
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-0331

Educing coherent �ow structures from unstructured

meshes

J. I. Cardesa∗, O. Lehmkuhl∗∗,D. Mira∗∗, G. Houzeaux∗∗

Corresponding author: ji.cardesa@upm.es

∗ ETSI Aeronáuticos, Universidad Politécnica de Madrid, Madrid, Spain.
∗∗ BSC-CNS, Barcelona, Spain.

Abstract: We present a method to time-track regions of a �ow. A �ow region, or structure, is
de�ned as a collection of spatially-connected grid points which share a user-de�ned property of
interest. The technique, which originated in time-resolved direct numerical simulations of turbulent
�ows on structured grids [1], is adapted in the present study to unstructured meshes. We use a
�nite element simulation [2] of a sphere's wake on an unstructured tetrahedron grid as the basis
to develop the code that educes �ow structures and links them with those in temporally-adjacent
�elds. We validate the extraction process against the original code for structured grids by using
an identical input �eld for both codes. Finally, we observe the linking of structures between two
�ow �elds deteriorates as expected when we increase the temporal distance between the �elds,
providing con�dence in the performance of our tracking algorithm.

Keywords: Computational Fluid Dynamics, Data Post-processing, Structure Dynamics, Coherent
Structures, Finite Elements.

1 Introduction

The numerical simulation of turbulent �ows initiated a new era in the study of �uid motion. Initially, its
use was limited to the computation of basic mean quantities. With time, however, the spacial structure of
static �ow features came within reach of visualization tools, while more recently it has become ordinary to
see movies of �ow simulations. Yet extracting and interpreting the wealth of information inherent to these
movies remains a challenging task.

In recent studies of fundamental turbulence research, a technique to tackle this speci�c problem has been
developed. By tracking individual �ow structures and organizing their complex spatio-temporal evolution
into graphs, it is now possible to carry out a statistical analysis over dynamical events in the �ow. The
technique was initiated on data sets from temporally-resolved Direct Numerical Simulations (DNS), where
high-order schemes based on structured meshes are used to simulate �ows in canonical scenarios such as triply
periodic domains or plane channel �ows. This approach has enhanced our possibility to uncover dynamical
patterns within the �ow which would otherwise be mere speculation based on eye inspection of movies from
�ow simulations [1, 3]. Yet the vast majority of �ow simulations these days, particularly those of industrial
relevance, are carried out on unstructured meshes and complex �ow geometries. Extending the code from
structured to unstructured meshes requires solutions which are the object of the present study.

2 Sphere wake simulation

The wake of a subcritical sphere [4] was computed using ALYA, a multi-physics �nite element (FE) code
developed at BSC [2]. A �nite element Galerkin approximation is used for the space discretization with a
non- incremental fractional step method to stabilize pressure. This allows for the use of �nite element pairs

1



that do not satisfy the inf-sup condition, such as equal order interpolation for the velocity and pressure
used in this work. The convective term is discretized using the EMAC discretization [5] that allows to
conserve kinetic energy, momentum and angular momentum. Temporal discretization is performed through
an explicit conservative third-order Runge-Kutta scheme [6] combined with an eigenvalue based time step
estimator [7]. The formulation is closed by an appropriate expression for the subgrid-scale viscosity. In this
work, the eddy-viscosity model proposed by Vreman is used [8].

The simulation was done with a grid made of Nels = 9625923 elements, all of which were tetrahedral,
and a total of Nnodes = 1691060 nodes. The streamwise, spanwise and vertical velocities, u, v, w, respec-
tively, were stored for N = 100 consecutive time points, each one spaced by 10 numerical time steps ts from
the previous one.

3 Problem Statement

The starting point for the testing of structure tracking is a sequence of N �ow �elds with a time gap ∆t
between them that is su�ciently small. Typically, we are interested in a speci�c scalar quantity θ that is
represented on the grid of the simulation (xi, yi, zi) at the discrete times tn, where 1 6 n 6 N . For example,
we may want to explore the dynamics of �ow regions where the temperature θ is above the melting point
θm of the boundaries. Our process to accomplish this study involves three steps.

