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1     Abstract  
 

This paper is written in honor and memory of my esteemed friend and colleague, Dr. Meng-

Sing Liou, with whom I worked closely in the 1990s on the development of AUSM-family schemes 

and their extensions to reactive, ‘all speed’, and multiphase flows.  The purpose of this paper is to revisit 

the thought processes and concepts that led to the rapid evolution of the AUSM family as a highly-

efficient, highly accurate method for discretization of the Euler equations and their various extensions.  

No new results are presented; rather, the focus is on (re-) discovering the common threads that link the 

various members of the AUSM-family   Special attention is given to the strategies that lead to accurate 

results at all flow speeds, and some reviews of more current work in this area are presented.  The paper 

concludes with a few reflections, personal and otherwise, relating to my interactions with Dr. Liou over 

the years and to my view of the essential elements of AUSM-family schemes.  

.   

2      A Brief History Lesson and Some Observations 
 

This symposium honors the memory of Dr. Meng-Sing Liou, a preeminent researcher in CFD, 

a valued colleague and collaborator, and a close personal friend.  I always called him ‘Meng’ and will 

refer to him as such for the remainder of this paper.  In his landmark 1991 paper with Chris Steffen [1], 

Meng discovered a way to remove numerical diffusion inherent within flux-vector splitting (FVS) 

techniques without sacrificing stability.  As most FVS schemes are O(n) and do not require complex 

matrix algebra, Meng’s discovery paved the way for highly accurate, highly efficient, upwind-based 

discretization techniques extendable to reactive flows, real fluids, incompressible flows, and multi-

phase flows, thus opening the door to a wide variety of applications.   His initial scheme, termed the 

Advective Upwind Splitting Method (or AUSM), solved a long-standing problem – how does one 

remove numerical diffusion on a stationary contact wave while retaining the robustness and efficiency 

of a FVS?    Meng’s starting point was the van Leer FVS [2], first proposed in 1982 and later modified 

to preserve constancy of stagnation enthalpy by Hänel, et al. [3].   Van Leer himself recognized that his 

scheme would not capture a stationary contact wave without unphysical numerical diffusion – this 

property compromises the prediction of viscous flows, as the added numerical diffusion can be much 

greater than the physical diffusion supplied by the viscous stresses.   Though higher-order extensions 

can partially alleviate the issue, it still remains.   This is the primary reason why researchers worldwide 

gravitated to Roe’s method in the 1980s when Navier-Stokes calculations became more routine.   

Meng’s innovative concept started first with the splitting of the Euler flux into convective and pressure 

contributions, a process made easier by the Hänel simplification of van Leer’s original scheme.  He left 

the pressure flux contribution unchanged (at least initially) and focused his attention on reformulating 
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the mass flux.   His modification in retrospect is exceedingly simple:   given that   

                                              ( ) ( )c L L L L R R R RF a M M a M M                      (1) 

according to van Leer, he replaced this with  

                max(0, ( ) ( )) min(0, ( ) ( ))c L L L R L R R L R RF a M M M M a M M M M           (2) 

thereby changing our field forever.    It is easy enough to prove that this form will preserve a stationary 

contact wave – it is not so easy to show that there are additional diffusion mechanisms built in that will 

keep the scheme stable.  

 

I first met Meng in ~1991 at a conference.   I was introduced to him by my Ph. D. advisor, Dr. 

Scott McRae, and I requested a few of his papers, which were NASA TMs. I was trying to code up 

something that would preserve a boundary layer structure better than the van Leer methods that I was 

using.   I ended up using a hybrid upwind / central difference method for my dissertation, as I wished 

to preserve a Jacobian matrix that had a 5-point stencil in the wall-normal directions.   Later, as a post-

doc at North Carolina A&T State University, I began to work on a more general code that adopted 

upwinding in all directions.  At this time, I coded the original AUSM and found a way to construct a 

nearly exact linearization of it [4], as I was using (and still use) implicit schemes for time evolution 

.    

