
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-322

Adjoint-based Pareto Front Tracing in Aerodynamic
Shape Optimization

K. Gkaragkounis, E. Papoutsis-Kiachagias, V. Asouti and K. Giannakoglou
Corresponding author: kogkar@hotmail.com

National Technical University of Athens (NTUA), School of Mechanical Engineering
Parallel CFD & Optimization Unit

9, Iroon Polytechniou, NTUA Zografou Campus, 15780, Athens, Greece

Abstract: In multi-objective optimization problems, fronts of non-dominated solutions are tra-
ditionally computed either by multi-objective evolutionary algorithms or gradient-based methods.
In the latter, the objective functions are usually concatenated into a single one using different
value-sets of weights and the computation involves as many single-objective optimizations as the
sought points on the front. Both have a relatively high computational cost, with that of evolution-
ary algorithms scaling with the number of design variables and the one of gradient-based methods
scaling with the number of front points. This paper aims at developing and using gradient-based
methods for populating the Pareto front at a low cost. To this end, after identifying one point on
the front, a number of successive constrained single-objective optimizations are solved to compute
the rest of the front points. The system of the KKT conditions for the above-mentioned opti-
mization problem is solved in three different ways. Among other, the costly computation of the
Hessian matrix is avoided a) through BFGS approximations which require only gradients computed
with the continuous adjoint method and b) the computation of Hessian-vector products instead
of the Hessian itself, by combining the adjoint method and the direct differentiation of the flow
and adjoint equations. The cases used for demonstrating the developed algorithms pertain to the
two-objective, constrained shape optimization of two isolated airfoils, targeting min. drag and
max. lift, by retaining a constant airfoil area as a geometrical constraint.

Keywords: Pareto Front, Continuous Adjoint Method, Hessian matrix, Direct Differentiation.

1 Introduction
Optimization problems with more than one objective functions are becoming increasingly common, both in
academic and industrial applications. These multi-objective optimization (MOO) problems are often tackled
with Evolutionary Algorithms (EAs) which are able to compute the Pareto front of non-dominated solutions.
The main advantages of using EAs are the use of “black-box” objective function evaluations and the ability
of converging to globally optimal solutions, after a usually great number of generations. However, at least
for standard EAs, the computational cost scales with the number N of design variables, [1].

On the other hand, gradient-based methods may tackle MOO problems by breaking them down into
several single-objective optimization (SOO) ones. Most of the relevant publications refer to weighted-sum
approaches in which a linear combination of the individual objectives is minimized. Different weight value-
sets lead to different front members. However, such an algorithm can compute the Pareto front only if the
weighted sum is convex w.r.t. the design variables [1–4]. Even in this case, the computational cost scales
with the number of front points since a separate SOO problem should be solved for each of them. Another
drawback of solving many SOO problems for different weights is the lack of an obvious mapping of the
value-sets of weights and the front point positions, with the exception of the front edges [2–5].

In [3], instead of deciding the weight value-sets a-priori, a dynamic way to compute them is proposed.
A small number of SOO problems are initially solved for a few weight value-sets and then, the euclidean

1

distance between the Pareto points is used to enrich less populated front parts. This method is also able
to compute non-convex Pareto fronts, though it significantly depends on the choice of the starting point.
Another method to compute non-convex and also discontinuous fronts is presented in [2], which relies on the
steepest descent method and starts tracing the Pareto front from a point lying already on it.

In [5], a MOO approach in the form of a prediction-correction scheme using gradient methods is proposed.
A constrained minimization problem is solved to move from one front point to another. In particular, equality
constraints are imposed to all but one objective functions, by assigning user-defined target values while the
remaining objective is minimized. This approach has the advantage of controlling the distance (in the
objective space) between two Pareto points, at least for the constrained objective functions. The algorithm
relies on the KKT conditions to formulate the equations to be solved for traversing from one point to the
next. In specific, the KKT conditions yield a linear system, the solution of which gives the derivatives of
the design variables and Lagrange multipliers w.r.t. the target objective values. The current front member
is, then, updated based on these derivatives and a desired step in the constrained objectives. This so-called
prediction step is used to move close to the next Pareto point. Due to the non-linearity of the underlying
flow problem, an iterative correction step is additionally required to reach the front itself. The latter is based
on a typical SQP approach for constrained optimization problems.