Step 1 For each tn, identify those regions of the �ow where θ > θm, which we call interchangeably structures
or objects. This is done with a connected-component labeling algorithm [9]. Each object j at tn will contain
a set of grid points, expressed as the voxel list Vj(tn). Going from the discrete �ow �elds of θ(xi, yi, zi, tn) to
as many voxel lists Vj(tn) as there are objects in the sequence of �elds is the goal of the structure extraction
process. It can be carried out one �eld at a time. We also store m(tn), the number of objects at tn.

Step 2 For each object j at tn with voxel list Vj(tn), �nd the objects (if any) from lists V16j6m(tn+1)(tn+1)
which intersect with Vj(tn) and store the intersection volume of each such connection. This linking process
provides the list of objects at tn+1 with which each object at tn is connected, and what the intersection
volume for each connection is. It requires taking always two consecutive time points at once and produces
N − 1 link �les.

Step 3 Load the N − 1 link �les into memory and deduce the dynamics of each individual object from
its birth to its death during the interval t1 6 tn 6 tN . Organize the spatio-temporal interactions between
di�erent objects into branches belonging to graphs, as explained in [1].

Step 3 will not be discussed in the present study, as it is identical for structured and non-structured meshes,
so that it represents no further di�culty with respect to the existing code that we started working with.
Step 1 is where most changes need to be introduced, and we start by outlining those.

3.1 Structure extraction

In our �ow simulation based on �nite elements, the grid information consists of the following items:

• Nels: number of elements

• Nnodes: number of nodes

• xi, yi, zi: position of the nodes along the coordinate axes, where 1 6 i 6 Nnodes

• Mi: number of nodes in element i, where 1 6 i 6 Nels

• Ai,j : node reference number of j-th node delimiting element i. 1 6 i 6 Nels and 1 6 j 6Mi.

With the above items, everything about the grid geometry is known. However, structure extraction will
involve applying a connected-component labeling algorithm [9], which requires knowing at each grid point

2



who the neighbors are. The neighbors will be probed one after the other in order to check the θ(xi, yi, zi) > θm
condition. Whereas on a 3D structured grid the 26 neighbors to grid point (xi, yi, zi) are immediately obvious
by looping each coordinate from i = −1 to i = 1, from the above grid information we need to �rst deduce the
neighbor list for each grid point. Moreover, we need to decide weather to take as grid point de�nition the
center of an element or the element's nodes. Since FE approximate the solution of the governing equations
at the nodes, we retained the nodes, rather than the element centers, as the building blocks of our tracking
code - more on this in section 3.2. Taking as de�nition that two nodes are considered neighbors if they share

an element, we deduce the following grid properties:

• Li: number of nodes neighboring node i, where 1 6 i 6 Nnodes

• Pi,j : node reference number of j-th node which is a neighbor of node i. 1 6 i 6 Nnodes and 1 6 j 6 Li.

All the required information to infer Li and Pi,j is contained in Mi and Ai,j . We note in passing that
since our grid was made of purely tetrahedral elements, Mi = 4 except at the boundaries where Mi = 3.
However, we kept the code open to more complex grids and retained the general form ofMi throughout.

Our de�nition of neighboring nodes ensures that by iteratively looping through the neighbors of the neigh-
boring nodes, eventually the entire domain is probed. This condition is necessary, since without it a single
object could mistakenly be identi�ed as two di�erently-labeled yet spatially-contiguous objects. Our de�ni-
tion does allow, however, for two nodes A and B to be neighbors, yet A is closer to some node C than to
B without A and C being considered neighbors (for lack of A and C being on a common element). This
does not pose any issues from the labeling point of view, since other neighbors of node A will be linked to
C through common elements and hence C can be reached from A provided the intermediate nodes comply
to the θ(xi, yi, zi) > θm criterion.

In order to test the code for object extraction in an unstructured mesh, we generated Li and Pi,j for a
cubic structured grid with NC grid points in each direction, where NC = 512. In such a rectangular mesh,
Li can take values 7, 11 or 17 if node i is at a cube vertex, edge or face, respectively, and 26 otherwise. We
stored a velocity component u computed on the N3

C grid with a triply-periodic, pseudo-spectral DNS [10].
Since the code to be tested requires the input scalar �eld to be a 1D array, we reshaped the velocity �eld
u(i, j, k), where all three indices span the range 1 to 512, to array u(i) where 1 6 i 6 5123. The object
extraction routine for unstructured grids uses a connected-component labeling routine written around arrays
u(i), Li and Pi,j , with parameter Nnodes set to 5123. In the routine for structured grids, the code takes in
u(i, j, k) and NC only. Both routines search for objects matching the condition u > uthreshold. For various
values of uthreshold, both routines identi�ed the same objects. To increase the geometrical complexity of
the objects to be identi�ed, we applied both routines on �elds of u2 and u3 probing di�erent thresholds
with identical results. Finally, we found the objects of both our codes were the same as those identi�ed by
function bwlabeln fromMatlab R© when applied to array u(i, j, k) after binarizing it with the corresponding
threshold. These �ndings validate our new code for educing structures.