     I met Lou Povinelli (NASA Lewis Research Center, later Glenn Research Center) at some 

conference or workshop.  Through him, I was able to obtain a summer appointment at LeRC in 1993 

through the Institute for Computational Mechanics in Propulsion (ICOMP).  ICOMP was set up to 

enable visiting researchers to interact with NASA personnel – some could work on-site (if granted 

access) but others were housed in the Ohio Aerospace Institute, a glass-walled building located just 

outside one of the gates.    This was a very vibrant time for ICOMP, with the Center for the Modeling 

of Turbulence and Transition (CMOTT) being very active and with their being a number of permanent 

ICOMP employees housed at OAI.    I had access to the base and frequently worked in Engineering 

Building 5, in a computer lab known as the ‘Aquarium’ that housed a number of SGI workstations, 

named after different types of fish.  It was then that I first interacted directly with Meng, who had his 

office in this building.   I don’t recall whether Lou introduced us or whether I just introduced myself, 

but I would stop by frequently to discuss CFD-related matters.  Meng was always kind and 

accommodating – a trait that remained with him for all the years that I knew him.  At the time, I was 

working on multigrid methods for high-speed flows [5] and was doing a large number of hypersonic 

blunt-body simulations - the working code used AUSM.    The properties of AUSM in resolving 

boundary-layers accurately and in avoiding the carbuncle response were very useful in this setting, but 

the inability of AUSM to capture non-grid aligned shocks monotonically was also a problem.    I didn’t 

know this at the time, but Meng was working on AUSM+, which was designed in part to remedy this 

issue.  More about this later.   

 

 When working at OAI, I did not have an office – rather, I and several others worked at some 

stand-alone workstations that were arranged so that several people were grouped together.    Two of my 

colleagues were Dr. Jaap van der Vegt, who was working as an ICOMP employee and is now a 

Professor of Mathematics at the University of Twente in the Netherlands, and Dr. Yasuhiro Wada, who 

was also a visiting researcher at ICOMP but was employed at the National Aerospace Laboratory in 

Japan.   I became close friends with Jaap – I still remember him telling me the correct ‘Dutch’ way of 

pronouncing the famous painter Vincent van Gogh’s last name….  He was working on Osher-type 

schemes, which I didn’t quite understand at the time and still don’t.   He is a mathematician, pure and 

simple, and has made significant advances in discontinuous Galerkin methods in his work since 

ICOMP.     

 

Yasuhiro Wada – where do I begin?   I can’t say that I knew him very well – there was a 

significant language barrier – but I did talk with him frequently while at OAI, and I remember his great 

sense of humor.   Knowing of my issue in needing to eliminate AUSM-type shock oscillations, he gave 



me a preprint of the landmark paper that he wrote with Meng describing the AUSMDV schemes [6,7], 

and I spent much of my remaining time there trying to understand those schemes and working them 

into my code.   Yasuhiro was not given base access, nor, for some reason, was he given access to some 

of the commonly-used NASA software, such as Tecplot.    So he wrote his own graphics programs in 

the Postscript language!   He would run his 1D code and you could watch the real-time evolution of 

various flow properties as well as a graphical picture of the various wave structures interacting with 

one another….    His amazing program included an exact Godunov scheme, Osher’s scheme, Roe’s 

scheme, and the various van Leer and AUSM-type schemes that he was working on.  I am certain that 

Meng used a copy of this code for years afterward.  A few of the great ideas from [6,7] are listed below. 

 

 The introduction of a common (interface) speed of sound into the van Leer / AUSM family.    

There is no way to overstate the importance of this simple modification, as it enables Godunov-

like solutions of various Riemann problems and led to many of the ideas that I will discuss 

subsequently.  Here, one defines all left- and right-state Mach numbers using a common sound 

speed, calculated in some manner at the cell interface:  

             1/2

1
( ), min( , ), max( , ), ,

2
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 The introduction of ‘pressure diffusion’ into the mass flux – this is the AUSMDV modification 

in essence.  This will be elaborated upon later, as it is critical to improving the performance of 

AUSM-type methods for non-grid-aligned discontinuities and some Riemann problems but 

leads to other complications, such as the appearance of the famous ‘carbuncle’ response.  