In this paper, a similar approach to the sequential constrained SOO problems discussed in [5] is adopted.
Though the cost of the method still scales with the number of front points, the method is devised in the
hope that each constrained SOO problem solved to move from one point to the next has a significantly lower
cost than the alternative of starting each SOO problem from the initial geometry with a different weight
value-set. The main interest of the paper is to utilize the KKT conditions in order to formulate systems of
equations, the solution of which leads to the next Pareto point. In specific, two such systems are formulated.
Both include, among other, the Hessian matrix of the Lagrangian. If this was to be computed, the total CPU
cost would become proportional to N , [6]. Instead, a number of alternatives are proposed and evaluated.
These include the Hessian approximation using BFGS, the computation of Hessian-vector products instead
of the Hessian itself, [7], and the combined use of them.

Throughout this study, the continuous adjoint method [8, 9] is used to efficiently compute the gradients
of the objective and constraint functions w.r.t. the design variables. To compute Hessian-vector products,
a combination of Direct Differentiation (DD) and adjoint is utilized, which makes the cost independent of
N . This method was inspired by the application of the truncated Newton method in shape optimization,
[7, 10,11], developed by the authors’ group in the past.

The developed methods are evaluated in three aerodynamic shape optimization problems, with two
objective functions each. All of the cases studied are for incompressible steady-state flows around isolated
airfoils, targeting min. drag and max. lift, under an equality constraint on the airfoil area. The developed
software was implemented within the OpenFOAM 2.3.1 open-source CFD toolbox framework.

2 The Pareto-tracing problem
Let us assume a MOO problem with M=2 objective functions f1 and f2, Λ=1 equality constraints (cg=0)
and N design variables (bn, n ∈ [1, N]), for which b ∈ D, where D is a subdomain of IRN; the presented
method can readily be expanded to any other value of M and Λ. One way to determine the point on
the Pareto front is by defining the targeted M −1 objective function values and using them as equality
constraints while the algorithm minimizes the remaining one. Here, it is assumed that f̂2 is the target value
for f2, for which f1 is to be minimized. To do so, a SOO problem must be solved by minimizing the following
Lagrangian function

L
(
b, λ1, λ2, f̂2

)
=f1 [U(x(b),b),x(b),b)]−λ1cf

[
U(x(b),b),x(b),b, f̂2

]
−λ2cg[x(b),b] (1)

where λ1, λ2 are Lagrange multipliers,
cf =f2 − f̂2 (2)

2

is the constraint associated with the desired f2 value, U is the primal variables vector and x the nodal grid
coordinates. The corresponding KKT first-order optimality conditions

K (p)=

 ∂L
∂b

∣∣
λi,f̂2=ct

cf
cg

=0. (3)

should be met. By satisfying eqs. 3 for different f̂2 values, points on the Pareto front can be obtained in a
sequential manner.

Let us define the variables z = [b λ1 λ2]
T ∈ IRN+2, p =

[
z f̂2

]T
∈ IRN+3. Different approaches for

satisfying the necessary KKT conditions are discussed in the next sections.

2.1 Linearizing the KKT conditions w.r.t. f̂2
According to [5], since eq. 3 is satisfied for any value of f̂2, its total derivative w.r.t. f̂2 is zero and hence,

∂Ki

∂zj

∣∣∣∣
f̂2=ct

∂zj

∂f̂2

=−∂Ki

∂f̂2

∣∣∣∣
z=ct

(4)

where repeated indices imply summation. Eq. 4 is nothing more than the application of the Implicit Function
Theorem to eq. 3 and can be used to compute the derivatives of z w.r.t. f̂2, by solving the system H −c′f

T −c′g
T

c′f 0 0
c′g 0 0


︸ ︷︷ ︸

A

 b′′

λ′′1

λ′′2


︸ ︷︷ ︸

X1

=

 0

1

0


︸ ︷︷ ︸

Q1

(5)

where H is the Hessian of L w.r.t. the design variables, H= δ2L
δbδb , c′µ =

∂cµ
∂b

∣∣
f̂2=ct

, µ= f, g, b′′ = ∂b
∂f̂2

and

λi
′′ = ∂λi

∂f̂2
, i= 1, 2. After solving eq. 5, bn and λi are updated by using a first-order Taylor expansion, as

follows

bnewn =boldn +b′′n

(
f̂2
new
− f̂2

old
)

(6a)

λnewi =λoldi +λ′′i

(
f̂2
new
− f̂2

old
)
, i=1, 2 (6b)

approximating thus the next Pareto point. In eqs. 6, boldn and λi, i = 1, 2 correspond to the previously
computed point on the front. Due to the non-linearity of the underlying fluid flow equations, the point
computed through eqs. 6 has to be corrected in order for this to lay on the front (see section 2.3).

