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Abstract: In this paper, a two-dimensional cross-flow tube-bundle heat exchanger arrangement
problem with internal laminar flow is considered. multi-objective optimisation was performed
with a recently developed Bayesian approach. The parameters of the tube configuration include
the streamwise-position, number, and radii of tubes. The goal was to find a range of geometries
that optimally trade-off the rate of heat exchange and the pressure loss. A systematic study was
performed involving 400 Computational Fluid Dynamic (CFD) evaluations. A fully automated
in-house python-based framework was used to solve the problem, including mesh generation and
CFD simulation. The main purpose of this article is to illustrate and analyse a heat exchanger tube
arranement problem in its most general form, and to provide a fundamental understanding of the
structure of the Pareto front and optimal geometries. The considered conditions are particularly
suited for low-power applications, as found in a growing number of practical systems in an effort
toward increasing energy efficiency.
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1 Introduction
A cross-flow tube-bundle heat exchanger is one of the simplest but most effective apparatus for heat transfer
applications. Their range of size allows for a wide variety of applications in many fields, such as the chemical,
food and nuclear industries, and HVAC (Heating, Ventilation and Air Conditioning) sectors, to name a few.
Generally, this type of heat exchanger contains many rows of tubes oriented in a direction perpendicular
to the flow, as shown in Fig.1. The tubes may be arranged in many configurations in order to obtain the
greatest heat transfer between the two media. The transfer of heat between the tubes and the main flow
occurs through the tube walls and will be maximised by increasing the surface area of contact between the
flow and the walls. A detrimental effect of this may be that the static pressure across the tube configuration
increases, requiring greater energy (pumping power) to push the flow through the heat exchanger. Overall,
this potentially results in a conflicting pair of objectives for its design. The resulting problem is a multi-
objective task involving, at least, two conflicting goals: in this case, no one solution can be usually judged
the best with respect to all the objectives, but a set of trade-off optimal solutions must be considered. The
ensemble of these compromise solutions constitutes the so called Pareto front. To reduce the computational
cost, it is common practice (e.g. [1, 2]) to transform the multi-objective problem into a single objective one,
by incorporating all the objectives into a single function with the use of arbitrary weighting factors. However,
this strategy is not always advisable, since it does not give access to the whole set of optimal solutions, and
the results strongly depend on the chosen weighting factors [3].

Optimisation of a tube-bundle heat exchanger may be pursued by a number of active and passive methods.
Active methods aim to control the flow by providing external energy, while passive methods focus on altering
the geometry of the tube bundle by changing the tube arrangement, tube diameters and relative pitches.
One suggested active method is to superimpose pulsations on the inflow, leading to vortex shedding lock-on
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in an in-line [4] or semi-staggered [5] tube bundle arrangement, and therefore heat transfer enhancement.
However, any benefits should be offset against the power required to generate the pulsations. Similarly,
changing the turbulent regime of the flow may provide an enhancement in heat transfer, for example, Taub
[6] found that increasing the turbulence intensity resulted in this effect.

Despite the significant number of publications on optimising the heat exchanger design, three main gaps
have not been fulfilled. Firstly, the design spaces investigated comprise of a low number of design variables
within limited ranges; most studies consider fixed number of tubes (rows) and/or tube pitch ratios. Second,
the investigations are usually limited to simple parametric analysis on the fluid flow only. Utilising a robust
approach (e.g. Design Of Experiment [7]) would allow for a larger number of design variable combinations,
thus providing better mapping for the thermal-hydraulic performance changes within the design space.
Finally, all studies treat the tube-bundle on a qualitative basis i.e. only the topology variables (pitch ratios)
are accounted in addition to Reynolds numbers.

For practical engineering applications of optimal shape design, coupling an optimisation algorithm with
CFD in an automated procedure has become increasingly popular in the literature. In the context of the
tube-bundle heat exchanger, the majority of papers focus on the optimisation of the tube shapes or positions.
Bejan and Fowler [8] performed a theoretical, numerical and experimental study for selecting the best spacing
between horizontal pipes in a fixed volume subjected to natural convection, in order to maximise heat transfer
(Single-Objective). A similar configuration was considered by Stanescu et al. [9]. The maximisation of the
heat transfer rate under a volume constraint was achieved also by Matos et al. [10]. In their geometric
optimisation they considered both circular and elliptic tubes to describe more general configurations; their
work was extended to a three-dimensional domain in [11, 12]. Hilbert et al. [13] performed a multi-objective
optimisation using a Genetic Algorithms (GAs) on elliptical and blade/tear-drop cross-sections of the tubes
in a staggered formation. Similar work has also been performed by Ranut et al. [14] focusing on the elliptical
pipe cross-section while comparing the efficacy of the NSGA-II and FMOGA-II genetic algorithm. It should
be noted however, that the manufacture of elliptic or blade/tear-drop pipes may prove to be problematic. A
simpler alternative is to optimise the formation of the circular pipe; papers such as Daroczy et al. [15] and
Ge et al. [16] applied the NSGA-II Algorithm to perform such analysis. Overall, it should be noted from the
papers listed above that the number of CFD evaluations required when using GAs are ∼ O1000, making this
costly investigation. Developing an efficient, robust and accurate multi-objective optimisation technique for
such problems involving complex geometries, flow and heat transfer in a coupled manner, would be extremely
important for future applications.