 A multi-dimensional ‘shock fix’ that essentially eliminates the carbuncle response  

 A sonic-point fix that removes the ‘glitch’ that most schemes have at sonic transitions.  

 

Yasuhiro was a genius. Meng and I both knew this.   He started with Meng’s powerful AUSM 

idea and developed something completely original that moved the framework significantly forward.  

His untimely passing in 1995 due to a heart attack was a major loss to our field, but his ideas live on in 

later developments of the AUSM family.    There is no telling what he would have accomplished had 

he lived.    

 

 Meng encouraged me to try Yasuhiro’s scheme.  At the same time, he was working on AUSM+ 

- I think that Yasuhiro knew about this, but I was in the dark.  Meng was always somewhat secretive 

when he was building the next member of the AUSM family.  He had received some criticism from the 

community when trying to publish the original AUSM scheme, mainly as it (as well as its ‘parent’, the 

famous van Leer (VL) FVS scheme) is somewhat ad hoc, lacking the mathematical framework of the 

Godunov-type methods.   This may be one reason why researchers in the US were initially reluctant to 

adopt the AUSM-type methods, even as they became at least as accurate and always more efficient than 

the Godunov-based techniques.   Meng was spending his time trying to prove several aspects of the 

performance of his new scheme – the AUSM+ paper [8] is filled with lemmas that serve to anchor 

various traits of the scheme.     Meng’s major problem with AUSMDV was the fact that it did naturally 

admit a carbuncle response.  We knew that it was a consequence of the addition of ‘pressure diffusion’ 

in the mass flux – schemes that did not possess such (e.g. AUSM, VL) did not respond in this way, 

while schemes that did (unmodified AUSMDV, Roe) did.     AUSM+ was not going to have this kind 

of diffusion mechanism, as far as Meng was concerned.  He maintained this viewpoint for many years.  

I never coded AUSM+ during my initial stay at LeRC – the NASA TM that described it did not appear 

until 1994.  

  

 My work at NC A&T concluded in December of 1993, at which point I went to work as a 

contractor at NASA Langley before joining the faculty of NCSU in August of 1994.   I can’t recall what 

motivated me to create my own member of the AUSM-family, termed the ‘Low-Diffusion Flux-

Splitting Scheme’ (LDFSS), but its genesis was another paper co-authored by Meng [9], this time with 



Frederic Coquel of ONERA who also was a visiting scholar at ICOMP.   This intensely mathematical 

paper finally concludes with a means of subtracting numerical diffusion inherent within the van Leer 

(Hänel) scheme via the introduction of an intermediate state determined from the Osher-Solomon 

approximate Riemann solution.   This enables capturing of a stationary contact wave in a manner 

different from the advective upwinding approach used in AUSM, AUSM+, and AUSMDV.   The first 

version of LDFSS was a modification of Coquel-Liou that avoids the calculation of the Osher state - 

this scheme captures normal shocks in a manner similar to van Leer (Hänel), removes dissipation at a 

stationary contact wave (and thus is accurate within a boundary layer), but also can exhibit oscillations 

for non-grid aligned oblique shocks, similar to AUSM and AUSM+.    A solution to the latter problem 

was found by incorporating a pressure-diffusion mechanism similar to that proposed by Wada and Liou, 

but differing in implementation.    This approach would admit, as expected, a carbuncle response, and 

when the 1995 conference paper [10] (incidentally presented in the same session as the first AIAA 

presentation of AUSM+) was submitted for archival publication, a not-so-kind reviewer pointed this 

out and recommended rejection.  The reviewer was correct – the initial LDFSS was no better than 

AUSMDV, Roe, and others in this regard.     This spurred one of the best guesses of my life – I was 

able to discover an alternative pressure-diffusion mechanism that could suppress the carbuncle 

instability without violating the constraints of a stationary contact discontinuity. [11]   From this point, 

LDFSS became my group’s workhorse tool and was implemented into several production-level codes 

within NASA, Dow Chemical, and other places.   Its most prominent use (outside of our own work) is 

as the primary method of discretization for NASA’s VULCAN code, a widely-used tool for propulsion-

system analysis.   Meng knew of the LDFSS development, reviewed the pre-prints and was certainly 

supportive and encouraging, but again, he did not believe in the need for pressure diffusion at the time.  