2.2 Linearizing the KKT conditions w.r.t. z
Another way to locate the next Pareto point is to satisfy eqs. 3 by linearizing them w.r.t. z, which is nothing
else than the SQP method for constrained SOO [12]. In SQP, the update of z is computed by solving the
system  H −c′f

T −c′g
T

c′f 0 0
c′g 0 0


︸ ︷︷ ︸

A


∆b

∆λ1

∆λ2


︸ ︷︷ ︸

X2

=


− δLδb
−cf
−cg


︸ ︷︷ ︸

Q2

(7)

3

and updating according to

bnewn =boldn +∆bn (8a)

λnewi =λoldi +∆λi, i=1, 2 (8b)

Due to the non-linearity of the fluid-flow equations, a number of iterations is required to find the solution
of each constrained SOO problem. A difference between eqs. 5 and 7 is that the first system is valid only
if the KKT conditions are satisfied for the current z (i.e. if the current point belongs to the Pareto front)
while the latter can be solved irrespective of the starting point.

2.3 Discussion
In both eqs. 5 and 7, the LHS matrices A are identical and include the Hessian of L. In this paper, Hessian
computations are avoided, since the relevant cost is equal to at least N+2 EFS (Equivalent Flow Solutions,
i.e. as if the flow PDEs were solved instead), [6]. Instead, two different methods are utilized to solve either
eq. 5 or 7: (a) the damped version of BFGS (dBFGS) [12] is used to iteratively approximate the Hessian,
by solely using the gradient of L w.r.t. b, computed by the continuous adjoint method, section 3. Once the
LHS of eq. 5 or 7 is known (or approximated), the latter can be solved using the Range-Space approach, [12],
which involves the inversion of the Hessian matrix (b) Linear Restarted GMRES [13] (hereafter abbreviated
to GMRES) is used to iteratively solve eq. 5 or 7. GMRES requires only matrix-vector products, without
needing the LHS matrix itself and, hence, the computation of H can be avoided. Instead, its product with
known vectors is computed by using a combination of DD and adjoint. Each inner iteration of the GMRES
method (i.e. matrix-vector multiplication) during the computation of bases within the Arnoldi procedure
comes at an additional cost of 2 EFS, see section 4.

Three different combinations of the two systems resulting from the KKT conditions (eqs. 5 and 7) and
their above-mentioned solution algorithms are devised in this paper, in order to trace the Pareto front. These
read:

1. Method 1:
Method 1 follows a two-step approach to move from point k to point k+1, both on the Pareto front.
In the first (prediction) step, eq. 5 is solved once to update the initial b and λ values. We opt on using
GMRES to (approximately) solve eq. 5 since, in this first step, no previous gradient exists in order to
construct a reasonable approximation to the Hessian using dBFGS. Due to the non-linear nature of
the problem, this update is unable to yield a point exactly on the Pareto front. Hence, some correction
steps are required in order to bring this point back to the front. However, eq. 5 is valid only on the
Pareto front and, therefore, the same equations cannot be used to compute corrections. Instead, eq. 7
is solved to bring the point on the front. During the correction step, eq. 7 utilizes the dBFGS method
to approximate the Hessian matrix. The reason for not using GMRES to solve eq. 7 in the correction
steps is that each inner GMRES iteration comes at a cost of 2 additional EFS, making it prohibitively
expensive if used extensively.

2. Method 2:
The predictor step based on eq. 5 is skipped and eq. 7 is exclusively solved. Eq. 7 is solved using
GMRES in the first step when moving from one Pareto point to another and the dBFGS-driven SQP
method is used in the subsequent steps, following the rational presented in Method 1. Method 2 is
devised in order to assess whether solving eq. 5 instead of eq. 7 in the first step has a significant merit.

3. Method 3:
In method 3, the movement from one Pareto front point to another is achieved by solving eq. 7
supported by dBFGS. The latter requires information derived from the previous optimization cycle
(δL/δbn, ∆bn) to update the Hessian matrix in the LHS of eq. 7. However, at the first optimization
cycle, when moving between two Pareto points, this information is not available. Thus, the Hessian
is initialized with the identity matrix which, practically, corresponds to a steepest descent step for
minimizing f1.

