
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-0351

Algebraic implementation of a flux limiter for
heterogeneous computing

N.Valle1∗, X.Álvarez1, F.X.Trias1, J.Castro1 and A.Oliva1
∗Corresponding author: nico@cttc.upc.edu

1 Heat and Mass Transfer Technological Center (CTTC)
Universitat Politècnica de Catalunya - BarcelonaTech (UPC)

ESEIAAT, Carrer Colom 11, 08222 Terrassa (Barcelona).

1 Introduction
Sharp discontinuities are present in many industrial applications. Such discontinuities appear in both com-
pressible and multiphase flows, among others. In the context of hyperbolic systems, discontinuities develop
as shock waves, which present a challenge for numerical calculations. Traditionally, high speed aerodynam-
ics has focused on the appropriate treatment of such discontinuities by developing shock capturing schemes.
Advances in this field have been exploited by the multiphase flow community as well, particularly for the
advection of the marker function [1].

As a consequence of Godunov’s theorem [2] (after [3]) the treatment of shock discontinuities with linear
schemes is limited to first order approximations. Higher order linear schemes will result in an unstable
discretization and the onset of wiggles. The construction of stable, second order (and higher) discretizations,
then, requires the adoption of high resolution non-linear schemes which exhibit a Total Variation Diminishing
(TVD) [4] behavior. Among them, flux limiters are a mature and robust method, which has been adopted in
a diversity of applications. Sweby [5] generalized several limiters and stated the conditions for 2nd order TVD
schemes in a 1D homogeneous mesh in its well known Sweby diagram. Despite the known inconsistencies
that arise when departing from the 1D homogeneous case [6, 7] these techniques have been ported to non-
homogeneous Cartesian [7] and unstructured [8] meshes as well.

Traditionally, both the analysis and the implementation of flux limiters are performed from a stencil-
based perspective. On the other hand, the growing interest of the community in mimetic methods, which
inherently preserve the spatial structure of the solution [9, 10], demands a new approach to flux limiters.
Such an approach constructs discrete operators directly from the inherent incidence matrices that define the
mesh. This presents an important advantage both from theoretical and practical points of view, as it is
discussed below.

On the one hand, this allows for a flawless discrete mimicking of the continuum operators. In particular,
it allows for the exact conservation of important secondary properties, such as kinetic energy [11, 12], among
others. On the other hand, the adoption of an algebraic topology approach provides, directly, with a set of
algebraic operations which are better suited for both computational implementation and algebraic analysis
[13] than its stencil-based counterpart.

By casting discrete operators into algebraic forms (i.e., matrices and vectors) it has been shown that
nearly 90% of the operations comprised in a typical CFD algorithm for the DNS of an incompressible flow
are comprised of the following: Sparse Matrix-Vector multiplication (SpMV), generalized vector addition
(AXPY) and dot product (DOT) [14]. This reduces the implementation of numerical codes to the right
combination of a few basic operations.

From a practical point of view, the advent of parallel heterogeneous architectures has motivated a new
demand for portability. From this perspective, the use of a unified approach is desired in order to simplify

1

architecture-oriented implementations to portable ones without a significant lack of performance. This pro-
vides an opportunity for High Performance Computing (HPC) optimization, parallelization and portability
[15]. In this regard, the casting of a numerical method into a few algebraic operations facilitates an efficient
implementation in multiple architectures.

Oyarzun et al. [16] have implemented a Conjugate Gradient (CG) method following such an operator-
based approach. Borrell et al. [17] showed the potential of such approach with the aim of pursuing petascale
simulations. In all cases the use of an operator-based formulation has provided with robust, portable and
optimized implementations. Consequently, the design of operator-based algorithms for its use in massively
parallel architectures is a smart strategy towards the efficient solution of both industrial and academic scale
problems [18].

In this paper a flux limiter implementation based on algebraic operations is detailed and its implemen-
tation tested in heterogeneous architectures.

The rest of the paper is organized as follows: In section 2 a review of basic chain and graph theory is
briefly summarized in order to provide some context. Section 3 develops a generalization of flux limiters
from an algebraic perspective. Finally, section 4 highlights the capabilities of the method in both structured
and unstructured meshes.