Figure 1: A demonstration of a staggered formation of the cross-flow tube-bundle heat exchanger.

An improvement to the GA is to adopt a surrogate modelling approach, reducing the number of evalations
down to ∼ O100. To the best of the authors’ knowledge, in the literature, the application of a surrogate-
based optimisation procedure has not yet been applied to the multi-objective optimisation of a tube-bundle
heat exchanger. Furthermore, the authors’ are not aware of any automated optimisation procedure of the
tube bundle, with design variables such as position, radii and number of pipes per column. Moreover, it
should also be of interest to the reader that the tube-bundle configuration shares similar thermal-hydraulic
properties to that of the plain fin-and-tube heat exchanger (see [17]). Overall, the present work aims to
address the following topics:

1. To systematically carry out the multi-objective optimisation of a cross-flow tube bundle heat exchanger,
with design variables of radii, number, and pitch ratios of the pipes.

2. To apply a newly developed Bayesian optimisation method for solving multi-objective problems.
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1.1 Paper Overview
In the present work, multi-objective optimisation of a tube-bundle heat exchanger by means of Bayesian
Optimisation is carried out. The design consideration for the tube configuration include the number, radii,
and streamwise position. The structure of this paper is as follows: firstly, the tube bank configuration, design
parameters, and working conditions are outlined - this is closely followed by the numerical setup for CFD;
secondly, the method of mesh perturbation for each design is outlined with a mesh convergence study; thirdly,
the optimisation strategy is outlined, beginning with the design objectives, design representation, and the
multi-objective Bayesian methodology is described; Finally, the results of the optimisation simulations are
presented with phenomenological discussion and conclusion.

2 Numerical methodology for CFD

2.1 Tube bank heat exchanger configuration
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Figure 2: Top: Cross-section in y − x plane: the tubes are in staggered arrangement; middle: schematic
of the CFD domain with labelled dimensions for the pipe configurations and optimisation space; bottom:
schematic of the boundary conditions around the CFD domain.

A tube-bundle heat exchanger with the pipes in a staggered arrangement was constructed using the open-
source C++ code OpenFOAM-4.x. The flow pattern is assumed to be repeated between from one row to the
next - regardless of an in-line or staggered tube array. Based on this assumption (and the flow assumptions
outlined below), it is speculated that only one period of arrays is needed for the solution of the flowfield
[18]. It should be noted that the configuration of the pipes during the optimisation process may result in
an alternating fluid flow depending on the considered number of columns. In the present work, two column
arrays are considered, as shown in Fig.5. It has already been shown in the literature that maximum efficiency
is achieved with a symmetrical configuration of tubes [15]. The diameter of the ‘base’ tube, D0 = 0.01m. Air
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enters the domain from the left with T0 = 293K and is warmed up by passing between tubes in which a warm
fluid flows in the corresponding application. A no-slip condition, and a constant uniform temperature are
imposed on the tube walls, with Twall = 353K. A uniform inflow is imposed with u = 0.05m/s. Symmetry
conditions were applied to the upper and lower boundaries of the domain. A pressure-outlet with ambient
pressure and zero-gradient velocity are applied at the outflow. The total streamwise length of the CFD
domain is 12D0 with a wake region, W , set to 4.75D0 to avoid any backflow and to ensure convergence of
the CFD solution.

On the fundamental side, the heat transfer and fluid flow over the tube bundles has been the subject of
many papers, either through original experimental work ([19, 20]), as well as very recent high-level numer-
ical studies focusing on the unsteady flow phenomena and turbulence ([21, 22]). In the present work, the
inspiration for the design parameters for optimisation will be from the configurations typically observed in
the literature.