 

I returned to NASA Glenn in the summer of 1996, again stationed at ICOMP in OAI.  I had 

discovered a need for time-derivative preconditioning as a means of extending our solver’s capabilities 

and had begun studying the problem within the context of LDFSS.   Meng was also interested in this 

issue but had not yet focused his attention fully on it.  The fact that the preconditioned system admits a 

different set of eigenvalues naturally led to the conclusion that one could base the interface Mach 

number calculation on a ‘sound speed’ determined from the pseudo-acoustic speeds – this eventually 

led to the concept of a ‘numerical speed of sound’ [12] and a NASA Glenn Technology Award for this 

concept, shared by Meng and me.    A representative form for this numerical speed of sound is as 

follows:   
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In common with most methods that use time-derivative preconditioning, there is a cutoff velocity that 

must be prescribed – this choice will be case-dependent.   The problem is that this simple fix alone does 

not work.  There are two issues to address.   The first is that the pressure diffusion mechanism (inherent 

in AUSMDV and LDFSS but absent in AUSM and AUSM+) needs to be scaled upward as the local 

reference Mach number decreases to preserve pressure-velocity coupling.   This need was later 

quantified through perturbation analysis by Meng in his AUSM+-up paper [13] but at the time, it was 

more heuristic in nature, motivated by the presence of similar terms in the Rhie-Chow collocated mesh 

method and by Lax-Friedrichs or Roe-type flux constructions based on the preconditioned equation 

system.    Since pressure diffusion was absent in AUSM+, it had to be added; procedures for doing such 

were first described in [14].   It should be mentioned that the LDFSS extension is absent from this 

publication.  At the time, I was funded by Meng via the ICOMP arrangement and by a later follow-on 

grant to NCSU, and as such, I felt it important to concentrate my work on AUSM+ and AUSMDV, 

even though all techniques developed were first tested using LDFSS.   

 

 The second issue had, to this point, completely escaped notice within the small community that 

was working with the AUSM family of schemes.  Every technique developed to that point had retained 



the classic van Leer (1982) pressure splitting for the most part.   Meng’s innovative concept of 

separately discretizing the convective and pressure parts of the interface flux had led to the pressure 

component being essentially ignored, with the only significant modification being his use of higher-

degree polynomials in Mach number for his AUSM+ scheme.    I discovered that this term could become 

incredibly diffusive at very low Mach numbers, regardless of whether the term was formulated using 

the physical sound speed or the numerical one.      While at NASA, I experimented with different ways 

of formulating the left- and right-state Mach numbers to reduce the diffusion – one solution was found 

by the following:  
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    (5) 

This simple modification, along with the scaling of the pressure diffusion term by the inverse square of 

the reference Mach number, enabled accurate solutions to be obtained for gas-phase flows at all speeds.    

The ‘numerical sound speed’ concept [12] codified these ideas, setting up a systematic approach by 

which any AUSM-type scheme for gas dynamics could be extended to operate at all speeds.  

 

 The next phase in my collaboration with Meng focused on the extension of AUSM-type 

schemes to real fluids with phase transitions.  This work took place from 1998 to 2000 and was the only 

part of our collaboration that was actually funded by a grant to NCSU.    My motivation at the time was 

toward predictions of supercritical fluids with application to coating processes and hydrocarbon fuel 

injection; Meng’s interest was spurred by the need to predict cavitation within some of the turbopumps 

used in NASA’s Space Shuttle main engines as well as other liquid transport / storage issues associated 

with the Space Shuttle.  Our starting point was a homogeneous equilibrium two-phase flow model 

constructed by embedding results from a vapor-liquid equilibrium analysis into a real-fluid (single 

component) thermodynamic description provided by a generalized equation of state.  We used the Peng-

Robinson and Sanchez-Lacombe state equations.   An advantage of the homogeneous equilibrium 

model is that it leads to a hyperbolic equation system.  Time-derivative preconditioning methods, 

specialized for the density-based formulation that the homogeneous equilibrium model requires (in the 

two-phase region, pressure is solely a function of temperature), can be applied.    The essential 

modifications necessary to extend the ‘all speed’ flux formulae developed earlier to function for this 

system involved the replacement of scaling terms involving the pressure with the combination of 

density times sound speed squared.   In several places within the gas-dynamic AUSM framework, the 

assumption that 
2/p a is of order unity is made implicitly – this statement is not true for a purely 

incompressible flow, where the absolute pressure is arbitrary, nor for a general real fluid.   

