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Abstract: This paper explores the effect of the chemical kinetics and thermal diffusion models
on the differential entropy inequality (DEI), the local form of the second law of thermodynamics.
This analysis was done while simulating a laminar, premixed, simple jet methane-air flame, known
as the Sandia flame A. By choosing a laminar flame, the modeling of turbulence and the inherent
uncertainty associated with it were avoided. Five chemical kinetics mechanisms were considered;
one detailed mechanism, the GRI 3.0 mechanism, and four reduced mechanism: Westbrook and
Dryer, Jones Mech 2, and the optimized two- and three-step mechanisms. As expected, the detailed
mechanism matched experimental data of the Sandia flame A quite well. The only exception was
that the flame width was over-predicted by approximately 25%. This incorrect width could be due
to the co-flow velocity used. The reduced mechanisms did a poor job of matching the experimental
data due to excessively high upper flammability limits. Premature ignition was experienced which
caused the inner surface of the flame to be artificially advanced towards the fuel tube. Once the
initial oxygen supply was depleted, the reduced mechanism simulations exhibited similar responses
to the GRI 3.0 mechanism since the flame is diffusion rate limited. Non-automatic satisfaction
of the DEI was limited to only its chemical reaction term, as long as Fickian diffusion was used.
Positive values for the species diffusion and heat transfer terms of the DEI were found when using
Soret thermal diffusion coefficients. No violations of the DEI were found for the optimized two- and
three-step mechanisms, just as they were designed to perform. The other two reduced mechanisms
exhibited violations. Surprisingly, violations were found for the detailed GRI 3.0 mechanism.
Potential sources could include an incomplete set of reactions, the inclusion of pressure-dependent
elementary reactions, inaccurate rate parameters, or the numerical scheme used.

Keywords: Computational Fluid Dynamics, Combustion Modeling, Second Law of Thermody-
namics, Reduced Kinetics Models, Thermal Diffusion.

1 Introduction
Computer hardware progress has led to the ability to solve complex transport phenomena using high
fidelity numerical methods. In the case of reactive transport phenomena, the modeling of chemical
reactions is of crucial importance for the accuracy of the results. The computational cost of modeling
chemical reactions, however, is significant even for the simplest reactions. For example, modeling methane
combustion requires 353 reactions with 53 species if the GRI 3.0 mechanism is being used. Adding 53
variables to the typical 7-component state variables, assuming compressible turbulent flow where two
variables are used for turbulence modeling, dramatically increases the computational time. For this
reason, it is common to use reduced kinetics models to lower the computational cost. There are issues,
however, with using reduced kinetics models as they generate results that violate the second law of
thermodynamics.

The current practice in the simulation of reactive transport phenomena is to formulate numerical
methods that satisfy the mass, momentum and energy balance equations. The differential entropy
inequality, the local form of the second law of thermodynamics, is always ignored in simulating chemically
reacting flows. Ignoring the second law of thermodynamics for common types of material behavior, such
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as Newton’s law of viscosity, Fourier’s law, Fick’s first law, is not an issue since they satisfy the differential
entropy inequality automatically. Common empirical descriptions of chemical reactions, however, do not
satisfy the differential entropy inequality automatically.

For the simulation of reacting fluid flows, it is necessary to incorporate a reaction mechanism that
describes the incremental steps and associated rates leading from reactant species to products. To reduce
the computational cost, reduced chemical kinetics mechanisms are used, which produce violations of the
differential entropy inequality
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a local form of the second law of thermodynamics [1]. Here Π is the stress tensor, P the thermodynamic
pressure, I the identity tensor, ~v the velocity vector, c the total molar density, R̂ the gas law constant,
T the temperature, Ns the number of species, ~J(n) the mass flux of species n relative to ~v, ρ(n) the mass
density of species n, Nr the number of reactions, µ(n) the chemical potential for species n on a molar
basis, and R(n)(r) the rate of production of moles of species n per unit volume by homogeneous chemical
reaction r. ~ε is the energy flux corrected for the effects of mass transfer [2, p. 449]; ~d(n) is the driving
force for mass transfer corrected for temperature gradients and pressure gradients [2, p. 450].

Reduced chemical kinetics mechanisms are created to decrease the complexity and computational cost
of a detailed mechanism. The simplifying assumptions used to create a reduced mechanism decreases
the range of applicability of the resultant mechanism. For instance, the Westbrook and Dryer two-
step mechanism was made to predict flame speed and flammability limits well, but has been shown to
produce violations of the DEI. Using a theorem introduced in [1], reduced kinetics models were developed
to eliminate or minimize the differential entropy inequality violations [3, 4].

In this paper, the results of simulating the Sandia flame A with five combustion mechanisms, includ-
ing the detailed GRI 3.0 mechanism, are explored to compare the relative merits of each. The following
section examines the numerical results generated using five different combustion mechanisms and com-
pares them to experimental data. Violations of the DEI are discussed in section 5. The automatic
satisfaction of each term of the DEI is investigated to discover the the root causes of DEI violations.

2 Physical Model

2.1 Governing Equations
The transport equations that govern the fluid flow are the mass, momentum, energy and species conser-
vation equations. This section will briefly review these governing equations.

2.1.1 Mass Conservation

The conservation of mass equation, commonly referred to as the continuity equation, is given in its
conservative form by

∂ρ

∂t
+∇ · (ρ~v) = 0. (2)

Here ρ is the fluid density and ~v is the velocity vector. This form of the equation assumes that the flow
is unsteady and compressible.

2.1.2 Momentum Conservation

The momentum conservation equations, collectively referred to as the Navier-Stokes equations are:

∂ (ρ~v)

∂t
+∇ · (ρ~v~v) = ∇ ·Π + ρ~fb, (3)

where Π is the stress tensor, and ~fb are the externally applied body forces. Body forces can be applied
to individual species if desired by multiplying by the respective mass fraction and summing over all the
species. The stress tensor includes contributions from both the thermodynamic pressure and viscous
stresses

Π = τ − PI, (4)
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where the viscous stress tensor is denoted as τ , P is the thermodynamic pressure, and I is the identity
tensor. The viscous stress tensor is a symmetric tensor and is defined as

τ = µ
(
∇~v +∇~vT

)
+ λ (∇ · ~v) I. (5)

Here µ and λ are the dynamic and bulk viscosities respectively. Stokes’ hypothesis is used to approximate
the bulk viscosity as λ = − 2

3µ [5, p. 67].