4

A point on the Pareto front should be available to use any of the aforementioned methods. The first
Pareto point is computed by using SQP to solve a SOO problem in which the flow constraint is neglected.
This is equivalent to solving a SOO problem with weights equal to 1 and 0 for f1 and f2, respectively.

In eqs. 5 and 7, all first-order derivatives w.r.t. bn are computed using the continuous adjoint method,
as presented in the next section. The treatment of the second-order derivative (δ2L

δbnδbm
) and the (iterative)

solution scheme of eqs. 5 and 7 are presented in section 4.

3 The Continuous adjoint method for incompressible flows
The gradient of the objective functions w.r.t. the design variables is computed with the continuous adjoint
method [8,9] at a computational cost independent of N . In what follows, the derivation of the adjoint PDEs
is briefly presented, for steady-state laminar 2D incompressible flows. The primal system of equations is

Rp=− ∂vj
∂xj

=0 (9)

Rvi =vj
∂vi
∂xj
− ∂τij
∂xj

+
∂p

∂xi
=0 , i = 1, 2 (10)

where vi and p are the velocity and pressure fields, τij=ν
(
∂vi
∂xj

+
∂vj
∂xi

)
are the stress tensor components and

ν the constant viscosity. For the cases studied in this paper, f1 and f2 stand for the drag and lift exerted
on an airfoil; a general expression for any component of the exerted forces is

Fforces=

∫
SW

(
pδji − τij

)
rinjdS (11)

where r is the direction along which the force vector is projected, namely the direction of the freestream
velocity for drag and its normal for lift. SW stands for the airfoil wall and n is the outward (from the
fluid domain) unit normal vector. The geometrical equality constraint, which in this paper stands for the
preservation of the airfoil area, is given by

cg=

∫
Ω

dΩ−Ωinitial=0 (12)

with Ω being the volume of the fluid domain and Ωinitial its initial area. Maintaining the area of the fluid
domain practically preserves the airfoil area, since the freestream boundaries are kept fixed. By imposing
this constraint, the trivial solution of drag minimization which leads to an almost zero-thickness airfoil, is
avoided.

Starting point of the adjoint method is the differentiation of the augmented objective function

Laug=L+

∫
Ω

qRpdΩ+

∫
Ω

uiR
v
i dΩ (13)

with L given by eq. 1, ui being the adjoint velocity components and q the adjoint pressure. After a lengthy
mathematical development, which is beyond the scope of this paper, see [8], field integrals involving δvi/δbn
and δp/δbn are eliminated by satisfying the adjoint PDEs, which read

Rq=−∂uj
∂xj

=0 (14)

Rui =uj
∂vj
∂xi
− ∂ (uivj)

∂xj
−
∂τaij
∂xj

+
∂q

∂xi
=0 , i=1, 2 (15)

where τaij = ν
(
∂ui
∂xj

+
∂uj
∂xi

)
stand for the adjoint stress tensor components. The corresponding boundary

conditions arise after proper mathematical treatment of the boundary integrals including the variations of p
and vi, which can also be found in [8]. Though δL/δbn could be computed by solving a single adjoint problem,

5

the necessity of acquiring δcf/δbn separately (see eqs. 5 and 7), leads to the solution of two adjoint problems
for computing δf1/δbn and δcf/δbn. Note that cg is a geometric constraint and, as such, its derivative is
directly computed by an analytical expression. Hence, δL/δbn reads

δL

δbn
=
δf1

δbn
−λ1

δcf
δbn
−λ2

δcg
δbn

(16)

Regarding f1, f2, the gradient of Fforces w.r.t. bn is

δFforces
δbn

=

∫
Ω

[
−uivj

∂vi
∂xk
−uj

∂p

∂xk
−τaij

∂vi
∂xk

+ui
∂τij
∂xk

+q
∂vj
∂xk

]
︸ ︷︷ ︸

Ajk

∂

∂xj

(
δxk
δbn

)
dΩ

+

∫
SW

(
pδji − τij

)
ri
δ (njdS)

δbn
(17)

Also, the flow constraint gradient is computed as δcf
δbn

= δf2
δbn

and the gradient of cg reads

δcg
δbn

=

∫
Ω

∂

∂xk

(
δxk
δbn

)
dΩ (18)

where in this paper, δxk/δbn can be derived by differentiating the volumetric B-Splines morpher w.r.t. bn.

