminal falling 

velocity is 0𝑚/𝑠. As shown in Figure 14, simulation results of vertical position and falling velocity 

are converged to analytical terminal values. 

 
Figure 14: Time history of vertical position and falling velocity of the cylinder. Circle means present 

simulation, and solid line refers to analytic solution of each terminal values. 
 

4     Conclusion and Future Work 
 
The efficient and stable method for monolithic fluid-rigid body interactions with free surface flow 

was presented in this study. The governing equations for fluid, namely incompressible Navier-Stokes 

equations, are solved by the implicit semi-Lagrangian time discretization and standard projection 

method together with Cartesian mesh. The dynamic equations for the rigid-body are also solved by 

fractional step method. The fluid-rigid body interactions are enforced via projection step so that each 

equation for the fluid and the rigid-body is simultaneously solved with same time evolution.  

The dynamic motion of free surface flow is efficiently simulated by the THINC/WLIC method. 

Unlike the original VOF method that uses Heaviside step function, THINC scheme utilizes smoothed 

Heaviside function so that it could effectively prevent flotsam. The WLIC method is based on similar 

interface reconstruction manner like the SLIC method. However, the WLIC method is superior to the 

SLIC method by using weighting function with respect to direction.  

To demonstrate validity of current approach, four different benchmark problems were computed such 

as flow past a circular cylinder, free falling cylinder, dam-break, and water entry problems. Based on 

simulation results of these problems, it is confirmed that three different continuums, i.e. air, water, 

rigid-body, can be stably and efficiently simulated at the same time with present algorithm. 

Because the THINC/WLIC method produces first-order accurate results, the more advanced method 

will be need. For this reason, combination of present stable fluid-rigid body interaction algorithm and 

the MOF (moment-of-fluid) method is considered as primary research in the future.  
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