2.1.3 Energy Conservation

The energy equation, which can be written in many different forms depending on which parameters, is
presented herein in the form used by FLUENT [6, pp. 133-4]. This form is preferred since FLUENT is
the software package used for the simulations undertaken herein and because this form clearly shows the
contributions from chemical reactions. The energy equation is given by

∂ (ρe)

∂t
+∇ · (~v (ρe+ P )) = ∇ ·

(
keff∇T −

Ns∑
n=1

h(n) ~J(n) +
(
τ eff · ~v

))
+ Sh, (6)

where e is the the total mass specific energy, h(n) is the mass specific enthalpy of species n, keff is the
effective thermal conductivity and τ eff is the effective viscous stress tensor. ~J(n) is the diffusive mass flux
vector for species n and Sh is a source term given by [6, p. 136]

Sh = −
Ns∑
n=1

h0f,(n)R(n),

where h0f,(n) is the mole specific enthalpy of formation of species n and R(n) is the molar net rate of
production of species n.

2.1.4 Species Conservation

For non-homogeneous and reacting flows, it is necessary to use the species conservation equations that
model the motion of each constituent species

∂
(
ρY(n)

)
∂t

+∇ ·
(
ρY(n)~v

)
= −∇ · ~J(n) +R(n)M(n), n = 1, . . . , Ns − 1, (7)

where Y(n) is the mass fraction of species n andM(n) is the molecular mass of species n. No new variables
have been introduced in this equation, however a critical distinction must be noted. The density and
velocity vector are both properties of the bulk flow while the mass fraction, diffusive mass flux vector,
and net rate of production are all properties of individual species. This means that for each species to
be included in the model an extra species equation needs to be included, up to a total of Ns − 1 species
equations.

Since the system analyzed here had a nearly uniform pressure, the Dufour effect was neglected. We
found no difference whether we included the Soret effect or not [4].

2.2 Chemistry Models
To simulate methane flame combustion, the detailed GRI 3.0 mechanism [7] and four reduced chemical
kinetics models will be explored herein. The reduced chemical kinetics models are: (1) Westbrook and
Dryer [8], Jones Mech 2 [3] and the optimized two- and three-step mechanisms [4]. The optimized two-
and three-step mechanisms were obtained from the two-step Westbrook and Dryer mechanism [8] and the
three-step Peters and Williams mechanism [9] using an optimization strategy to minimize the violations
of the differential entropy inequality.

In a reactive system with Ns chemical species, any arbitrary reaction out of the Nr possibilities can
be written as [10, p. 554-94].

Ns∑
n=1

ν′(n)(r)M(n) →
Ns∑
n=1

ν′′(n)(r)M(n), r = 1, . . . , Nr, (8)
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whereM(n) is the chemical symbol for species n and ν′(n)(r) and ν
′′
(n)(r) are the stoichiometric coefficients

for species n in reaction r as a reactant and a product, respectively. For this single reaction, it can be
reasoned that the reaction rate is proportional to the rate of molecular collisions of reactant species and
the energy of the collisions. The reaction rate equation which encompasses these ideas is given by the
phenomenological law of mass action

ω(r) = k(r)

Ns∏
n=1

c
ν′
(n)(r)

(n) , r = 1, . . . , Nr. (9)

Here ω(r) is the volumetric molar progress of reaction r, c(n) is the molar concentration of species n, and
k(r) is termed a reaction-rate constant. The progress of reaction r, only considering the forward reaction
and allowing for non-stoichiometric concentration exponents, q′(n)(r), is given by

ω(r) = k(r)

Ns∏
n=1

c
q′(n)(r)

(n) , r = 1, . . . , Nr. (10)

The molar rate of production of species n in reaction r, R(n)(r), is related to the progress of reaction
through the stoichiometric coefficients from (8) through

R(n)(r) =
(
ν′′(n)(r) − ν

′
(n)(r)

)
ω(r),

n = 1, . . . , Ns
r = 1, . . . , Nr

. (11)

The net molar production rate of species n, R(n), is found by summing the contributions from each
reaction

R(n) =

Nr∑
r=1

R(n)(r) =

Nr∑
r=1

(
ν′′(n)(r) − ν

′
(n)(r)

)
ω(r), n = 1, . . . , Ns. (12)

To evaluate the progress of reaction, the reaction-rate constant k(r) is given by the empirical Arrhenius
expression

k(r) = A(r)T
β(r) exp

(−Ea,(r)
R̂T

)
, r = 1, . . . , Nr, (13)

where A(r) is the Arrhenius pre-exponential constant, β(r) is the Arrhenius temperature exponent of
reaction r, and Ea,(r) is the activation energy of reaction r.

TheWestbrook and Dryer mechanism is composed of two reactions with the second being reversible. It
is beneficial to consider reversible reactions as two separate reactions so that the Arrhenius parameters
for both the forward and reverse directions can be found independently. The resulting mechanism is
shown in Table 1.

Table 1: Arrhenius Parameters of the Two-Step Westbrook and Dryer [8] Mechanism Split into All
Forward Reactions.
Reaction Equation Arrhenius Activation Molar concentration exponent

r constant, A(r) energy, E(r) CH4 O2 CO H2O CO2

1 CH4 + 1.5O2 → CO + 2H2O 5.012 ×1011 2.0×108 0.7 0.8
2 CO + 0.5O2 → CO2 2.239 ×1012 1.7×108 0.25 1 0.5
3 CO2 → CO + 0.5O2 5 ×108 1.7×108 1

Units are cm, mol, cal, s, and K.