2 Algebraic Topology
By using concepts from algebraic topology, mimetic methods preserve the inherent structure of the space,
leading to stable and robust discretizations [19, 10]. However, the development of such techniques is out of
the scope of this paper, where we rather focus on exploiting the relationships between the different entities
of the mesh for the construction of Flux Limiters. The interested reader is referred to [9] and references
therein.

For whatever space of interest Ω, we can equip it with a partition of unity, namely a meshM, by bounding
the group of cells, C, with faces, F ; those with the set of edges, E , and finally those with the set of vertices, V.
In this sequence, groups are related to the next element of the sequence by means of the boundary operator
∂. This is know as a chain complex [19, 20]. A 2D example can be seen in Figure 1, where face and edges
collapse into the same entity.

c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

Figure 1: 2D mesh composed of cells ci,
which are bounded by faces fj oriented in
the direction n̂j . Faces, which collapse to
the same entities as edges, are bounded by
the set of vertices vk.

TF→V =

0 +1 +1 +1 0 0 0 −1 0
0 0 0 −1 +1 0 0 0 0
−1 0 −1 0 −1 −1 0 0 0
0 0 0 0 0 +1 −1 0 0

+1 −1 0 0 0 0 −1 0 +1
0 0 0 0 0 0 0 +1 −1

 (1)

TC→F =

0 −1 +1 0
0 −1 0 +1
−1 +1 0 0
+1 0 0 0
+1 0 0 0
0 0 −1 0
0 0 +1 0
0 0 0 +1
0 0 0 +1

(2)

The relationship between the bounding elements of the cells can be casted in an oriented incidence matrix
such as that in equation (1). Conversely, we can define TF→C , TE→F and TV→E , for the face-to-cell, edge-
to-face and vertex-to-edge incidence matrix. In addition, the converse incidence matrices can be seen by

2

transposing such matrices. Equations (1) and (2) represent the corresponding incidence matrices for the
mesh depicted in Figure 1.

Incidence matrices represent the boundary operator between one element of the chain and the next one.
Following the example of Figure 1, TF→C provides with the orientation of the boundary faces fj for cell ci.
On the other hand, TV→F provides with the orientation of the bounding vertices vk to every face fj .

Incidence matrices play an essential role in preserving properties of the discrete space. In particular, they
form an exact sequence. Exact sequences are those such that the application of the boundary operator twice
results in 0. This can be verified by checking TF→VTC→F = 0. This property is shared by its continuum
counterpart, the de Rahm cohomology [10], which is the ultimate responsible of the following vector calculus
identities [19]:

∇×∇ ≡ 0 (3)
∇ · ∇× ≡ 0 (4)

These are powerful identities that mimetic methods preserve by construction. For an extended review of
the relationship between the continuum and the discrete counterparts, the reader is referred to [19, 10] and
references therein.

In addition to provide a suitable platform for the construction of appropriate mimetic methods, the
relations contained in incidence matrices can be studied from a graph theory perspective.

A straightforward use of incidence matrices allows to compute differences across faces. The fact that
differences lie in a different space (faces) than variables (cells) is an inherent property of such an approach.

∆uc = TC→Fuc (5)

Particularly useful is the construction of undirected incidence matrices (BQ→S), which are build by taking
the absolute value of the elements of the directed ones (TQ→S). Considering the index notation between a
generic space Q (e.g., cells, faces) and its boundary S (e.g., faces, edges), we could proceed as follows:

BQ→S = bsq = |tsq| (6)

Similarly, one can proceed to compute the degree matrix of the graph, which accounts for the number of
connections that an entity has (e.g., the number of cells in contact with a face). Degree matrices are always
diagonal and the value of the diagonal elements is obtained as follow:

diag(WQQ) = BS→Q1S = bqs1s (7)

In particular, undirected incidence matrices can be used to construct suitable shift operators [21] as in
equation (8). This provides with a simple face-centered interpolation, weighted with the number of adjacent
faces. Note that by taking this approach, boundaries are inherently included from the graph information.