4 Computation of matrix-vector products
Let us write eqs. 5 and 7, in the general form of AXd =Qd, d=1, 2. Such systems can be solved iteratively
using a Krylov subspace method (in this case GMRES) which requires only matrix-vector products and
avoids the computation of A which includes the Hessian of L. The product of A with a vector s reads

As=


P

N∑
m=1

δcf
δbm

sm

N∑
m=1

δcg
δbm

sm

 (19)

where the N components of P are computed as

Pn=

N∑
m=1

δ2L

δbnδbm
sm −

δcf
δbn

sN+1 −
δcg
δbn

sN+2, n= 1, ..., N (20)

In eq. 20, the Hessian-vector product is computed as

δ2L

δbnδbm
sm=

δ2f1

δbnδbm
sm−λ1

δ2cf
δbnδbm

sm−λ2
δ2cg
δbnδbm

sm, n=1, ..., N (21)

and is the toughest and most expensive part of computing As.
The following notation is introduced for any arbitrary quantity Φ

Φ=
δΦ

δbm
sm (22)

with its gradient being equal to, [10],
∂Φ

∂xk
=
∂Φ

∂xk
− ∂Φ

∂xλ

∂xλ
∂xk

(23)

6

Since
δ2cf
δbnδbm

sm=
δ2f2

δbnδbm
sm (24)

the first two terms on the RHS of eq. 21 require the products of the second derivative of eq. 11 and s. After
differentiating the latter equation w.r.t. b and taking the inner product with s, we obtain

δ2Fforces
δbnδbm

sm=

∫
Ω

Ajk
∂

∂xj

(
δxk
δbn

)
dΩ+

∫
Ω

Ajk
∂

∂xj

(
δ2xk
δbnδbm

)
smdΩ−

∫
Ω

Ajk
∂

∂xλ

(
δxk
δbn

)
∂xλ
∂xj

dΩ

+

∫
Ω

Ajk
∂

∂xj

(
δxk
δbn

)
∂xλ
∂xλ

dΩ+

∫
SW

[
pδji−ν

(
∂vi
∂xj

+
∂vj
∂xi

)
+ν

(
∂vi
∂xk

∂xk
∂xj

+
∂vj
∂xk

∂xk
∂xi

)]
ri
δ(njdS)

δbn

+

∫
SW

(
pδji−τij

)
ri
δ(njdS)

δbn
(25)

where

Ajk =−uivj
∂vi
∂xk
−uivj

∂vi
∂xk
−uivj

∂vi
∂xk

+uivj
∂vi
∂xλ

∂xλ
∂xk
−uj

∂p

∂xk
−uj

∂p

∂xk
+uj

∂p

∂xλ

∂xλ
∂xk
−ν
(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xk

+ ν

(
∂ui
∂xλ

∂xλ
∂xj

+
∂uj
∂xλ

∂xλ
∂xi

)
∂vi
∂xk
−ν
(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xk

+ν

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xλ

∂xλ
∂xk

+ ui
∂

∂xk

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+ui

∂

∂xk

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
−ui

∂

∂xk

[
ν

(
∂vi
∂xλ

∂xλ
∂xj

+
∂vj
∂xλ

∂xλ
∂xi

)]
− ui

∂

∂xλ

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
∂xλ
∂xk

+q
∂vj
∂xk

+q
∂vj
∂xk
−q ∂vj

∂xλ

∂xλ
∂xk

(26)

The governing equations for vi and p are formulated by directly differentiating the flow PDEs and projecting
them to s, i.e.

Rp=
∂vj
∂xj
− ∂vj
∂xk

∂xk
∂xj

=0 (27)

Rvi =
∂(vivj)

∂xj
+
∂(vivj)

∂xj
− ∂

∂xj

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
+
∂p

∂xi
− ∂(vivj)

∂xk

∂xk
∂xj

+
∂

∂xj

[
ν

(
∂vi
∂xk

∂xk
∂xj

+
∂vj
∂xk

∂xk
∂xi

)]
+

∂

∂xk

[
ν

(
∂vi
∂xj

+
∂vj
∂xi

)]
∂xk
∂xj
− ∂p

∂xk

∂xk
∂xi

=0 (28)

Following the same process for the adjoint equations yields

Rq=
∂uj
∂xj
− ∂uj
∂xk

∂xk
∂xj

=0 (29)