The Arrhenius parameters for the Jones Mech 2 and the optimized two-step and three-step mecha-
nisms are shown in Tables 2-4.
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Table 2: Arrhenius Parameters of Jones Mech 2 Mechanism [11, p. 103]
Reaction Equation A β E

1 CH4 + 1.5O2 → CO + 2H2O 1.5291× 1013 2.3077 6.0031× 104

2f CO + 0.5O2 → CO2 2.1685× 108 −0.6022 −2.1560× 101

2b CO2 → CO + 0.5O2 1.4286× 109 2.8571 1.7072× 105

Units are cm, mol, cal, s, and K.

Table 3: Arrhenius Parameters of the Optimized Two-Step Mechanism [4].
Reaction Equation A β E

1 CH4 + 1.5O2 → CO + 2H2O 3.1623× 1014 0.8308 2.3855× 104

2f CO + 0.5O2 → CO2 4.2094× 106 0.1251 7.3969× 103

2b CO2 → CO + 0.5O2 1.4286× 109 0.2851 1.7072× 105

Units are cm, mol, cal, s, and K.

Table 4: Arrhenius Parameters of the Optimized Three-Step Mechanism [4].
Reaction Equation A β E

1 CH4 + O2 → CO + H2 + H2O 4.8801× 1012 0.4452 2.3849× 104

2f CO + H2O→ CO2 + H2 2.3037× 1011 −1.0206 2.3901× 103

2b CO2 + H2 → CO + H2O 1.4286× 1012 0.2851 1.7072× 105

3 O2 + 2H2 → 2H2O 1.0000× 109 2.5903 1.1360× 102

Units are cm, mol, cal, s, and K.

3 Numerical Model
The effect of the kinetics model on the differential entropy inequality was investigated using Fluent [12].
It was decided to use a commercial code as opposed to an in-house code such that other users can
duplicate the results.

Sandia flame A, a laminar methane flame, was used in this investigation. By choosing a laminar
flame, the modeling of turbulence and the inherent uncertainty associated with it were avoided.

3.1 Computational Domain
Flame A is a laminar, premixed, simple jet, methane-air flame used as a daily calibration target. In the
Sandia flame A experiment a tube releases a premixed fuel mixture which stabilizes an attached flame
at its exit. The flame can be considered attached when compared to a lifted flame. The tube is long
enough to ensure that the velocity profile is fully developed at the exit plane. The fuel is premixed at
an equivalence ratio considerably above the fuel’s flammability limit. The fuel tube protrudes slightly
from the end of a square wind tunnel which provides a low speed entraining flow of air referred to as the
co-flow. The entire experiment is open to ambient conditions and the fuel and co-flow are at standard
atmospheric temperature and pressure before combusting.

The setup is shown in Fig. 1. The entire setup was oriented vertically so that asymmetric effects on
the flame due to gravity would be negligible. These experiments were open to ambient conditions so the
flame can be considered isobaric. In the simulation, the square duct was approximated to be circular
such that the model flame can be simplified to a two-dimensional problem [4].

3.2 Grid Generation
A hybrid, structured and unstructured grid was used to discretize the computational domain. A struc-
tured rectangular grid was used close to the center line to properly capture the boundary layers on the
tube and wind tunnel walls. An unstructured grid was used in the free stream to decrease the number
of cells where the resolution is less important. Four grids, with a number of cells ranging from 22,999
to 260,158, were generated to verify that the solution is grid independent. As illustrated in [13], a grid
with 84,780 cells, shown in Fig. 2, was sufficient to yield a grid independent solution.
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Figure 2: Flame A mesh with 84,780 cells: (a) entire domain, (b) zoomed view at methane tube exit.

3.3 Boundary Conditions

Figure 1: Isometric view of experimental setup for
Sandia Flame A. All units are given in millimeters.
Note that the drawing is not to scale.

Hard surfaces, such as the wind tunnel and the fuel
inlet tube, were modeled as wall boundaries. All
wall surfaces enforced no slip and no penetration
of the flow adjacent to the wall. Thermally, the
walls were modeled to allow no heat flux.

The inlet and outlet boundary conditions used
in the simulation are given in Table 5.

Table 5: Inlet and Outlet Boundary Conditions.
Zone Premixed Fuel Co-Flow Far Field

Velocity [m/s] 2.90 0.40 N/A
Temperature [K] 300 300 300
Gauge Pressure [Pa] 0 0 0
Species Mass Fractions

CH4 0.1528 0.0000 0.0000
O2 0.1944 0.2295 0.2295
CO2 0.0004 0.0005 0.0005
CO 0.0000 0.0000 0.0000
H2O 0.0066 0.0078 0.0078
N2 0.6458 0.7622 0.7622

4 Results
The Sandia flame A experiment was simulated us-
ing five different methane-air combustion mecha-
nisms. These included the detailed GRI 3.0 mech-
anism, Westbrook and Dryer two-step mechanism,
Jones Mech 2, and the optimized two- and three-
step mechanisms. Before delving into violations of
the DEI, it is useful to understand the structure
of the resulting flames.

4.1 Temperature and Composition
Contours
In all simulations of the Sandia flame A the tem-
perature limiter was set to 2400 K, that is, well
above the adiabatic flame temperature. This value
was chosen to decrease in situ adaptive table
(ISAT) [14] look-up time while not influencing the solution results. Therefore, the maximum tem-
perature found in the results should be a numerical approximation of the adiabatic flame temperature.
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Table 6 gives a comparison of the maximum temperature for each simulation along with predicted values
for the adiabatic flame temperature and the calculated error. Since the adiabatic flame temperature is a
function of the chemical species present, only mechanisms which include the same species can be directly
compared. For all others, only a comparison of error is possible.

Table 6: Maximum Temperature of Various Mechanisms
Mechanism Species Number Adiabatic Flame Temp. [K] Max Temp. [K] Error [%]

GRI 3.0 53 2225.5 2268.0 +1.91
Westbrook & Dryer 6 2258.2 2305.4 +2.09
Jones Mech 2 6 2258.2 2229.2 -1.28
Optimized 2-step 6 2258.2 2311.2 +2.35
Optimized 3-step 7 2246.4 2261.0 +0.65

The maximum flame temperature error is less than 2.4% for each mechanism. For all mechanisms be-
sides Jones Mech 2, the maximum temperature is higher than the predicted adiabatic flame temperature.
Of all the six species models, Jones Mech 2 had the lowest error in temperature.