According to Zukauskas and Ulinskas [23], tube banks with tp × lp ≤ 2.5D0 × 1.25D0 are considered
compact, and with tp × lp ≥ 4D0 × 2D0 are classed as widely spaced. Using a simplified model, Kahn et al.
[24] derived a series of analytical expressions for the heat transfer of both in-line and staggered arrangements
of tubes, and subsequently investigated the effects of varying the pitch ratios (tp/lp). It was found that
for both staggered and in-line arrangements, the heat transfer increases mainly with decreasing longitudinal
pitch ratio, and to a lesser extent with increasing transverse pitch ratio. Compact banks (in-line or staggered)
indicate higher heat transfer rates than widely spaced ones. For the same pitch ratio, the heat transfer is
higher in a staggered bank than for an in-line tube bank. This was due to the fact that in a staggered bank,
the path of the main flow is more complicated and a greater portion of the surface area of downstream tubes
remains in this path. The effects of the tube arrangement of the frictional losses (pressure drop) were not
considered in their work. In the present work, the optimisation process would allow for the variation of
lp between the pipes as a design variable. The transverse pitch, tp, on the other hand, will be fixed with
tp = 2D0 to allow for the analysis of the widely-spaced heat exchanger. This, combined with the varying
pipe diameters, allows for the consideration of a compact tube bundle. The longitudinal distances between
the pipes can be varied between (D1/2 + D2/2)/∆x ≤ lp ≤ 5D0, where ∆x is the distance between the
center points of two adjacent pipes along the same column. Furthermore, regardless of longitudinal pitch, it
has also been demonstrated in the literature that there is little improvement in heat transfer for number of
pipes greater than 3 per column in laminar flow (e.g. [25]) - though increasing this number may significantly
affect the pressure drop. Therefore, for the present work, the maximum number of pipes per column was
conservatively limited to 3.

Typically, in the literature, experimental and numerical works involving tube bundles are performed
with tube diameters of 0.01 − 0.051m. Only recently have tube bundles with a smaller diameters been
of interest interest (e.g. 0.0015m, [26]), since mini-channel tubes provide a higher compactness for a low
Reynolds number operation range. Moreover, compared to the effects of pitch ratios, tube bundles consisting
of multiple pipe diameters are also a recent contribution to the literature (e.g. [27]). Of these investigations,
a number of researchers have found that installing a pipe upstream or downstream of a larger one is able to
significantly affect the wake flow (and subsequently the pressure recovery across the apparatus). Although
not all the aforementioned studies are directly applicable to tube bundle heat exchangers, they do indicate
the beneficial effects from the use of unequally sized pipe arrangements for suppressing flow activity in tube
wakes. Using a Design Of Experiment framework, Bacellar et al. [7] investigated the effects of varying
tube diameter (0.0005m ≤ D ≤ 0.002m), pitch ratios (1.2 ≤ tp/D, tp/D ≤ 4) in a staggered arrangement,
and inflow air velocity. Their correlation results show potentially that despite reducing the tube diameter,
the same heat capacity may be achieved to that for the heat exchanger consisting of larger tube sizes.
Mavridou et al. [28, 27] conducted the numerical and experimental analysis of pairs of in-line cylinders
with unequally sized tubes (D = 0.00635m and 0.0127m) and various pitch ratios (lp/D = 1.5D, 3.6D and
tp/D = 2.5D, 3.6D); their results showed that compared to a conventional staggered tube bundle (constant
diameters), the arrangement with the smaller diameter upstream of the larger one in an in-line arrangement
had a significant increase in heat transfer; the equivalent arrangement with a smaller transverse distance
(tp) increased the heat transfer significantly but at an expense of an increase in pressure drop. It should be
noted that sourcing the small diameter tubes for practical use is a challenging endeavour. Therefore, the
diameter ranges chosen for the present work will be of a conservative range for a tube-bundle heat exchanger
typically observed in the literature (e.g. [27]), with 0.005m ≤ D ≤ 0.025m.
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In summary, for the design space, the chosen ranges of pipe diameter (D), streamwise positions (xc being
the center of the pipes), and number of pipes (N) are prescribed:

0.5D0 ≤ D ≤ 2.5D0; (1)

2.25D0 ≤ xc ≤ 7.25D0; (2)

N ∈ N[1, 3]. (3)