ΠC→F = W−1FFBC→F (8)

The use of ΠC→F as it is is restricted to scalar fields. However, following [21], this can be readily extended
to vector fields as follows. To do so we shall consider first the discretization of vector fields. First, the
discretization of a continuum vector field ~x = (u, v, w)T is arranged in a single vector as ~xc = (uc,vc,wc)T ,
where uc, vc and wc represent the value of u, v and w at cell c. Note that all components are arranged in
a single R|C|d×1 column vector, where |C| is the number of cells and d is the number of dimensions of the
problem. Next, the interpolator can be extended component-wise by applying the Kronecker product with
the identity matrix of size Rd×d. The final ensemble is as follows:

ΓC→F = Id ⊗ΠC→F (9)

Similarly, normal vectors can be arranged into a R|F|×|F|d matrix by arranging d diagonal matrices,
corresponding to every component of the face vector, next to each other as N = (Nu|Nv|Nw) [21]. Equation
(10) shows the N matrix corresponding to the mesh depicted in Figure 1. In such a way, it is straightforward

3

to either project a discrete vector as N~xf , or to vectorize a scalar quantity as NTsf , provided that both
are stored at the faces. An accurate discussion about the construction of this matrix can be found in [21].

N =

n1x 0 . . . 0 n1y 0 . . . 0

0 n2x . . . 0 0 n2y . . .
...

... 0
. . .

...
... 0

. . .
...

0 0 . . . n9x 0 0 . . . n9y

 (10)

Other basic matrices derived from the graph are both the graph Laplacian (LCC) and the adjacency
matrix (ACC).

LCC = BF→CBC→F (11)
ACC = WCC − LCC (12)

Both are constructed based on the incidence matrices and provide information about the propagation of
information along the graph. They are constructed by connecting cells to its neighbors trough its bounding
faces. In summary, the constructor of such operators provides with tools able to relate different elements of
the graph between each others. Equipped with such basic concepts, the development of higher level operators
can proceed as in the following section.

3 Flux Limiters
The solution of hyperbolic problems in finite volume methods when sharp discontinuities are present requires
the use of high resolution schemes in order to attain second order approximations. In turn, the construction
of such schemes is reduced to the appropriate reconstruction of the flux at the faces. Prone to introduce
numerical instabilities, such a reconstruction requires, in turn, an appropriate flux reconstruction strategy
in order to guarantee TVD behavior (i.e., such that no new minima or maxima are introduced). This is
attained by limiting the flux at cell’s boundaries. From a physical point of view, this is equivalent to the
introduction of some sort of artificial diffusion which stabilizes the method at the expense of smearing out its
profile. The limiting approach has been used by several authors [22, 2], who over the years developed several
discontinuity sensors in order to limit dissipation to the region near the shock. Among all discontinuity
sensors, the most popular is the use of the gradient ratio, which is defined as follows [5, 8, 1]:

rf =
∆Uθ

∆uθ
(13)

Where ∆Uθ is the gradient of θ at the upwind face while ∆uθ correspond with the gradient at the face
of interest. Both differences are taken as positive in the flow direction, defined by the velocity field u. This
provides with an intuitive intuition of where discontinuities are and its order of magnitude, at the time that
keeps a narrow stencil. In addition, it allows to, after proper manipulation by the flux limiter itself, limit
the flux in a way which can be interpreted as a diffusion-like term. This is known as “upwinding” as it has
the same effect as recovering the 1st order upwind discretization near shocks.

TVD conditions in terms of the gradient ratio where stated by Harten in 1983 [4] for 1D homogeneous
grids. These conditions where used by Sweby in 1984 [5] to state 2nd order and TVD conditions for different
forms of flux limiters. This idea has been extended, with several degrees of accuracy, to multidimensional
and irregular grids [6, 7], among others.

3.1 Algebraic Implementation
Typically, flux limiters are stated in the following form [5, 8, 1]:

θf = θU + Ψ(r)

(
θD − θU

2

)
(14)

4

U C D

~v

i + 1/2

Figure 2: Classical stencil for the computation of the gradient ratio at face i+ 1/2. U , C and D correspond
to the upstream, centered and downstream nodes.

Where θU and θD stand for the upwind and downwind values of θ according to the velocity field u and
Ψ(r) is the flux limiter function. Figure 2 depicts this situation. However, this can be recast in the less
common form:

θf =
θU + θD

2
+

Ψ(r)− 1

2
(θD − θU) (15)

And successively into:

θf = (ΠC→F + F (r)C→F) θc (16)

Where ΠC→F is the standard cell-to-face interpolation defined in equation (8) and F (r)C→F absorbs the
right term of equation 15. At this point, we may be tempted to analyze the construction of new flux limiters
by means of basic algebra concepts. In particular, to bound its spectrum by means of Gershgorin’s theorem
or to check its entropy conditions [23], among others. The interested reader is referred to Báez et al. [24],
where a similar approach is taken for spatial filters.