Figures 3 and 4 show contour plots of temperature and methane mass fraction respectively for each
mechanism. A quick inspection shows that the basic structure of the flame for each mechanism is
the same. Each flame contains a cool conic interior section of unburnt fuel, and a zone of maximum
temperature which is approximately centered radially in the flame. Temperature gradients exist on the
inside and outside surfaces of the flame and are where reactions are occurring most prominently.

Figure 3: Temperature profiles of various mecha-
nisms. From top to bottom: GRI 3.0 [15], West-
brook and Dryer two-step [8], Jones Mech 2 [11],
optimized two-step, optimized three-step.

Figure 4: Methane (CH4) mass fraction profiles of
various mechanisms. From top to bottom: GRI
3.0 [15], Westbrook and Dryer two-step [8], Jones
Mech 2 [11], optimized two-step, optimized three-
step.

In both figures 3 and 4, it can be qualitatively seen that the cool interior section of the flame is a
different length for each mechanism while the outer surfaces seem to occur in nearly the same location.
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The experimental data were collected at 25, 50, and 100 mm downstream of the fuel tube exit. Clearly
for some of the reduced mechanisms, the cool interior doesn’t extend out 100 mm. Therefore, the largest
differences in the solutions are expected to occur near the centerline of the flame, and indeed this is the
case, as will be displayed in section 4.2.

An interesting phenomenon is found in the methane mass fraction profiles which may help explain
the differences in structure of the flames. In Fig. 4 it can be seen that the unburnt fuel (shown in red on
the contour plots) extends a variable distance into the flame. However, the distance at which the fuel is
completely depleted is approximately 200 mm downstream and is nearly the same for each mechanism.
The variable internal length is due to premature ignition of the premixed fuel and differences in reaction
rates between the mechanisms. The nearly constant distance at which fuel depletion occurs is due to the
oxygen diffusion rate being approximately constant between each simulation.

For all the reduced reactions the premixed oxygen is quickly depleted since the mixture is fuel rich
and the single initiation reaction feeds directly on O2. The rate of the initiation reaction determines
the slope of the inner edge of the flame. The faster the reaction rate, the steeper the slope. Once the
premixed oxygen is depleted, the overall reaction stagnates until enough oxygen can diffuse into the
flame to react with the remaining fuel. Since the rate of oxygen diffusion is roughly the same for each
simulation, the point at which the fuel runs out is nearly constant.

The length of the internal cool cone for the detailed GRI 3.0 mechanism is longer than for the
reduced mechanisms since the initiation of the overall combustion is much more complex than for the
reduced mechanisms. Unlike the reduced mechanisms which initiate with the reaction of CH4 and O2, the
elementary initiation steps in the detailed mechanism require radical species to start the chain reaction.
Since no radical species are present in the premixed fuel flow, the radical pool must first be established
before the detailed mechanism can combust. Not until high enough oxygen concentrations diffuse into
the flame can the radical pool grow to a sufficient size for the propagation and chain branching steps to
drive the overall reaction to termination.

In previous studies the reduced mechanisms were made to behave more like the detailed mechanism
by eliminating the oxidizer in the fuel flow [11, pp. 86-92]. In an attempt to get a three-step mechanism
simulation to run properly, Jones experimented with removing the premixed oxygen from the fuel and
replacing it with nitrogen. The resulting flame had an elongated interior cool section which better
matched experimental data and more closely resembled the GRI 3.0 mechanism from Fig. 3. This result
was due to the lack of oxidizers in the fuel stream to prematurely start the reactions. The reactions
could only begin once enough oxygen had diffused into the flame. Since the diffusion rate was unaltered
between these simulations, the resulting solutions appeared to match experimental data better. However,
this was not due to mechanisms performance, but rather because the flame was diffusion limited and
was being denied a premixed supply of oxygen.

4.2 Comparison to Experimental Data
Profiles of temperature and species mass fractions were taken for each of the five mechanisms at 25, 50,
and 100 mm downstream of the fuel tube. These profiles were then plotted against the experimental
Sandia flame A data shown in Figs. 5-7.

The GRI 3.0 mechanism, being the only detailed mechanism tested, was expected to match the
experimental data the closest. This expectation was verified as shown in figures 5-7. Along the inner
edge of the flame the GRI 3.0 mechanism matches the experimental data very well. This is particularly
emphasized in Fig. 6 where the consumption of CH4 is shown. At all three axial locations the curve for
the GRI 3.0 mechanism falls almost directly on top of the experimental data. Very close agreement is
found between the GRI 3.0 mechanism and the experimental data along the inner edge of the flame.

There is a wide variation in the structure of the inner edge of the flame predicted by the various
reduced mechanisms. In the previous section it was theorized that this was due to a premature combustion
of the premixed fuel. For the Sandia flame A experiment the equivalent ratio of the premixed fuel was
3.17, that is, the fuel mixture was chosen to be outside the flammability limits of the methane fuel.
However, the flammability limits of the reduced mechanisms may not match the physical values. The
optimized two- and three-step mechanisms, along with Jones Mech 2, were created to minimize the
number of violations of the DEI seen in reduced mechanisms. Never in their creation were flammability
limits considered [13]. Therefore, along the inner edge of the flame, premature combustion could be
expected. Indeed, premature combustion is shown in the contours of each of the reduced mechanisms in
figures 3 and 4 as a shortened interior cone of unburnt fuel compared to the GRI 3.0 mechanism.
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Figure 5: Comparison of temperature profiles to ex-
perimental data for all mechanisms. Profiles shown
from top to bottom at: 25 mm, 50 mm, and 100
mm locations.
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Figure 6: Comparison of CH4 mass fraction profiles
to experimental data for all mechanisms. Profiles
shown from top to bottom at: 25 mm, 50 mm, and
100 mm locations.
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Figure 7: Comparison of O2 mass fraction profiles
to experimental data for all mechanisms. Profiles
shown from top to bottom at: 25 mm, 50 mm, and
100 mm locations.