2.2 Governing equations
The Reynolds number of the air flow across the heat exchanger is defined as

Re =
ρuDmax

µ
= 39.0625 < Re1 (4)

where u is the inflow velocity, Dmax is the maximum diameter of the pipes considered in this work, ρ and µ are
the density and dynamic viscosity of the flow medium. The reference Reynolds number Re1 = 46 according
to Barkley and Henderson [29], or Re1 = 47±1 following Norberg [30]. Above this value, the fluid undergoes
a supercritical Hopf-bifurcation leading to a periodic, oscillatory flow. However, in the present case, the
Reynolds number is well below this limit. Therefore, a laminar and steady flow can be safely assumed, as
done in all simulations. For flow past a stationary cylinder, three-dimensional instabilities occur first at
around Re = 189 and Re = 259 (Mode A and Mode B, respectively [29]). Therefore, three-dimensional sim-
ulations were not required in the present case, and only a two-dimensional slice across of the heat exchanger
will only be simulated in what follows. Gravity is also not included in the CFD simulation. The effects of
buoyancy is neglected as well, since only a small density change will be expected in the temperature range.
The working fluid (air) across the heat exchanger is considered to be incompressible (i.e. Mach number is
low), steady, and two-dimensional as described above. The air flow through the cross-flow pipes is assumed
to be at a high velocity, resulting in a constant tube-surface temperature (isothermal); the thermal radiation
(i.e. temperatures are not considerably high), and viscous dissipation and work are neglected. Under these
assumptions, the governing equations of the fluid are described,

Continuity:
∂ui
∂xi

= 0, (5)

Conservation of momentum:
∂uiuj
∂xj

= −1

ρ

(
∂p

∂xi

)
+
µ

ρ

∂2ui
∂xj∂xj

. (6)

where u is the velocity vector, p is the static pressure, and index i = 1, 2, 3 or x, y, z. Equations 5 and 6 are
solved along with the steady state equation for the energy balance, described:

cpρ
∂ujT

∂xj
= k

∂2T

∂x2j
(7)

where T is the static temperature, cp is the specific heat capacity at constant pressure, and k is the thermal
conductivity of the fluid. The Finite Volume Method was employed to integrate the governing equations by
transforming the volume integration into surface integration for each control volume [31]. The second-order
central difference scheme was used to discretise the diffusion terms, and the second-order upwind difference
was adopted to approximate the convection term. The SIMPLE algorithm [32] was used for the pressure-
velocity coupling, with under-relaxation factors 0.7, and 1 for the velocity, and pressure respectively. All
simulations were run with prescribed residual limits of 10−6, 10−7, and 10−8 for momentum, pressure, and
temperature flow variables. The maximum number of iterations was set to 8000; convergence was always
achieved within this duration. The generalised Geometric-Algebraic Multi-Grid solver was used for pressure,
while the Gauss-Seidel linear solver was used for the remaining fields. Due to the small range of temperatures
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involved in this problem, the material properties of the air flow across the domain are regarded as constants:

cp = 1006.5
J

Kg.K
; k = 0.026341

W

m.K
; ρ = 1.1649

Kg

m3
; µ = 1.868× 10−5

Kg

m.s
. (8)

2.3 Objective Functions
The obvious goal is to maximise the efficiency of the heat exchanger. However, this goal cannot be math-
ematically formulated as a single value or indicator; at least two objectives are needed, which are known
from many previous works as being concurrent. On the one hand, the pressure loss (which is proportional to
the power needed) is to be minimised. The friction factor, f , a ratio of wall shear stress to the flow kinetic
energy, represents the pressure drop for heat exchangers, described,

f =
1

1
2ρu

2
in

[
1

Aout

∫
Aout

poutdAout −
1

Ain

∫
Ain

pindAin

]
, (9)

where p is the static pressure along the boundary, and u is the streamwise velocity component, A is the
cross-sectional area, and subscripts in and out indicate the inflow and outflow boundaries of the domain.
Alternative cost functions in the literature representing the pressure loss include the power input per unit
volume [33], a modified friction factor including the maximum local velocity or area ratios between the pipes
and domain [34], normalised hydraulic resistance [35], or, quite simply, the pressure drop alone [13, 36, 14].

The second objective is related to the efficiency of the heat transfer process. Several different metrics
have been proposed in the literature for this quantity, e.g. temperature difference between outlet and inlet
[13, 14], Nusselt number [35, 37], entropy resistance [38], thermal resistance [39], entropy generation number
[35, 40], total heat transfer [33, 15] or mean heat transfer coefficient [33].

In the present problem, the total heat transfer can be formulated along the outflow boundary as

Q̇ = ρcp

∫
Aout

(Tout − T0)uoutdAout, (10)

By substituting the constant wall temperature as Tout and assuming the velocity across the apparatus
is left unperturbed, the maximum possible value for total heat transfer, Q̇max, is obtained. For a more
straightforward comparison, the theoretical efficiency of the heat exchanger, η, is introduced which can be
calculated as η = Q̇/Q̇max, and is non-dimensional. The value of η is to be maximised, with a value range
of η ∈ [0, 1].