Because the value of F (r)C→F depends entirely on the value of r, the problem is turned into the accurate
computation the gradient ratio for an arbitrary face. There has been several approaches [8, 6] to the con-
struction of such a variable in terms of a least-squares reconstructed gradient. However, the implementation
of such schemes can be cumbersome and may not, eventually, recover the 1D homogeneous solution when a
homogeneous structured mesh is used.

The construction of the gradient ratio will proceed first by the separate calculation of both the numerator
(∆Uθ) and the denominator (∆uθ) of equation (13). Both of them will be produced from simple SpMV
operations, while the division will be performed element-wise.

In this approach we propose to employ symmetry-preserving gradients (see [11]) into the calculation of
both face-centered and upstream gradients in order to preserve, as much as possible, the mimetic properties
of the approach. In addition, we aim at recovering the Cartesian formulation as in [1].

Before any calculation, the sign matrix (S(u)) is constructed by assigning to a RF×F diagonal matrix
+1 for a positive velocity and -1 for a negative one. This allows for a straightforward calculation of gradient
at the face as follows:

∆u = S(u)TC→F (17)

Where S(u) is used to provide the right direction in which the difference is taken according to the velocity
field.

The construction of the upwind delta, ∆U is more involved. The idea is to construct a partial adjacency
matrix which only considers upstream faces, namely the upstream adjacency matrix, AU

FF (u), which is
responsible to garner upstream information and will be defined further in this paper.

We proceed as follows: ∆ is used to compute the difference across every face according to equation (5). In
order to asses the contribution of every neighboring face to the face of interest, face differences are vectorized
with its corresponding face normal using NT and added all together with AU

FF (u). Finally, the resulting
value is projected over the normal of the face of interest by means of N . The overall construction of the
operator is as follows:

5

c1

c2

c3

c4

n̂1

n̂2

n̂3

n̂4

n̂5
n̂6

n̂7

n̂8

n̂9

v1

v2

v3 v4

v5

v6

Figure 3: Forward (red) and backward (green) upwind adjacent faces for face 1. Forward faces are those
that are upstream of face 1 when the velocity in such a face has a positive component. On the other hand,
backward upwind faces are those located upstream of face 1 when the velocity flows in the opposite direction.
The selection of the right ones will depend on the sign of the velocity at face 1. The ensemble of such a
matrix for all faces results in AU

FF (u).

∆U = N
(
Id ⊗AU

FF (u)
)
NT ∆ (18)

Where, similarly to what we did in equation (9), we have reused the AU
FF (u) operator for all spatial

dimensions. Normal matrices N , defined as in equation (10), are used for both vectorization and projection
of the neighboring differences. In this way, orthogonal meshes recover the original 1D formulation, whereas
arbitrary ones are handled inherently by the incidence matrix.

The construction of the upstream adjacency matrix, AU
FF (u), may look, at a first glance, of high compu-

tational cost. However, it can be assembled from 2 other simpler matrices.

AU
FF (u) =

1

2

(
S(u)AD

FF −AFF
)

(19)

Where AFF is the regular adjacency matrix, which contains only positive entries and, consequently, flux
direction is not discerned. This is constructed similarly to equation (12) as follows:

AFF = WFF −BC→FBF→C (20)

As seen in section 2, the adjacency matrix is symmetric and contains non-negative entries only. Following
on the example depicted in Figure 3, the corresponding AFF can be seen in equation (21).

AFF =

0 +1 +1 0 0 +1 +1 0 0
+1 0 +1 0 0 0 0 +1 +1
+1 +1 0 +1 +1 0 0 0 0
0 0 +1 0 +1 0 0 0 0
0 0 +1 +1 0 0 0 0 0

+1 0 0 0 0 0 +1 0 0
+1 0 0 0 0 +1 0 0 0
0 +1 0 0 0 0 0 0 +1
0 +1 0 0 0 0 0 +1 0

(21)

On the other hand, the construction of AD
FF allows us to distinguish neighboring faces which lie behind

or ahead of the face in question. This requires the inclusion of the directed incidence matrix TC→F in the
calculation of the adjacency matrix as:

6

Operation SpMV axpy axdy shft scal vmax/vmin smax/smin sign
S(u) 0 0 0 0 0 0 0 1
∆Uθ 3 1 0 0 0 0 0 0
∆uθ 2 0 0 0 0 0 0 0
r 0 0 1 0 0 0 0 0

Ψ(r) 0 0 0 1 1 1 3 0
Ω(r) 0 0 0 0 1 0 0 0
Euler 6 2 0 0 0 0 0 0
total 11 3 1 1 2 1 3 1

Table 1: Operation count for the advance of a time step in a pure advection problem with the use of a
SUPERBEE flux limiter. For this case an Euler integration scheme has been used. For details see [25]. Face
velocities are given for such a problem and so its operation count is excluded from this count.

AD
FF = WFF − TC→FBF→C (22)

This will provide with a matrix as the one seen in equation (23). Together with S(u) in equation (19),
AD
FF is the responsible to cancel the appropriate side of the unsigned adjacency matrix AFF and thus provide

with the proper upstream information. Note that both AFF and AD
FF are constant matrices and that the

only matrix that needs to be updated as the velocity field u changes is S(u).

AD
FF =

0 +1 +1 0 0 −1 −1 0 0
+1 0 +1 0 0 0 0 −1 −1
−1 −1 0 +1 +1 0 0 0 0
0 0 −1 0 −1 0 0 0 0
0 0 −1 −1 0 0 0 0 0

+1 0 0 0 0 0 +1 0 0
−1 0 0 0 0 −1 0 0 0
0 −1 0 0 0 0 0 0 −1
0 −1 0 0 0 0 0 −1 0

(23)

The combination of AD
FF and AFF in equation (18) results in the computation of ∆U to be cast a constant

plus a term which depends on the orientation of the flow at the face as follows:

∆U = N

(
Id ⊗

1

2

(
S(u)AD

FF −AFF
))

NT ∆ (24)

This matrix is computed and stored a priory in order to speed up the computations and avoid expensive
matrix-matrix products. The operations count for the evaluation of a typical advection scheme that uses a
flux limiter is stated in Table 1. As it can be seen, the computation of several local quantities is required in
order to construct the final algebraic scheme.

This results in a compact algorithm, which facilitates portability by reducing the number of computing
kernels.

3.2 Comparison with the stencil-based formulation
The new approach for the proper construction of gradient ratios is now compared with the classical, stencil-
based approach.

In a general, 1D case for a Cartesian homogeneous grid, the computation of the gradient ratio, r, involves
the use of, at least, 3 nodes trough a face located at i+1/2. Depending on whether the velocity is going in one
direction or another, the definition of the upstream nodes will change accordingly. This can be exemplified
in Figure 4.

On the other hand, the use of the proposed algebraic approach apparently involves a larger stencil, as
it can be seen in Figure 5. However, the computation of the proper upstream adjacency matrix AU

FF (u)

7

i − 1 i i + 1 i + 2

~v

i + 1/2

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 4: Example of stencils in 1D according to the classical flux limiter approach. The stencil topology is
not constant and changes according to the sign of the velocity field ~v.

according to equation (19) will results in the appropriate stencil (i.e., the pattern of the sparse matrix) for
AU
FF (u).

i − 1 i i + 1 i + 2

~v

i + 1/2

Figure 5: Equivalent stencils used in the computation of an algebraic flux limiter. In this case the adjacency
matrices involve the operation with all neighboring nodes.

We note that even when, apparently, the algebraic operation may look more involved at a first glance,
the data communication in distributed memory parallelization is the same as in both a classical stencil-based
implementation and in an algebraic one. Indeed, the higher number of operations required by the algebraic
approach have little effect on the overall system performance [25]. The halo width requires 2 face-adjacent
nodes, whereas in [1] 2 vertex-adjacent nodes are required.

4 Numerical Results
Next, the application of this technique is applied to a canonical case. In particular, the advection of a sharp
profile has been tested for both structured and unstructured meshes.

Computations are performed in both CPU and GPU computing nodes thanks to HPC2 [18], a numerical
framework designed for the efficient computation of basic algebraic operations in a hybrid systems. Details
of the implementation can be found in the companion paper of Álvarez et al. [25].