The degree to which the interior cone of un-
burnt fuel was shortened for the reduced mecha-
nisms was determined by the reaction rate of the
fuel decomposition reaction. A faster reaction rate
led to a shorter cone. It was predicted that the
flame speed is proportional to the square root of
the reaction rate [8]. Based on this relation, the
optimized two- and three-step mechanisms were
predicted to exhibit the shortest sections of un-
burnt fuel. Another way to view this is in the tem-
perature profiles of Fig. 5. For the optimized two-
and three-step mechanisms the temperature does
not dip back to ambient at the center of the flame
for the 50 mm and 100 mm sampling locations
due to the shortened interior cone. Therefore,
while the optimized two- and three-step mecha-
nisms predict the flame speed most accurately,
Jones Mech 2 appears to match the inner surface
of the Sandia flame A more closely.

None of the five mechanisms tested show good
agreement with the experimental data on the out-
side edge of the flame. For all mechanisms tested,
the overall width of the flame was over-predicted
by approximately 25%. While the detailed GRI
3.0 mechanism consistently showed the closest
match to the experimental data on the outside
edge of the flame, all of the reduced mechanisms
also predicted very similar results to the detailed
mechanism along the outer edge. This is best
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shown in the temperature profiles in Fig. 5 and the oxygen mass fraction profiles in Fig. 7. At the
outside edge of the flame the profiles for all of the mechanisms seem to cluster together into one consis-
tent curve which sits a considerable distance from the experimental data.

The similarities between all the solutions at the outside edge of the flame are due to the flame being
diffusion rate limited. Since the fuel and oxygen supplies are on opposite sides of the flame, combustion
can only occur when the fuel and oxygen have sufficiently diffused together. Diffusion occurs on a slower
time scale than the reaction rates and the same diffusion model is used on all simulations. Therefore,
the solutions at the outside edge of the flame should be very similar, regardless of reaction mechanism
used.

The reason for the difference between the numerical simulations and the experimental data at the
outer edge of the flame is most likely due to an error in the co-flow velocity. In all simulations the
co-flow was taken to be 0.4 m/s. This value was first used by Chambers [16] and was established through
an undocumented personal correspondence. However, documentation from Sandia [17] suggests that
the actual co-flow velocity was 0.9 m/s. This is a substantial difference which could account for error
between the numerical simulations and the experimental data. Further testing is required to determine
if simulations with a co-flow of 0.9 m/s decreases the error at the outer edge of the flame.

4.3 Plateaued Structure of Reduced Mechanisms
In each of the plots in Fig. 5, there is a characteristic plateaued structure exhibited by each of the reduced
mechanisms. Where the experimental data and the GRI 3.0 simulation have rounded temperature
profiles, the reduced mechanisms are defined by nearly flat, slightly sloping temperature plateaus in the
middle of the flame. This structure can be explained by the low number of species and lack of competing
reactions in the reduced mechanism.
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Figure 8: Plateaued temperature profile plotted next
to kinetic rate for each reaction of Westbrook and
Dryer two-step mechanism [8]. All data is captured
at the 25 mm location.

In a detailed mechanism, when the initiation
reactions occur, the heat released goes into supply-
ing the activation energy to fuel further reactions.
Gradually, as the chain reactions progress, the
overall temperature increases until a maximum is
reached. For the reduced mechanisms, the heat
released by the initiation reaction has no other
reactions to supply so the temperature increases
sharply. The temperature then remains relatively
constant until the next reaction occurs. For many
of the reduced mechanisms shown in Fig. 5 there
are only two reactions so the temperature profiles
are defined by two sharp gradients.

Figure 8 shows the reaction rates overlaid on
the temperature profiles for the Westbrook and
Dryer two-step mechanisms. It is clear from these
plots that edges of the plateaued structure corre-
spond with peaks in reaction rate. From the inside
of the flame outward, the initial jump in tempera-
ture occurs where the first reaction spikes. At this
location, the forward and reverse rates of the sec-
ond reaction start to slowly increase until a peak in
rates of production at the outer edge of the flame.
The slight slope in the middle of the temperature
profile is due to the heat release from the building
forward and reverse rates of the second reaction.

5 DEI Violations
The DEI, (1), represents a local form of the second
law of thermodynamics. For a CFD simulation of
a reacting flow to be physically accurate it must satisfy the DEI at all points within the computational
domain. However, as first noticed by Chambers [16, pp. 126-32], the DEI is violated at numerous
locations for common reduced combustion mechanisms. No current CFD reacting flow solver implements
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the DEI as a solution limiter. Thus, combustion mechanisms should be used which automatically satisfy
the DEI. The optimized two- and three-step mechanisms created in [4] were made in accordance with a
theorem for automatic satisfaction given by Slattery et al. [1].

In the following sections, solutions of Sandia flame A calculated using various combustion mechanisms
are analyzed for violations of the DEI. The mechanisms used are the optimized two- and three-step
mechanisms [4], the Westbrook and Dryer two-step mechanism [18], Jones Mech 2 [3], and the detailed
GRI 3.0 mechanism [7]. In the following sections, each term of the DEI is investigated separately to
determine its contribution to the inequality (1).

5.1 First Term
The first term of the DEI, −tr

[(
Π + PI

)
· ∇~v

]
, represents entropy generation due to viscous stresses.

For the Sandia flame A, since the domain is of constant pressure, the largest viscous stresses are en-
countered along the solid wall surfaces of the fuel tube and wind tunnel. Since the velocity of the fuel
is much greater than that of the co-flow, and since the diameter of the fuel tube is considerably smaller
than that of the tunnel, the largest velocity gradients are expected to be within the fuel tube. Figure 9
shows a contour plot of the first term of the DEI inside the fuel tube calculated for the Westbrook and
Dryer two-step mechanism [8]. The values of the first term are all negative.

Figure 9: Contours plot of the first term of the DEI calculated for the Westbrook and Dryer two-step
mechanism [8].