3.2 Temporal linking

Step 2 outlined in section 3 involves a comparison of node lists Vj at times tn and tn+1 to compute the inter-
section volumes (if any) between objects at two points in time. Detecting the intersection is straightforward,
since it only requires a node-by-node comparison to �nd a shared node. Computing the intersection volume
required assumptions. Whereas the volume of an element is immediately determined from the coordinates
of its delimiting nodes, the volume that a node is representative of needs to be computed somehow. From
xi, yi, zi,Mi and Ai,j , we compute the following grid properties:

• Vj : volume of element j, where 1 6 j 6 Nels

• Qi: number of elements containing node i, where 1 6 i 6 Nnodes

• Bi,j : element reference number of j-th element containing node i. 1 6 i 6 Nnodes and 1 6 j 6 Qi.

3



(a) (b)

Figure 1: (a) Histogram of θ = v2 + w2 from a single �eld of the sphere's wake, with zeros having been
removed. θ in code units. The vertical lines correspond to the three selected thresholds in this study.
(b) Volume (triangles) and number (squares) of all educed objects at the 3 selected θ. Data from a single
�eld.

For a node i we de�ne its volume νi as follows:

νi =

Qi∑
j=1

VBi,j
/MBi,j

. (1)

In words, the volume of a node is the sum of the scaled volumes of all elements that contain that node. An
element's scaled volume is the volume of the element divided by the number of its nodes. Our crude de�nition
makes the computation of a node volume a very fast process compared to more elaborate de�nitions based
on spatial interpolation of the node boundaries, while being itself a type of interpolation which adapts the
size of a node to the size of its surrounding elements.

Since the FE method provides an approximation to θ at the nodes, we decided to use these values of θ
when checking the θ > θm condition in the object extraction step. The value of θ with respect to the
threshold is important, and no accuracy loss is caused by our method on θ. Instead, the accuracy loss we
incur is in the grid point's volume computation. We note that an alternative approach would have been to
interpolate the value of θ at the element's geometric center, and then use the latter as the de�nition of a
grid point. The grid point's volume in that case would be the element's volume, which is an exactly derived
quantity from xi, yi and zi. In the alternative approach, the accuracy loss would be due to the interpolation
of θ and none on the grid point's volume, while we opt for accuracy loss on the latter while none on θ. Our
choice is justi�ed by the fact that the exact volume of the object intersections is irrelevant. We require these
volumes solely to compare them with other intersections - in step 3 of section 3 - and �nding the largest one.
The bias error introduced in Equation 1 will a�ect the absolute value of the intersections, yet their ranking
will be a�ected to a to a lesser extent.

We now proceed to educe objects from our data set described in section 2. We chose to focus on the
quantity θ = v2 +w2, which is a marker for strong cross-stream motions typical of a sphere's wake. We plot
on Figure 1(a) the distribution of θ as a histogram computed from a single �eld of our time sequence. We
extract �ow objects for three thresholds indicated on Figure 1(a) as vertical lines. The volume and number
of objects as a function of the chosen threshold is shown on Figure 1(b). It can be seen that the volume
of the extracted objects decreases as the threshold θ is increased, while the number of extracted objects
increases.

4



(b)

Figure 2: (a) Percentage of volume of objects at t1 that is lost (unconnected) as the objects are linked with
those at t1 + ∆t. Data for the 3 thresholds indicated in the legend and corresponding to those depicted on
Figure 1 as vertical lines. ts is the numerical time step of the code. (b) same as (a), but for the number of
lost objects scaled by m(t1), the number of objects at t1.