2.4 Automated mesh regeneration
The optimisation process takes place in a fully automated manner, using a python-based framework1 (detailed
in [41]). From the CFD side, in the present work, the automated procedure includes geometry creation, hybrid
mesh generation, and CFD evaluation. A meaningful design optimisation study demands a consistency in
numerical accuracy. As a consequence, an appropriate emphasis must be on the mesh quality for each
evaluation. However, when evaluating hundreds of designs, case-by-case dedication to the construction of
structured meshes is unfeasible. High-quality, but automatic meshing is required, for which unstructured (or
hybrid) meshes are recommended.

In the present work, for the purpose of automating the meshing process for each evaluation, the utility
snappyHexMesh, available in OpenFOAM-4.x, was utilised. To use snappyHexMesh, the user provides an
stereolithography (STL) file of the geometry and a base mesh (typically a simple hexagonal block-structured
mesh). SnappyHexMesh then operates a three-stage meshing process of castellation, snapping and boundary
layer refinement. In the first step (castellation), cells are identified which are intersected by edges of the
surface geometry; these cells are then refined by repeated cell splitting, with maximum and minimum levels
of refinement being a definable parameter, and further surface refinement also being controllable. After this
refinement process, all cells which lie ‘outside’ the desired geometric domain are deleted from the mesh (for
a bluff body, this would be cells on the interior of the STL geometry). In the second, snapping step, vertices

1Python code for the CFD framework is available at: http://bitbucket.org/arahat/cfd-test-problem-suite/
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on the edge of the domain are ‘snapped’ to the STL surface, using an iterative process of mesh movement,
cell refinement and face merging, again controlled by user-defined parameters such as number of iterations
and specific mesh quality constraints. In a final and optional step, cell layers can be added to the surface
to move the mesh away from the boundary to specifically refine a boundary layer. The whole process is
robust and automated, but is controlled by a large number of user-specified parameters provided in advance
as an input file. As with any meshing process, the user typically has to experiment with different settings to
optimise the mesh quality. Mesh quality may ultimately be judged by the success of the resulting CFD run,
but as a proxy various mesh quality indicators such as skewness and non-orthogonality can more easily be
evaluated. The entire process can be constrained by the overall number of cells, both locally in the boundary
layer, or the entire domain.

In the first step a mesh independence study was performed for different mesh sizes and for a chosen
feasible design. The pipe configuration chosen for this study consists of 2 pipes per column in a staggered
formation. The vertical (tp) and horizontal (lp) distances between the centers of the pipes were set to 2D0.
the diameters of the pipes were chosen to be D0. The focus for mesh refinement was of the base (structured
hexagonal) mesh. The mesh was refined by either doubling or halving the number of cells on the streamwise
and vertical directions (x, y), while maintaining an aspect ratio of 1. Based on the earlier grid-sensitivity
study by Rajani et al. [42], all the present calculations maintain a wall-normal distance of the first internal
grid point of ∆r = 0.0001D0 (r is the radius), as recommended by Rajani et al. [43] to capture the sharp
near-wall gradients of the flow variables; the number of layers specified for the boundary layer was set to
25, with a growth rate of 1.15. It should be noted that in equivalent studies, (e.g. [15]) a fully unstructured
mesh may only be the viable option when considering the vast number of CFD simulations. Daroczy et al.
[15] studied the sensitivity of the cost functions (also used in the present work) to a block-structured and
unstructured mesh. Their results indicate very little sensitivity for the total heat transfer η with decreasing
cell size and mesh formation; the friction losses, on the other hand, showed considerable changes that the
mesh formation - convergence was achieved with a lower number of cells for the structured mesh than the
equivalent unstructured.

Figure 3: Mesh-independency test concerning the hydraulic resistance and total heat transfer.

Corresponding results of the cost functions in the present work to the average mesh size generated from
the resulting snappyHexMesh (hybrid) mesh is shown in Fig.3. The x-axis reports the total number of
cells after the castellation, snapping, and layer process of snappyHexMesh. As it can be seen for both cost
functions that with increasing the number of cells in the mesh, convergence is achieved at the same number
of grid points. Convergence was achieved at a lower number of cells to that reported in Daroczy et al. [15]
due to the use of a block-structured cell distribution towards the outflow. Thus the block structured mesh
for 456,000 cell case was used for the optimisation run with the boundary layer characteristics described
above. The corresponding cell size, ∆, was equal to ∆/tp = 10−4, with aspect ratio ∆x/∆y = 1.
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3 Numerical Representation for Shapes

3.1 Chebyshev Polynomials
Often multiple geometric variables may be spatially related, but the nature of this relationship may not be
known a priori. Rather than representing these independently, it may be useful to encode their relationship
with a parametrised function such that altering the parameters changes all geometric variables simultane-
ously. An additional benefit is that a small number of parameters may then represent a large number of
variables, and consequently reduce the search space size. In this paper, Chebyshev polynomials [44] were
used for encoding spatial relationships for one dimensional variables, in particular the radii and the number
of pipes.