The condition for automatic satisfaction of the first term is that the fluid behaves as a compressible
Newtonian fluid. No non-linear viscosity relationships were used in the numerical model so the first term
was automatically satisfied in the solutions for each of the five mechanisms. It is interesting to note that
the values of largest magnitude for the first term were found along the tube wall at the inlet boundary.
This is due to the constant velocity profile that was used for this boundary condition. Boundary layers
start to form along the inner wall of the tube which gives rise to large velocity gradients and viscous
stresses at the velocity inlet. The large values of the first terms seen at this point are due to the boundary
conditions.

5.2 Second Term

The second term of the DEI, cR̂T
Ns∑
n=1

~J(n) ·
~d(n)

ρ(n)
, represents the entropy generation due to species diffusion.

The second term is primarily influenced by the temperature, gradients in composition, and the diffusion
model used. The calculation of the diffusive mass flux vector, ~J(n), is where the diffusion model makes
an impact. For Fickian diffusion ~J(n) is calculated using

~J(n) = −ρD(n),mix∇Y(n), n = 1, . . . , Ns − 1 (14)
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whereD(n),mix is the mass diffusion coefficient for species n into the mixture given by Wilke’s formula [19]

D(n),mix =
1−X(n)

Ns∑
m=1
m 6=n

(
X(m)/D(n)(m)

) , (15)

where X(n) is the mole fraction of species n. D(n)(m), the binary diffusion coefficients of species n into
species m, are calculated using a modification of the Chapman-Enskog formula [20, p. 511]

D(n)(m) = 0.0018583

[
T 3
(

1
M(n)

+ 1
M(m)

)]1/2
Pσ2

(n)(m)ΩD,(n)(m)
,

n = 1, . . . , Ns
m = 1, . . . , Ns

. (16)

P is the pressure, σ(n)(m) is the Lennard-Jones parameter and ΩD,(n)(m) is the diffusion collision integral.
For solutions that cannot be assumed to be dilute, a multicomponent and thermal diffusion model

must be used. The calculation of the diffusive mass flux vector for species n then becomes [21, p. 458]

~J(n) = −
Ns−1∑
m=1

ρD(n)(m)∇Y(m) −DT,(n)
∇T
T
, n = 1, . . . , Ns − 1 (17)

where DT,(n) is the Soret thermal diffusion coefficient of species n [21, p. 456]

DT,(n) = −2.59×10−7T 0.659

 M0.511
(n) X(n)

Ns∑
m=1

M0.511
(m) X(m)

− Y(n)

·


Ns∑
m=1

M0.511
(m) X(m)

Ns∑
m=1

M0.489
(m) X(m)

 , n = 1, . . . , Ns. (18)

Entropy production from the second term is expected to occur all throughout the flame where the
temperature is elevated and composition gradients are large due to chemical reactions. Figure 10 shows
the contour plots of the second term of the DEI calculated for the Westbrook and Dryer two-step
mechanism. The largest rate entropy generation from species diffusion is found along the edges of the
flame where reactions are occurring most rapidly. This is due to the large heat release and change in
chemical composition at these locations.

Figure 10: Contours plot of the second term of the DEI calculated for the Westbrook and Dryer two-step
mechanism using diffusion given by (14).

The necessary conditions for automatic satisfaction of the second term are for the fluid to be a mixture
of dilute gases which obey Fick’s Law. Using Fickian diffusion coefficients and calculating ~J(n) with (14)
resulted in negative values in all cells of the computation domain. Since all necessary conditions for
automatic satisfaction were met by the model used, no positive cells should have been encountered. This
result was a good verification that the diffusion coefficients were being calculated correctly.

A separate set of simulations were run using multicomponent and thermal diffusion. Multicomponent
and thermal diffusion coefficients are a higher-order model of diffusion which should yield improved
results. These models, however, do not meet the necessary conditions for automatic satisfaction of the
DEI. Table 7 gives the number of cells with positive second terms. Figure 11 shows the location and
magnitude of the cells with positive second terms.
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Table 7: Positive Second Terms Generated with Soret Diffusion Coefficients.
Mechanism Number of Cells Maximum Value [W/m3]

GRI 3.0 6712 1.38× 10−5

Westbrook & Dryer 9792 1.36× 10−5

Jones Mech 2 9969 1.36× 10−5

Optimized 2-step 6880 1.36× 10−5

Optimized 3-step 4100 1.36× 10−5

Figure 11: Contours plot of the cells with positive second term of the DEI, calculated for the Westbrook
and Dryer two-step mechanism using diffusion given by (17).

Figure 11 shows that all positive cells were found well away from the reaction zone. In these areas
the gradients in temperature and concentration were very small and entropy generation was negligible.
Therefore, the small influence of the thermal diffusion coefficients allowed the second term to become
slightly positive in these low gradient areas. The presence of positive values in the second term was due
to the inclusion of the multicomponent and thermal diffusion coefficients. However, the magnitude of
the positive values was influenced by two additional sources.

First, since this was a numerical simulation, there were bound to be minor inaccuracies in the results.
In areas where the gradients were small the error in the calculated gradients could be of the same order
of magnitude as the gradients themselves leading to inaccuracies in the second term calculation. The
bulk of the positive cells were found downstream of the wind tunnel edge. At that location, the mesh
transitions from structured to unstructured and the aspect ratios of the cells experience a sharp transition.
Numerically this was not ideal and errors could manifest in the solution. In Table 7 the number of cells
and maximum value were approximately equal for all simulations. The reason was because the second
term is related to species diffusion and not chemical reactions. Since the same diffusion model was used
for each simulation, the results should have been the same. The differences in number of positive cells
was also due to the slight numerical errors in the low gradient areas of the grid.

Second, the largest magnitude positive values found when using multicomponent and thermal diffusion
coefficients were located in the fuel tube. In the tube there was a slight pressure gradient due to the
viscosity of the fuel flow. The calculation of the driving force for mass transfer vector, ~d, assumed the
flow to be isobaric. The small pressure gradient in the tube could have caused the calculated values to
be slightly incorrect.