 

The procedures outlined in [15] and applied to AUSM+(P) (‘P’ for preconditioned), while 

effective, were somewhat cumbersome to implement, particularly for the pressure splitting, where a 

linearized treatment was employed to separate the two diffusion mechanisms present – a pressure 

diffusion term proportional to the pressure difference across an interface, and a ‘velocity diffusion’ 

term, the scaling of which is the root cause of over-diffusive behavior at low Mach number.    A better 

approach was outlined in [16], in which the LDFSS framework was re-worked into an ‘all speed’, real-

fluid flux formulation that was also valid in the incompressible limit of the sound speed approaching 

infinity.   One important outcome of this paper was a re-formulation of the pressure flux splitting into 

its separate components:  
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It is not obvious at first glance that the last term represents ‘velocity diffusion’, but it is easily seen if 

one substitutes the simplest subsonic pressure splitting ( ) 1 2(1 )P M M   into the above.  The 

velocity diffusion term becomes 
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It is here that the need to replace the average pressure by 
2

1/2 1/2a  becomes more apparent, as does the 

need to scale this term by the square of the reference Mach number to remove the dependence on the 

sound speed in the limit of an incompressible flow.    The final form becomes 
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To leading order in Mach number, the velocity diffusion term becomes 
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which scales as the reference velocity for low Mach numbers. This form, along with modifications 

made to the mass-flux pressure splitting to enable real-fluid / ‘all-speed’ functionality (discussed later), 

were the key components of LDFSS-2001, the final form of development of the LDFSS branch of the 

AUSM family. [16]    This paper was presented as an invited talk at the 2001 AIAA Computational 

Fluid Dynamics conference.  One of my regrets is that I never submitted this paper for archival 

publication, as it contains, in my view, the most complete exposition of the concepts described in brief 

in this paper.     LDFSS-2001 was later applied to incompressible and compressible two-phase flows 

described by a homogeneous mixture model with interface sharpening [17, 18] and has been the 

cornerstone of our subsequent work.     One observation made in [16] was that the choice of scaling 

parameter for ensuring low-Mach functionality was somewhat arbitrary – either the reference velocity 

or the numerical sound speed or other combinations could be utilized.   Later developments of the 

AUSM family have leveraged this flexibility.  

 

By this point, my formal collaboration with Meng had ended, though we kept in touch by phone, 

e-mail, and meetings at conferences.  I was working with others at NASA Glenn from ~2002-2005 on 

rocket-based combined cycle engine concepts and would often visit him during my trips there.  We 

would always manage find a place with Indian buffet food for lunch.   Meng moved forward with his 

branch of the AUSM family, leveraging some of the ideas that we developed in the construction of 

AUSM+-up, which was his last published version. [13] As mentioned, he was very reluctant to 

compromise AUSM’s natural insensitivity to the carbuncle response, but in AUSM+-up, a pressure 

diffusion mechanism finally appeared, along with an augmentation of the velocity-diffusion term 

present in the pressure splitting:  
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Here, the 5th order polynomials first proposed for use in AUSM+ were employed with a modification 

designed to ensure that the velocity diffusion term inherent in the original part of the splitting also 

scaled properly with Mach number.  For subsonic flows, one can express the 5th order polynomials as 

follows:  
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Substituting for  gives  
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Implementing this using the decomposition of Eq. (6) and restricting to leading order in Mach number 

gives 
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Meng’s AUSM+-up form does not substitute for the average pressure in the third term.  If this is done, 

and the Mach number definitions employed in [13] utilized, then one obtains 
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The scaling function 
af is (2 )o oM M , where

2 2 2

1/2min(1,max( , ))oM M M , meaning that the 

additional velocity diffusion term scales similarly to that used in LDFSS as the Mach number 

approaches low values, but that the ‘natural’ velocity diffusion term reduces more quickly.   
af is a 

direction-dependent quantity, as is the scaling factor that connects 
1/2a to 

1/2a in Eq. (4).  If 
af is set to 

unity, thus removing the low-Mach modifications, both terms scale as the physical speed of sound and 

are both important.   