To assess the performance of the linking routines, we �rst carry out step 2 from section 2 by comparing
object lists Vi(t1) with Vi(t1). This simple test is found to yield that no object is unconnected and that
all objects connect with one object only. Next, we carry out step 2 from section 2 by comparing object
lists Vi(t1) with those from Vi(t2), Vi(t3), Vi(t4) and so on, until Vi(t100). Our expectation is that as the
time gap is increased, more objects from Vi(t1) will become unconnected with those further in time. The
unconnected volume corresponding to those objects should also increase with ∆t. Both expectations are
seen to be con�rmed on Figure 2.

We show on Figure 2(a) the evolution of the unconnected volume for increasing ∆t/ts, where ts is the
numerical time step. After 104 time steps, only 2% of the volume of the objects present at t1 has been
lost for the highest threshold - and even less for lower thresholds. Figure 2(b) shows that in terms of lost
objects, their fraction with respect to the initial number m(t1) is much higher than the lost volume fraction,
indicating that a large number of structures carry a very low percentage of the total object volumes. This is
characteristic of what has been observed in educed structures from DNS, where a preliminary step involves
removing many objects - most - which are very small in size and are a result of underlying noise. Their
temporal coherence is limited, and this is re�ected on Figure 2(b) con�rming that the temporal linking
routines are producing results that exhibit the expected behavior.

4 Future work

When searching for an appropriate threshold, step 1 from section 3 is usually repeated by scanning many
thresholds and obtaining the so called percolation curves for a given scalar �eld [11, 3]. Before we could do
this, in addition to validating our code as done in the present study, we need to choose a spatially inhomo-
geneous threshold as a consequence of the �ow's underlying inhomogeneity. Typically, this is done based
on the spatially inhomogeneous mean and root-mean-square of that quantity, which are statistics that we
have not converged for this simulation, which was intended solely for the purpose of code validation. Having
reached the present point in the post-processing code maturity, we will explore an ALYA simulation of the
turbulent jet �ame (DLR A �ame [12]). Here, the heavier computations involved in converging statistics for
accurate threshold determination and executing step 3 from section 3 will be used to study aspects of the

5



�ame dynamics.

References

[1] A. Lozano-Durán and J. Jiménez. Time-resolved evolution of coherent structures in turbulent channels:
characterization of eddies and cascades. J. Fluid Mech., 759:432�471, 2014.

[2] M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Arís, D. Mira, H. Calmet,
F. Cucchietti, H. Owen, et al. Alya: multiphysics engineering simulation toward exascale. J. Comput.

Phys., 14:15�27, 2016.
[3] J. I. Cardesa, A. Vela-Martín, and J. Jiménez. The turbulent cascade in �ve dimensions. Science,

357(6353):782�784, 2017.
[4] I. Rodríguez, R. Borell, O. Lehmkuhl, C. D. Pérez Segarra, and A. Oliva. Direct numerical simulation

of the �ow over a sphere at Re = 3700. J. Fluid Mech., 679:263�287, 2011.
[5] S. Charnyi, T. Heister, M. A. Olshankii, and L. G. Rebholz. On conservation laws of Navier-Stokes

Galerkin discretizations. J. Comput. Phys., 337:289�308, 2017.
[6] F. Capuano, G. Coppola, L. Rández, and L. de Luca. Explicit Runge-Kutta schemes for incompressible

�ow with improved energy-conservation properties. J. Comput. Phys., 328:86�94, 2017.
[7] F. X. Trias and O. Lehmkuhl. A self-adaptive strategy for the time integration of Navier-Stokes equa-

tions. Numer. Heat Tr. B-Fund., 60:116�134, 2011.
[8] A. W. Vreman. An eddy-viscosity subgrid-scale model for turbulent shear �ow: algebraic theory and

applications. Phys. Fluids, 3670(16), 2004.
[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv., 31(3):264�

323, September 1999.
[10] J. I. Cardesa, A. Vela-Martín, S. Dong, and J. Jiménez. The temporal evolution of the energy �ux

across scales in homogeneous turbulence. Physics of Fluids, 27(11):111702, 2015.
[11] A. Lozano-Durán, O. Flores, and J. Jiménez. The three-dimensional structure of momentum transfer

in turbulent channels. J. Fluid Mech., 694:100�130, 2012.
[12] W. Meier, R. Barlow, Y.L. Chen, and J.Y. Chen. Raman/Rayleigh/LIF measurements in a turbu-

lent CH4/H2/N2 jet di�usion �ame: experimental techniques and turbulence-chemistry interaction.
Combust. Flame, 123:326�343, 2000.

6