5.3 Third Term

The third term of the DEI,
Nr∑
r=1

Ns∑
n=1

µ(n)R(n)(r), represents the entropy generation due to chemical reac-

tions. The requirements for automatic satisfaction are that the fluid is a mixture of dilute gases and
that all reactions in the mechanism are reversible and conform to the law of mass action. For reduced
mechanisms, this is generally not the case, so it is expected that the third term could have positive
values. Table 8 summarizes the values of the third term for each mechanism and Fig. 12 shows contour
plots of the positive cells for each of the mechanisms.
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Table 8: Positive Third Term Values.
Mechanism Number of Cells Maximum Value [W/m3]

GRI 3.0 6713 5.81× 107

Westbrook & Dryer 23887 1.40× 109

Jones Mech 2 12679 1.86× 106

Optimized 2-step 3479 1.42× 101

Optimized 3-step 0 -

Figure 12: Contours plot of cells with positive third
term. From top to bottom: GRI 3.0, Westbrook
and Dryer two-step, Jones Mech 2, optimized two-
step. The optimized three-step mechanism had no
cells with positive third terms.

The profiles of positive values for each of the
mechanisms shown in Fig. 12 all share a similar
structure. Positive values are found all throughout
the center of the flame with sharp boundaries at
the inside and outside edges. Positive values only
occur where reactions are taking place and appear
to be of largest magnitude near the central axis
of the flame. The profile for the optimized two-
step mechanism is noticeably more sparse than the
other mechanisms. This is also reflected in the
values from Table 8.

The Westbrook and Dryer two-step mechanism
had the largest number of positive cells and the
largest positive values. This was expected since
the Westbrook and Dryer mechanism has only
two reactions and the concentration exponents
are not the stoichiometric coefficients. The op-
timized two- and three-step mechanisms had the
least number of positive cells with the three-step
mechanism having none at all. While the opti-
mized two-step mechanism had some positive cells,
the maximum value seen was five orders of mag-
nitude smaller than any of the other mechanisms.
This was an encouraging result since the optimized
two- and three-step mechanisms were specifically
created to minimize this value.

Unexpectedly, the detailed GRI 3.0 mechanism
had a considerable number of positive third term
cells. While positive values of the individual terms
are allowed, as long as the sum total is negative, such large values for a single term are an indication that
DEI violations may occur. One possible explanation for the positive cells is that the GRI 3.0 mechanism
is not truly a complete mechanism. For the case tested here this is actually quite possible. FLUENT has
an upper bound of 50 chemical species and the GRI 3.0 mechanism contains 53. Therefore, the minor
species Ar, C3H7, and C3H8 were removed. These were chosen because they are either inert or related
to propane combustion which was not found in Sandia flame A.

An incomplete mechanism could potentially cause the positive values seen, however, the magnitudes
of the positive values for the optimized two- and three-step mechanisms, as well as Jones Mech 2, were
considerably lower. All three of these reduced mechanisms were clearly incomplete and had at least one
non-reversible reaction. Therefore, another likely reason would be that the GRI 3.0 mechanism contains
a few pressure-dependent reactions which do not meet the necessary conditions for automatic satisfaction
of the third term. While only a small number of elementary reactions are pressure-dependent, those that
are directly deal with the decomposition of the methane fuel and play a large role in the overall reaction.

Another cause of the positive third term values for the GRI 3.0 mechanism is that the rate parameters
are only order-of-magnitude estimates for many of the elementary reactions which deal with minor species.
The error in the rates which control the minor species, while individually small, could accumulate to a
sizable value when all the reactions are considered.
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5.4 Fourth Term
The fourth term of the DEI, ~ε · ∇T/T, represents the entropy generation due to heat transfer. Since
temperature gradients drive heat transfer, the largest magnitude of entropy generation is anticipated
to be found where the temperature gradients are the steepest. Figure 13 shows the contours plot of
the fourth term calculated using the Westbrook and Dryer two-step mechanism. The largest entropy
generation is encountered along the inner surface of the flame. From Fig. 8 it is shown that, for this
mechanism, the steepest temperature gradient is found in the same area, confirming the prediction.
Along the outside edge of the flame the gradient is not as steep so the entropy generation is lessened.

Figure 13: Contours plot of the fourth term of the DEI calculated for the Westbrook and Dryer two-step
mechanism.

The conditions for automatic satisfaction of the fourth term are for the fluid to obey Fourier’s Law of
heat conduction. The numerical model assumed this behavior for all species so no positive values were
predicted. However, the thermal diffusion coefficients that caused the positive second term values are
also used in the calculate of the energy flux vector, ~ε

~ε = −k∇T − cR̂T
Ns∑
n=1

DT,(n)

~d(n)

ρ(n)
. (19)

where k is the thermal conductivity, which for an ideal gas mixture is calculated as a combination of
kinetic theory and ideal-gas mixing law using Wassiljewa’s equation

k =

Ns∑
n=1

X(n)k(n)
Ns∑
m=1

X(m)φ(n)(m)

with the Mason and Saxena function φ(n)(m) [22, p. 10.31]. The individual species thermal conductivities,
k(n), are calculated from kinetic theory by the equation [23, p. 534]

k(n) =
15

4

R̂

M(n)
µ(n)

[
4

15

cp,(n)M(n)

R̂
+

1

3

]
, n = 1, . . . , Ns

where µ(n) is the dynamic viscosity of species n calculated from kinetic theory, and cp,(n) is the specific
heat of species n calculated from a polynomial curve fit.

In all simulations with the thermal diffusion coefficients turned off, each cell resulted in a negative
value for the fourth term; all in accordance with the terms for automatic satisfaction. When the thermal
diffusion coefficients were turned on, a few non-satisfying cells were found for each mechanism. A
comparison of the number of non-satisfying cells, and magnitudes of the positive values, is shown in
Table 9 for simulations using the thermal diffusion coefficients.