A function based on Chebyshev polynomials (type I) may be defined as:

f(t, c) =

n∑
i=0

ciTi(t), (11)

where, t ∈ [0, 1] is a location variable, the ith basis function is Ti(t) = (−2)ii!
(2i)!√

1− x2 di

dxi (1 − x2)
i−1
2 , and the associated coefficient vector c = (c1, . . . , cn)> with ci ∈ [−1, 1]. With

this parameterised function, if there are k variables at locations t1, . . . , tk, and a vector of n coefficients (or
parameters) c, then the jth variable of interest takes the value:

vj = f(tj , c). (12)

The coefficient vector may be directly considered as the decision vector here, and as it is varied, a distinct
value for vj at a fixed location tj may be achieved.

Note that it is straightforward to scale the variables vj and locations tj between specified lower and
upper bounds. Furthermore, so long as n < k, a smaller number of coefficients (or parameters) in this
representation may directly encapsulate and control the relationships between the k variables v1, . . . , vk.
Thus this may effectively reduce the search space. An illustration of the scheme is presented in Fig.4a.

3.2 Monotonic Beta Cumulative Distribution Functions
It can be envisaged that some geometric variables may be monotonically increasing with respect to a location.
Again, parametric monotonic functions may be used to encode such relationships. In this paper, a weighted
sum of cumulative distribution functions (CDFs) of Beta distributions was used for this purpose, which is a
suitable representation for the centres of the pipes.

Let the function F (t, α, β) be the CDF of a Beta distribution. The CDF monotonically increases from
zero to one as location t is changed from zero to one for a specified set of shape parameters α > 0 and
β > 0. If the shape parameters are altered to α′ and β′, this will result in a distinct monotonic relationship
between t and F (t, α′, β′) in comparison to t and F (t, α, β). To further increase the flexibility of such a
representation, the weighted sum of multiple Beta CDFs may be considered, and as a convex combination
of monotonic functions this will preserve the monotonicity. Such a combination of n Beta CDFs may be
expressed as:

b(t,a,b,w) =

n∑
i=1

ωiF (t, αi, βi), (13)

where w = (ω1, . . . , ωn)> is the weight vector with
∑

i ωi = 1, and a = (α1, . . . ,
αn)> and b = (β1, . . . , βn)> are the vectors of parameters for the Beta distribution. As in section 3.1,
the monotonic variable of interest can now be computed using Eq.(12) by replacing f(tj , c) with b(t,a,b,w).
Again, if a small n number of Beta functions is chosen to represent a large k number of monotonic geometric
variables, then this would efficiently reduce the size of the search space. The scheme is depicted in Fig.4b.
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tmin t1 t2 t3 tmax
t

vmin

v1

v2

v3

vmax
f

(t
,c

)

(a) Chebyshev polynomials from (11).

tmin t1 t2 t3 tmax
t

vmin

v1

v2

v3

vmax

b(
t,

a
,b
,w

)

(b) Monotonic Beta CDF from (13).

Figure 4: Illustration of parametric functions: Chebyshev polynomials in (a) and monotonic Beta CDFs in
(b). The function responses are depicted in blue. The red squares show the selected function values v1, v2
and v3 at locations t1, t2 and t3. The locations were scaled between tmin and tmax, and the values were scaled
between vmin and vmax. Here, arbitrary parameter vectors c,a,b and w were chosen for demonstration.
Clearly, changing the parameters will result in a different function response. Thus, a variable of interest vj
at a fixed location tj may be varied by changing the relevant parameters.