 

Looking at the evolution of the low-Mach modifications from a distance (as I am doing now), 

it is clear that Meng, while recognizing (and later proving) the correctness of the scaling arguments that 

we developed, wished to remove the direct connection with the eigensystem of the preconditioned 

equations as much as possible.   LDFSS has retained this connection.  The structure of the leading 

diffusion terms is the same for both strategies, but the multiplicative constants are different, leading to 

different balances between advective upwinding, pressure diffusion, and velocity diffusion.     One 

constraint imposed on the LDFSS development is the notion of an incompressible-limiting form, 



defined as the physical sound speed approaching infinity and the pressure level becoming arbitrary.  

Application of this constraint should lead to a similar structure for numerical diffusion, with no terms 

vanishing and no terms approaching infinity as the Mach number approaches zero.    The application of 

this principle led to LDFSS-2001; parts of it have found their way into other developments of the 

AUSM-family.   

 

 The remainder of this paper focuses on a comparative analysis of some of the numerical 

diffusion mechanisms found within the AUSM-family members.   Included in this comparison are the 

AUSMPW+ scheme (‘PW’ for ‘pressure weighting’),  developed by Prof. Kim and his students [19], 

and the SLAU2 (‘SLAU’ for Simple Low-dissipation Advective Upstream) scheme, developed by 

Kitamura, Shima, and co-workers [20,21].    In terms of a chronological history, AUSMPW+ was 

developed slightly later than LDFSS and was focused strongly toward re-entry predictions; SLAU and 

its successor SLAU2 were developed later still, from 2009 onward.   While it is certain that other 

AUSM-type schemes have been and continue to be developed, many are essentially re-inventions of 

the wheel; AUSMPW+ and SLAU added some new elements to the canon and deserve further study.  

 

2      AUSM-Family Interface Pressure: A Comparative Analysis  
 

Differences among the AUSM family with respect to the interface pressure treatment can be 

substantial.  While most variants adopt the van Leer / Liou pressure splitting forms (1st degree, 3rd 

degree and 5th degree polynomials), they differ in the specific choices employed and also in the scaling 

(if applied) of the various terms.    As discussed above, the decomposition of the interface pressure into 

a cell average pressure, a pressure diffusion term, and a velocity diffusion term serves to highlight 

similarities and differences among the various approaches.   Here, we list a few forms in chronological 

order of appearance in the literature 

 

Van Leer, AUSM, AUSM+, AUSMDV, AUSMPW, LDFSS-1997 interface pressure:  
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      (15) 

 

LDFSS-2001 interface pressure:  
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      (16) 

 

AUSM+-up interface pressure 
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SLAU2 interface pressure: 
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The scaling of the velocity diffusion term is clearly different among all methods.  Specializing to 

perfect-gas subsonic flow and adopting the simplest pressure splitting to focus on the leading terms, we 

have  
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A few conclusions can be drawn.  The scaling of the velocity diffusion term for both SLAU2 and 

LDFSS is not dependent on interface orientation, but the difference between the levels of diffusion 

provided could be substantial, depending on the local Mach number and the orientation of the flow 

direction with respect to an interface normal.  The scaling term is more similar between LDFSS and 

AUSM+-up, but there is a direction-dependent component to the latter.  Further, the retention of the 

average pressure as a scaling quantity for the velocity diffusion term (as done in the earlier models) 

leads to an additional factor of 1/γ for a perfect gas.    Low-speed modifications would require that the 

scaling of the velocity term by the sound speed be replaced by something proportional to the velocity 

magnitude – the SLAU2 form does this for all speeds, while modifications discussed earlier for LDFSS 

and AUSM+-up would apply this correction only for subsonic flows, with its effect diminishing as a 

sonic state is reached.    The SLAU2 form is also local, and the velocity diffusion term could vanish in 

a stagnation region; the low-speed forms for LDFSS and AUSM+-up would be limited by some cutoff 

velocity.    The pressure diffusion parts of the models are the same unless low Mach number 

approximations are applied.     