In each simulation using the thermal diffusion coefficients, the positive values for the fourth term are
found along the inner edge of the flame as shown in Fig. 14. While some of the simulations only have
one or two positive cells, they are always found at the forefront of the inner edge of the flame. Much like
the second term, the positive values for the fourth term are all found in areas of low gradients where the
slight effect of the thermal diffusion coefficients are most noticeable. The fourth term has an additional
sensitivity to low temperatures due to the leading 1/T dependence which enhances the magnitude of the
positive values of the fourth term.
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Table 9: Positive Fourth Term Values for the Cases that Included Thermal (Soret) Diffusion Coefficients.
Mechanism Number of Cells Maximum Value

GRI 3.0 830 1.26× 103

Westbrook & Dryer 2 1.67× 101

Jones Mech 2 13 3.29× 101

Optimized 2-step 1 8.43× 10−1

Optimized 3-step 377 6.88× 101

Figure 14: Contours plot of the cells with positive fourth term calculated for the GRI 3.0 mechanism
and including thermal diffusion coefficients.

5.5 Entropy Violations
To verify whether the DEI is verified, the four terms of (1) are summed at every grid point. Positive
values of any term individually were acceptable as long as the sum total was negative. However, for
three of the five mechanisms investigated, the non-satisfying values of the third term were too large to
be balanced by the other terms and violations of the DEI were found. Table 10 outlines the violations
of the DEI found for each chemical mechanism.

Table 10: Violations of the DEI for Various Mechanisms.
Mechanism Without thermal diffusion With thermal diffusion

Number Volume Fraction Maximum Number Maximum
of Cells [%] Positive Value of Cells Positive Value

GRI 3.0 3513 3.98× 10−3 5.72× 107 4697 8.07× 107

Westbrook & Dryer 20653 3.62× 10−2 1.40× 109 23506 1.56× 109

Jones Mech 2 2075 1.15× 10−3 1.71× 106 2474 1.23× 106

Optimized 2-step 0 0 - 0 -
Optimized 3-step 0 0 - 0 -

The optimized two- and three-step mechanisms performed exactly as they were intended, producing
no violations of the DEI. Jones Mech 2 and the detailed GRI 3.0 mechanism both contained a small
number of violating cells while, the Westbrook and Dryer two-step mechanism contained the most, and
largest magnitude, violating cells. The Westbrook and Dryer mechanism was expected to produce the
largest number of violations since it met none of the criteria for automatic satisfaction of the third term
given in [1].

Figure 15 shows contours of violations of the DEI for the three violating mechanisms. Since only
the third term had non-automatically satisfying cells, the plots in Fig. 15 look remarkable similarity to
those in Fig. 12, where the non-satisfaction of the third term is shown. Comparing the number of DEI
violations in Table 10 to the number of positive third term cells in Table 8, it is seen that the number of
DEI violations was less than the number of positive third term cells. This indication that some of the
non-satisfying cells for the third term were balanced by the negative values of the other terms. However,
the magnitude of the third term positive values were simply too great to be balanced in all cells.

For each of the mechanisms there is a channel, centrally located in the flame, where violations do not
occur. The top pane of Fig. 16 shows the DEI violations for the Westbrook and Dryer mechanism where
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Figure 15: Profiles of entropy violations for var-
ious mechanisms. From top to bottom: GRI
3.0 [15], Westbrook and Dryer two-step [8], Jones
Mech 2 [11]. The optimized two- and three-step
mechanisms had no violating cells.

Figure 16: Outline of the entropy violations su-
perimposed over contour plots of the major species
product species CO2 and H2O for the Westbrook
and Dryer two-step mechanism [8].

this channel is most prominently displayed. A bounding line has been drawn around the contours to
show where the values transition from negative to positive. In the second and third panels this bounding
line has been superimposed over mass fraction contours for CO2 and H2O. The gap in the DEI violations
lines up exceedingly well with the areas where these product species are at their highest concentrations.
Violations occur much more prevalently where reactions are occurring, or in other words, where the
global reaction has not moved completely to product species. This could also support the theory that
violations of the GRI 3.0 mechanism are due to the inaccurate rate parameters for the minor species
reactions.

The most surprising result from this study was that the detailed GRI 3.0 mechanism still produced
violations of the DEI. Equally intriguing was that the GRI 3.0 mechanism was used as the optimization
target for creating the optimized two- and three-step mechanisms; both of which produced no violations.
Previously discussed were the possibilities that the violations from the GRI 3.0 mechanism could be due
to an incomplete combustion mechanism, pressure-dependent elementary reaction rates, or inaccurate
rate parameters. Another possible cause could be that the numerical solution scheme imparted these
violations. In previous studies where the Stiff Chemistry Solver was not used, Jones Mech 2 produced no
violations of the DEI [11, p. 113]. In the current study, using the Stiff Chemistry Solver, Jones Mech 2
was found to produce 2075 violating cells. While this was still a very low number of violations, it was
on par with the 3513 violations of the GRI 3.0 mechanism. Unfortunately, it was impossible to produce
a converged solution of the GRI 3.0 mechanism without using the Stiff Chemistry Solver.

6 Summary
The structure of the Sandia flame A predicted by the detailed GRI 3.0 mechanism was found to match
the experimental results quite well. The only exception was that the flame width was over-predicted
by approximately 25%. This incorrect width could be due to the co-flow velocity used. The reduced
mechanisms did a poor job of matching the experimental data due to excessively high upper flammability
limits. The premixed fuel supply, while outside the flammability limits of actual methane fuel, was well
within the acceptable range of the reduced mechanisms. Therefore, premature ignition was experienced
which caused the inner surface of the flame to be artificially advanced towards the fuel tube. Once the
initial oxygen supply was depleted, the reduced mechanism simulations exhibited similar responses to
the GRI 3.0 mechanism since the flame is diffusion rate limited. The plateaued temperature profile of
the reduced mechanisms was shown to be due to a lack of competing chemical reactions.

Non-automatic satisfaction of the DEI was limited to only the third term, as long as Fickian diffusion
was used. Positive values for the second and fourth terms of the DEI were found when using Soret
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thermal diffusion coefficients. Soret diffusion accounts for counter gradient effects and does not meet the
conditions for automatic satisfaction of the second and fourth terms. No violations of the DEI were found
for the optimized two- and three-step mechanisms, just as they were designed to perform. Surprisingly,
violations were found for the detailed GRI 3.0 mechanism. Potential sources could include an incomplete
set of reactions, the inclusion of pressure-dependent elementary reactions, inaccurate rate parameters,
or even the numerical scheme used.
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