4 Multi-objective shape optimisation
In this paper, the primary goal is to simultaneously minimise the pressure drop and maximise the total heat
transfer. Consider that a particular heat exchanger geometry may be represented with an n-dimensional
decision vector d ∈ D, where D ∈ Rn consists of all feasible shapes. For each row, a two-coefficient
Chebyshev function for radii, a two-coefficient Chebyshev function for the number of pipes and two-Beta
CDFs for the centres of the pipes were used. This resulted in an 18 dimensional decision vector. With this,
the multi-objective optimisation problem may be expressed as:

min
d∈D

f1(d) = f, (14)

min
d∈D

f2(d) = −η. (15)

The objectives are highly conflicting. As such, generally there is not a unique solution to this problem,
but a range of shapes that trade-off between the objectives. The trade-off relationship is characterised by
the notion of dominance [45]. A shape d is said to dominate another shape d′, denoted as d ≺ d′, if,

f1(d) < f1(d′) and f2(d) ≤ f2(d′)

or f1(d) ≤ f1(d′) and f2(d) < f2(d′). (16)

The set of shapes that optimally trade-off between the objectives is referred to as the Pareto set:

P = {d | d′ ⊀ d ∀d,d′ ∈ D ∧ d 6= d′}. (17)

It may not be possible to locate the exact Pareto set within a practical time limit, even if the objective
functions were computationally cheap. Therefore, the overall goal of an effective optimisation approach is to
generate a good approximation of the Pareto set denoted as P∗ ⊆ D.

Multi-objective Bayesian optimisation (MBO) is a surrogate model based global search strategy that
sequentially samples the design space at likely locations of shapes which may improve the current approxi-
mation of the Pareto set. One approach towards MBO is to reduce (or scalarise) the multi-objective problem
into a single objective problem [46]. This enables the use of standard single objective Bayesian optimisation
method in which a data-driven stochastic model (usually a Gaussian process model) is constructed, and then
the prediction from the model is used to locate promising solutions [47].

9



To ensure that sequential sampling improves the current approximation of the Pareto set P∗, the formu-
lation of scalarisation function may be relative to the quality of the P∗ [46]. In this paper, the hypervolume
[48] – a set based indicator that measures the objective space covered between a non-dominated set and
a predefined reference vector – is used as a quality measure for the P∗. It is an exceptional indicator as
maximising it is equivalent to locating the optimal Pareto set [49]. The details of the MBO approach with
this scalarisation technique is given in [46], but a brief description of the method is provided below for
completeness.

MBO starts with a space filling design (e.g. Latin Hypercube Sampling [50]) of the feasible design space.
The initial set ofM feasible shapes D = {d1, . . . ,dM} are then expensively evaluated with appropriate CFD
simulations, and this provides a data set S = {(dm, f1(dm), f2(dm))}Mm=1. Thus an initial approximation
of the Pareto set P∗ = nondom(S) using (17) may be made. The hypervolume improvement scalarisation
g(d,P∗) for all d ∈ D is then applied on the data set S generating S̄ = {(dm, g(dm,P∗))}Mm=1. Using this
set of the initial shapes and the associated hypervolume improvement S̄ as the training data a stochastic
regression model is constructed with a Gaussian process (GP ).

The predictive density from the GP model for a shape d is: p(ĝ(d)|S̄). This enables the closed form
calculation of a utility function: the expected improvement in function value (with respect to the best
function value observed so far) to be obtained by querying a solution. Given the best evaluated shape
d∗ = g(dm,P∗) ∈ S̄, the expected improvement of an arbitrary feasible shape d′ is defined as:

α(d′,d∗) =

∫ ∞
−∞

max(ĝ(d′)− g(d∗,P∗), 0) p(ĝ(d)|S̄) dĝ(d). (18)

As the predictive distribution is Gaussian, this integral can be calculated in closed form. Thus, selecting the
next shape to evaluate is the solution of the following sub-problem: dM+1 =d∈D α(d,d∗). Bi-POP-CMA-
ES was used to locate a good approximation of the optimum in the sub-problem [51]. The data set S is
then augmented with the newly evaluated shape S ← S ∪ {(dM+1, f1(dM+1), f2(dM+1))}, and the current
approximation for the Pareto set is updated P∗ ← {d|d ⊀ d′ ∧ d 6= d′ ∀d,d′ ∈ D}. With this, the training
data is updated S̄ ← S̄ ∪ {(dM+1, g(dM+1,P∗))} and the model is retrained. In this process, when the
limit on the number of expensive function evaluations is reached, P∗, i.e. the current approximation of the
Pareto set is returned. A single design from P∗ may then be selected by the decision maker based on desired
performance level.

5 Results
The MBO proposed in [46] was used to generate the results in this paper2. The optimiser requires a few
parameters to be set a priori. These settings are discussed below.