 

If the incompressible limit is applied (
1/2a  ) and gauge pressures are utilized

( )refp p p p   , then the following reduced forms are obtained: 
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(20) 

 

It is interesting that the use of gauge pressures eliminates all sources of numerical diffusion in the 

incompressible limit for the original interface pressure model!  This does not mean very much– the 

pressure level itself is arbitrary, but not necessarily zero, in an incompressible flow.  The scheme should 

not care which pressure level one selects as only changes in pressure are important.     Diffusive 

mechanisms are retained for the later developments, with LDFSS-2001 (by construction) keeping both 

pressure diffusion and velocity diffusion in the incompressible limit.  Pressure diffusion is removed in 

the AUSM+-up and SLAU2 forms, though velocity diffusion is retained and is similar to that of LDFSS-

2001.  

 



 

3      AUSM-Family Mass Flux: A Comparative Analysis of Pressure 

Diffusion Mechanisms  
 

The original AUSM scheme upwinds a vector of advected quantities (
0[ , , ]TV h   ) based on 

the sign of an interface velocity; AUSMDV and some later developments upwind a different set of 

advected variables ( 0[1, , ]TV h ) based on the sign of the interface mass flux.   LDFSS does neither, 

adopting a form very similar to the original van Leer scheme.  These distinctions may be important in 

some instances, but the essential behavior of these schemes relates more to the mass flux itself, and it 

is here that we focus our attention.  Generally speaking, the mass flux for an AUSM-family member 

can be written as 

                                             1/2
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where the first part is an average mass flux, the second part is density-diffusion term that arises from 

advective upwinding, and the third and fourth parts are velocity and pressure diffusion mechanisms.   It 

should be recognized that these distinctions do not arise explicitly for most AUSM-family members – 

they are embedded in the behavior of the van Leer / Liou Mach number polynomials and other 

functional forms.  Only SLAU explicitly employs a construction similar to this.    Precise expressions 

for the average velocity 
1/2| |u differ only slightly among the schemes away from sonic points.  Near 

sonic points, the velocity diffusion mechanism can become important – this form can generally be 

expressed as 
1/2 1/2~ ( )v L Rm M u u  but precise forms again are somewhat scheme-dependent.  The 

construction of the pressure-diffusion term constitutes the major difference among members of the 

AUSM-family.   Again, precise forms for this term can be difficult to extract from the published flux 

formulations, but it is sufficient to observe the behavior of m as the directional velocity components 

,L Ru u vanish.   The remaining contribution to the mass flux will be the pressure diffusion term, which 

should be proportional to a pressure difference across a cell interface for the scheme to capture a 

stationary contact wave exactly.    Limiting forms for the pressure diffusion term are shown below for 

a chronological listing of AUSM-family schemes.  
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Here (and before), the ‘1/2’ subscript denotes evaluation at an arithmetically-averaged state, while the 

‘L/R’ notation denotes evaluation at either the left or the right state, depending on the sign of the 

interface Mach number or mass flux.  Only AUSM and AUSM+ possess no pressure diffusion term – 

its utility in suppressing non-monotone behavior in boundary layers and at non-grid aligned shock 

waves eventually led to its inclusion in the later developments.    Of the schemes listed above, LDFSS-

1997 possesses the most complex form, as it contains a built-in mechanism to suppress the carbuncle 

instability.   Most of the later developments also contain a suppression mechanism of one form or 

another.  Only LDFSS-2001 and AUSM+-up possess the correct scaling in the incompressible limit 

(inversely with a reference velocity) – the pressure diffusion vanishes for the other models in this limit, 

providing no means of pressure-velocity coupling.   The inclusion of the pressure as a direct scaling 

factor in AUSMDV, LDFSS-1997, and AUSMPW+ makes these schemes unsuitable as written for 

incompressible flows, in which pressure can be set arbitrarily.   SLAU2 uses the most multi-dimensional 

velocity information; the others (excepting the low Mach number terms) use directional velocity 

information only in establishing the interface flux.    