In this particular case, the advection of a rhodonea, defined in equation (27) after [26], is analyzed. Such
a field is subject to a flat velocity field ~u = (1, 0) and periodic boundary conditions. The physical domain
is [−1, 1]× [−1, 1]. Integration in time has been performed with a 1st order fully explicit Euler scheme to a
total of two complete cycles of advection.

x(θ) = r(θ)cos(θ) (25)
y(θ) = r(θ)sin(θ) (26)
r(θ) = r0 + r1sin(ωθ) (27)

As it can be seen, flux limiters provide with stable solutions at the expense of a smeared out interface.
The sharpness of the profiles can be seen in Figures 7, where the structured mesh performs better than
its unstructured counterpart due to the fact that the velocity field is perfectly aligned with one of the face
normals.

5 Conclusions and Future Work
A flux limiter scheme has been formulated from an algebraic perspective. This results in a compact formu-
lation that allows for an easy implementation on different heterogeneous architectures.

8

Figure 6: Sequence of the advection of a rhodonea with a constant velocity field with SUPERBEE in an
unstructured mesh. Parameters for the initial profile are as follow: r0 = 0.5, r1 = 0.1 and ω = 5

Graph incidence matrices (both directed and undirected) are exploited to construct appropriate gradient
ratios. The face velocity sign determines the appropriate side to pick the upstream information. After the
sign operation, the remaining operations are all of them either linear or local.

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

0

0.2

0.4

0.6

0.8

1

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

t = 0 t = 2 t = 4

Figure 7: Initial, first and second pass profiles for the horizontal mid line with structured (top) and unstruc-
tured (bottom) meshes. Left column corresponds to a meshes with a characteristic lenght of ∆x = 1/32,
while right columns are produced with a characteristic length of ∆x = 1/64.

9

This approach presents several advantages. First of all, casting a flux limiter in algebraic form enhances
a higher level of analysis, which has not been considered in this paper. On the other hand, the deployment of
such an algebraic form into an heterogeneous computing system reduces the number of computing kernels that
need to be ported from one architecture to the other, enhancing portability and improving code development
and maintenance.

Regardless the inconsistencies that where already highlighted in sections 1 and 3, the resulting imple-
mentation provides with accurate results and collapses to the traditional approach of Sweby [5, 8, 1] when
a homogeneous, Cartesian grid is used.

The approach developed in this work can be improved to include the effect of the non-homogeneous
distance across upstream faces or its surface in the calculation of the upstream gradient.

6 Acknowledgments
We acknowledge N. Balcázar and A. Bàez for its comments and discussions. The work has been financially
supported by the Ministerio de Economía y Competitividad, Spain (ENE2017-88697-R and ENE2015-70672-
P). N. V. is supported by a FI AGAUR predoctoral contract (2018FI_B1_000109). X. Á. is supported
by a FI AGAUR predoctoral contract (2018FI_B1_00081). F. X. T. is supported by a Ramón y Cajal
postdoctoral contract (RYC-2012-11996).

References
[1] N. Balcázar, L. Jofre, O. Lehmkuhl, J. Castro, and J. Rigola, “A finite-volume/level-set method for

simulating two-phase flows on unstructured grids,” International Journal of Multiphase Flow, vol. 64,
pp. 55–72, may 2014.

[2] C. Hirsch, Numerical computation of internal and external Flows. Vol. 2: Computational Methods for
Inviscid and Viscous Flows. Wiley-Interscience, 1990.

[3] S. Godunov, “A difference method for numerical calculation of discontinuous solutions of the equations
of hydrodynamics,” Mat. Sb., vol. 47, no. 271, pp. 271–306, 1959.

[4] A. Harten, “High resolution schemes for hyperbolic conservation laws,” Journal of Computational
Physics, vol. 49, no. 3, pp. 357–393, 1983.

[5] P. K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM
Journal on Numerical Analysis, vol. 21, pp. 995–1011, oct 1984.

[6] M. Berger, M. J. Aftosmis, and S. M. Murman, “Analysis of Slope Limiters on Irregular Grids,” tech.
rep., 2005.

[7] X. Zeng, “A General Approach to Enhance Slope Limiters in MUSCL Schemes on Nonuniform Recti-
linear Grids,” SIAM Journal on Scientific Computing, vol. 38, no. 2, pp. A789–A813, 2016.