Firstly, it is essential to set the number of initial evaluations, so that a surrogate model may be con-
structed. Traditionally, this is set to M = 11n − 1, where n is the number of dimensions in the decision
vector d [52]. Here, n = 18 and thus the number of initial samples were set to 197. Usually a set of lower
and upper limits are also set to enable Latin hypercube sampling and generate initial set of decision vec-
tors D = {d1, . . . ,dM}. Here, additional constraints were imposed to avoid overlapping of the pipes. The
pipes are also constrained to tranverse between the distance H downstream of the inflow, and W upstream
from the outflow. Thus, any Latin hypercube samples that violated these constraints were rejected. As a
consequence, only 126 out of 197 initial samples were deemed feasible recasting M = 126. These M feasible
shapes were evaluated using CFD to acquire the function values and construct the training data set S̄.

The other settings used in the MBO framework were: the maximum number of surrogate evaluation to
maximise the expected improvement using Bi-POP-CMA-ES was set to 12000n, the reference point l = (l1, l2)
to compute the hypervolume was dynamically determined with li = maxd∈D fi(d) + 0.1(maxd∈D fi(d) −
mind∈D fi(d)), and the overall budget on the number of CFD evalutions was limited to 400.

2Python code for the MBO framework is available at: http://bitbucket.org/arahat/gecco-2017
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Figure 5: Objective space of the two cost functions (Eqs.9 and 10) with the Pareto front (red squares) and
associated tube-bundle heat exchanger designs.

Fig.5 shows the objective space, and the resulting Pareto front (indicated by red-squares). The data
points are coloured according the evaluation number during the optimisation process (grey scale). It can
be seen that the majority of solutions at the Pareto front were obtained after 250 evaluations; some of
the solutions at the higher values of hydraulic resistance (f > 250) were obtained around 350 evaluations.
Compared to the equivalent use of GAs (e.g. [15], 140,000 evaluations) shows that the use of Multi-Objective
Bayesian Optimisation is considerably more efficient. Some of the geometries (and temperature flowfield)
belonging to the Pareto front have been included. Consistently, along the Pareto front, 2 pipes per column
provided the best trade-off between the pressure drop, and total heat transfer. For higher values of both
objectives (top-left of Fig.5), the distribution of pipes consistently consist of two rows of pipes - the first
row having a larger diameter (∼ 1.25D0) than the base, the second with a smaller diameter (∼ 0.5D0).
The position of these pipes form a similar pattern to an in-line formation; it can be seen there is a slight
offset between the two rows - allowing to correct the flow for a uniform outlow (uout). As the pressure-drop
decreases the offset between the front two pipes increases, reducing the local Reynolds number between them,
and allowing for a more effective pressure recovery; once again, the smaller pipes in the wake of these are
positioned to increase the streamwise velocity component. For smaller values of total heat transfer (η < 0.7)
the pipe formation takes on a more staggered distribution, with the center of at the opposite column being
outside than the radius of the pipe on the first column. As the total heat transfer continues to decrease (with
marginal changes to the pressure drop), the pipes begin to combine for each column, i.e. the longitudinal
distance between smaller pipe in the wake of the larger one begins to reduce. Finally, the configuration with
the lowest pressure drop and total heat transfer (bottom-right of the Fig.5) shows a staggered configuration
but with a smaller pipe in the pipe directly behind the larger one; as discussed earlier, such a configuration
has proven to be effective for reducing frictional losses across the heat exchanger (e.g. [7]), but, in the present
work, shows that this also reduces the heat transfer.

6 Conclusions and Future Work
In this study, Multi-objective Bayesian Optimisation has been applied to a two-dimensional tube bundle heat
exchanger, with the aim of optimising the radii, number, and pitch ratios of the tubes. The cost functions
(objectives) of this problem were to minimise the frictional losses (pressure drop) and maximise the total
heat transfer across the apparatus. All evaluations rely on accurate CFD simulations for each evaluation,
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after having checked mesh independency and avoiding any undue influence of the boundary conditions on
the cost functions. Accepting a relatively small number of evaluations (400) to that of GAs (often applied in
the literature), the Pareto front connecting the equivalent hydraulic resistance and efficiency of heat transfer
were obtained. The resulting Pareto front consists of designs shows a consistent use of two pipes in tandem
per column. For higher hydraulic resistance (and heat transfer), the positions of pipes generally show a
pseudo in-line configuration, consisting of larger pipes followed by smaller pipes in the wake. For smaller
values of the cost functions, the pipe configurations consist of a staggered formation.

For future work, considering the apparatus considered is a mini-channel tube heat-exchanger, minimising
the overall size of the heat exchanger will be considered as third, additional objective function. The transver-
sal pitch, tp, will also be considered as a design variable, rather than defined as a constant in the present
work; this will allow for the analysis of a compact heat exchanger. Furthermore, as typical heat exchangers
operate with flows consisting of Reynolds numbers greater than 1000, the possible impact of turbulence on
the findings will also be checked.
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