Rui = uj
∂vj
∂xi

+uj
∂vj
∂xi
− ∂(uivj)

∂xj
− ∂(uivj)

∂xj
− ∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
−uj

∂vj
∂xk

∂xk
∂xi

+
∂(vjui)

∂xk

∂xk
∂xj

+
∂

∂xj

[
ν

(
∂ui
∂xk

∂xk
∂xj

+
∂uj
∂xk

∂xk
∂xi

)]
+

∂

∂xk

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
∂xk
∂xj
− ∂q

∂xk

∂xk
∂xi

=0 (30)

which can be solved for q and ui. The boundary conditions for vi, p, ui, q result from the inner product
of the DD of the primal and adjoint boundary conditions with s in a straightforward manner. As already
discussed, two different systems of adjoint PDEs are solved in each optimization cycle (separately for f1

and cf). Nevertheless, the directly differentiated adjoint equations (eqs. 29 and 30) are solved only once
per matrix-vector computation (i.e. GMRES inner iteration). This is achieved by taking advantage of the
linearity of the adjoint equations (eqs. 14, 15) which allows the combination of the two different vectors of

7

adjoint variables corresponding to f1 and cf in a single adjoint variable vector, as

Ψ
∣∣
un

=Ψ
∣∣
f1
−λ1Ψ

∣∣
cf

(31)

where Ψ = [ui q]
T and the subscripts f1, cf and un (standing for unified) denote the adjoint variables

computed by solving the adjoint equations for f1, cf and their linear combination respectively. Once the
adjoint variables Ψun are assembled, they are used to solve eqs. 29, 30. Then, the projected second derivatives
of Fforces (eq. 25) can be computed. Finally, the product of the Hessian of cg and s is computed as

δ2cg
δbnδbm

sm=

∫
Ω

∂

∂xk

(
δxk
δbn

)
∂xλ
∂xλ

dΩ+

∫
Ω

∂

∂xk

(
δ2xk
δbnδbm

)
smdΩ−

∫
Ω

∂

∂xλ

(
δxk
δbn

)
∂xλ
∂xk

dΩ (32)

5 Overview of the three methods
In this section, an overview of Methods 1 to 3, as described in section 2.3 is presented, in order to compute
NP points on the Pareto front. The number of GMRES inner iterations is denoted by Nbases.

5.1 Method 1
– Step 1:
Perform a SOO to locate the first point on the Pareto front, which requires NSOO optimization cycles.
If we neglect cf , i.e. perform a drag minimization under the constraint of constant airfoil area, the cost
of this step is equal to (2NSOO−1) EFS.

– Step 2:
A new value is given to f̂2.

– Step 3:
Solve the primal, 9, 10, and adjoint PDEs, 14, 15, (once for f1 and once for cf) at the cost of 3 EFS.

– Step 4–Prediction Step:
The GMRES method is utilized to solve eq. 5 using Nbases bases. For each basis:

1. Solve the DD of the primal (eqs. 27, 28) and adjoint PDEs (eqs. 29, 30) at the cost of 2 EFS.
2. Compute the matrix-vector product, see eqs. 19.
3. Perform one iteration of the GMRES method.

– Step 5:
Update bn and λi, i=1, 2 using eqs. 6.

– Step 6:
Solve eqs. 9, 10 and evaluate the objective function eq. 11 and the constraints 2 and 12. If constraints
are satisfied and the objective function does not change, then this is a Pareto point and the algorithm
moves to Step 2; else, continues.

– Step 7 – Correction Steps:
Perform NC correction steps, by solving the eq. 7 with the following substeps:
1. Solve adjoint eqs. 14, 15 PDEs at the cost of 2 EFS.
2. Compute δL/δbn, using eqs. 16–18.
3. Update bn and λi using eqs. 8.

– Step 8:
Return to Step 6.

The overall cost NMethod1 is equal to

NMethod1 =
[
2NSOO−1 + (NP − 1)

(
3 + 2Nbases + 3NC

)]
EFS (33)

with NC being the average number of correction steps needed to reach each Pareto point.

8

5.2 Method 2
In Method 2, the prediction step used in Step 4 of section 5.1 is substituted by solving eq. 7 once, using
the GMRES method. The cost is quantified in the same way, i.e.