[8] M. S. Darwish and F. Moukalled, “TVD schemes for unstructured grids,” International Journal of Heat
and Mass Transfer, vol. 46, no. 4, pp. 599–611, 2003.

[9] K. Lipnikov, G. Manzini, and M. Shashkov, “Mimetic finite difference method,” Journal of Computa-
tional Physics, vol. 257, no. PB, pp. 1163–1227, 2014.

[10] R. Hiemstra, D. Toshniwal, R. Huijsmans, and M. Gerritsma, “High order geometric methods with
exact conservation properties,” Journal of Computational Physics, vol. 257, pp. 1444–1471, jan 2014.

[11] R. Verstappen and A. Veldman, “Symmetry-preserving discretization of turbulent flow,” Journal of
Computational Physics, vol. 187, no. 1, pp. 343–368, 2003.

[12] F. X. Trias, Direct numerical simulation and regularization modelling of turbulent flows on loosely cou-
pled parallel computers using symmnetry-preserving discretizations. PhD thesis, Universitat Politècnica
de Catalunya, dec 2006.

[13] F. X. Trias, A. Gorobets, and A. Oliva, “A simple approach to discretize the viscous term with spatially
varying (eddy-)viscosity,” Journal of Computational Physics, vol. 253, pp. 405–417, 2013.

[14] G. Oyarzun, R. Borrell, A. Gorobets, and A. Oliva, “Portable implementation model for CFD simula-
tions. Application to hybrid CPU/GPU supercomputers,” International Journal of Computational Fluid
Dynamics, vol. 31, no. 9, pp. 396–411, 2017.

10

[15] F. D. Witherden, On the Development and Implementation of High-Order Flux Reconstruction Schemes
for Computational Fluid Dynamics by. PhD thesis, Imperial Collefe London, 2015.

[16] G. Oyarzun, R. Borrell, A. Gorobets, and A. Oliva, “MPI-CUDA sparse matrix–vector multiplication
for the conjugate gradient method with an approximate inverse preconditioner,” Computers & Fluids,
vol. 92, pp. 244–252, 2014.

[17] R. Borrell, J. Chiva, O. Lehmkuhl, I. Rodríguez, and A. Oliva, “Evolving Termofluids CFD Code
Towards Peta-Scale Simulations,” in 27th International Conference on Parallel Computational Fluid
Dynamics, pp. 1–8, 2015.

[18] X. Álvarez, A. Gorobets, F. X. Trias, R. Borrell, and G. Oyarzun, “HPC2 - a fully-portable, algebra-
based framework for heterogeneous computing. Application to CFD,” Computers & Fluids (published
online), 2018.

[19] N. Robidoux and S. Steinberg, “A discrete vector calculus in tensor grids,” Computational Methods in
Applied Mathematics, vol. 11, no. 1, pp. 23–66, 2011.

[20] E. Tonti, “Why starting from differential equations for computational physics?,” Journal of Computa-
tional Physics, vol. 257, no. PB, pp. 1260–1290, 2014.

[21] F. Trias, O. Lehmkuhl, A. Oliva, C. Pérez-Segarra, and R. Verstappen, “Symmetry-preserving discretiza-
tion of Navier–Stokes equations on collocated unstructured grids,” Journal of Computational Physics,
vol. 258, pp. 246–267, feb 2014.

[22] C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 1: Fundamentals of Numerical
Discretization. Brussels: Wiley-Interscience, 1988.

[23] S. Osher and S. Chakravarthy, “High Resolution Schemes and the Entropy Condition,” tech. rep., 1984.
[24] A. Báez Vidal, O. Lehmkuhl, F. Trias, and C. Pérez-Segarra, “On the properties of discrete spatial

filters for CFD,” Journal of Computational Physics, vol. 326, pp. 474–498, dec 2016.
[25] X. Álvarez, N. Valle, A. Gorobets, and F. Trias, “Implementation of a flux limiter into a fully-portable,

algebra-based framework for heterogeneous computing,” in Tenth International Conference on Compu-
tational Fluid Dynamics, (Barcelona), 2018.

[26] M. Oevermann and R. Klein, “A Cartesian grid finite volume method for elliptic equations with variable
coefficients and embedded interfaces,” Journal of Computational Physics, vol. 219, no. 2, pp. 749–769,
2006.

11