 

4      Conclusions and Some Personal Reflections 

 

In this paper, I have attempted to provide a brief history of the early years of AUSM-family 

development, focusing most specifically on the work that Meng and I performed in the 1990s but trying 

also to tie those developments into earlier and later activities and to give the reader an idea of the thought 

processes at the time.    I think that it is fair to state that the ICOMP visiting scholars program (Wada, 

Coquel, myself, others later) as facilitated by Lou Povinelli and Meng provided a route for the rapid 

advancement of the initial AUSM idea. He encouraged a diversity of opinion and never once attempted 

to constrain our ideas to whatever direction he himself was pursuing.  Meng’s vision of a simple, 

accurate Riemann solver has been proven correct. The literature abounds with successful applications 

of AUSM family schemes for all classes of fluid-dynamic problems, and the AUSM family has become 

part of the state of the practice in production-level CFD.     

 

I would leave the reader with a few guiding principles that have advanced AUSM-family 

development throughout the years.   The first is the need to capture exactly a stationary contact wave 

so that boundary layers can be captured accurately.    The second is to maintain O(n) complexity so that 

extensions to multi-component systems and some multi-phase systems become trivial.   The third is the 

need to introduce an amount of ‘pressure diffusion’ into the mass flux to remove unwanted oscillations 

and to control this addition so that the carbuncle response is at least suppressed, if not eliminated 

entirely.    The fourth is the need to avoid the use of the pressure as a direct scaling factor so that 

extensions to incompressible, real-fluid, and multi-phase flows become possible.  The fifth is to ensure 

that the pressure-diffusion term in the mass flux scales inversely and that the velocity-diffusion term in 

the interface pressure scales directly with a reference Mach number as the Mach number is lowered so 

that accurate solutions can be obtained at all speeds.   Research issues necessary to advance the family 

hinge, I believe, on the proper introduction of multi-dimensional information and on the construction 

of a single scheme that seamlessly performs well at all speeds.  Right now, one would not want to run 

an ‘all speed’ formulation for a 1D shock-tube problem or for a hypersonic bluff-body problem just as 

one would not want to apply a standard formulation for an incompressible driven-cavity problem.  The 

need to select a reference velocity for low-speed applications also is a limiting factor for some methods.  

It also must be stated that the use of higher-order reconstruction methods renders differences between 

members of the AUSM family less noticeable – the low-diffusion characteristics that are so important 

for 1st or 2nd order predictions become less meaningful when higher-order techniques such as 

discontinuous Galerkin or flux reconstruction are employed.     

 

In closing, I will provide a few thoughts on my interactions with Meng since we completed our 



work in ~2000.  We kept in touch – he would call me regularly to see if I had any students that he could 

hire as post-docs and just to catch up.   He always cared about my career – he understood that to keep 

my job, I’d have to move away from our areas of mutual interest.   He had to do the same as NASA’s 

focus areas changed.   We would also meet during my periodic visits to NASA Glenn and at various 

conferences, always seeking some cheap Indian food if we could find it. He wrote a few 

recommendation letters for me – one for my initial appointment at NCSU, another for my tenure, 

another one for my (unsuccessful) application as AIAA Fellow, and a couple of others that I won’t 

discuss.   I wrote one for him for his (successful) AIAA Fellow application and also participated in a 

review of NASA Glenn’s work in CFD by his invitation.   Meng was not a self-promotor, and the 

importance of his work (at least in the U.S.) was not as recognized as it should have been, but he was a 

tireless innovator and opened the doors to even more innovation by virtue of his kind, patient manner 

with younger researchers such as myself.    He ended his career as a Senior Technologist at NASA – 

the highest non-managerial level in that organization.   That, plus the thousands of citations to his work, 

says enough.  I had not seen him much in recent years and had been thinking about him when I heard 

from Prof. Yang-Yao Niu that his situation had turned for the worst.  I was able to communicate with 

him one last time and was able to thank him for his guidance and friendship.   His legacy lives on, and 

I miss him greatly. 
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