NMethod2 =
[
2NSOO−1 + (NP − 1)

(
3 + 2Nbases + 3NC

)]
EFS (34)

The computational cost for Methods 1 and 2 is the same. However, due to solving different equations in
Step 4, the two methods can follow different convergence paths and NMethod1 and NMethod2 may differ in
general.

5.3 Method 3
– Step 1:
Perform a SOO to find the first point on the Pareto front in NSOO cycles, at a cost of 2NSOO−1 EFS.

– Step 2:
Redefine f̂2.

– Step 3:
Solve the primal (eqs. 9, 10) and adjoint (eqs. 14, 15) PDEs (for f1) at the cost of 2 EFS.

– Step 4:
Update bn using steepest descent, i.e. bnewn =boldn −η

δf1
δbn

, where η is the step length.
– Step 6:
Solve eqs. 9, 10 and evaluate the objective function eq. 11 and the constraints, eqs. 2 and 12. If the
constraints are satisfied and the objective function does not change, then the Pareto point has been
identified and the algorithm moves to Step 2; else, continues.

– Step 7 – Correction Steps:
Perform NC steps, by solving eq. 7
1. Solve adjoint eqs. 14, 15 PDEs (for f1 and cf) at the cost of 2 EFS.
2. Compute δL/δbn, using eqs. 16–18.
3. Update bn and λi, using eqs. 8.

– Step 8:
Return to Step 6.

The cost of the Method 3 is

NMethod3 =
[
2NSOO − 1 + (NP−1) (2 + 3NC)

]
EFS (35)

In Step 4 of Method 3, steepest descent is used, neglecting the optimization constraints. Even though Step
4 of Methods 1 and 2 requires the solution of additional PDEs, these methods can take constraints into
consideration and are used to hopefully provide a good approximation of the next front point. The validity
of this hypothesis is examined in section 6.

6 Applications
Methods 1 to 3, as presented in section 2.3 are used to compute the fronts of non-dominated solutions in two-
objective optimization problems that use the NACA0012 and NACA4412 as the starting geometries. Three
cases are studied, in which the minimization of drag and maximization of lift are targeted. The already
described geometrical constraint of constant airfoil area is used in order to avoid non-realistic solutions. The
flow is laminar and the parameterization is based on volumetric B-Splines control boxes [14], each consisting
of 5× 4 control points, with a basis-function degree of 3 for both directions.

Before examining the cases, a note on the computational cost of Method 1 should be made. For a zero
initialization, due to the form of the RHS of eq. 5, the first GMRES iteration corresponds to a multiplication
of the Hessian with the zero vector, which is free of cost. Thus, if Nbases are selected, 2 (Nbases−1) PDEs

9

have to be solved. In each case, the same convergence criteria are used for all Methods, to have a fair
comparison between them.

6.1 Pareto front computation starting from the NACA4412 airfoil
6.1.1 Case 1: Performance of Methods 1 to 3 for a small design space

In case 1, Methods 1 to 3 are used to compute the Pareto front, starting from the NACA4412 airfoil. The
mesh consists of ∼ 60k cells, the Reynolds number is Re = 1000, the freestream flow angle is 1o and the
target lift change between two Pareto points is ∆f̂2 =10% of the current f̂2 value.

The purpose of this study is to examine the capability of Step 4 of Methods 1 and 2 to compute a good
approximation of the next Pareto point when eqs. 5 and 7 are solved exactly using GMRES. To do so,
Nbases=N+2. To have an affordable CPU cost, the design space is chosen to consist of 2 design variables
(N = 2, Nbases = 4), which are the displacements of the 2 control points depicted in fig. 1, along the y
axis. The Pareto front, along with the dominated point pertaining to the baseline geometry are presented
in fig. 2. All methods produce practically the same points on the front. Also, in figs. 3 to 5, all intermediate

Figure 1: Case 1: Baseline geometry along with the parameterization. Control points in blue are kept fixed
during the optimization while the red ones are allowed to move along the y axis.

steps when moving from one Pareto point to another, computed by Methods 1 to 3 are presented. It can
be observed that, in Methods 1 and 2, Step 4 points to the direction of the next point, while this does not
happen for Method 3.

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

 0.061 0.0615 0.062 0.0625 0.063 0.0635

-
l
i
f
t

[
N
]

drag [N]

Method 1
Method 2
Method 3
baseline

Figure 2: Case 1: Baseline geometry (”baseline”) and Pareto fronts computed by Methods 1 to 3.

However, in terms of computational cost, Methods 1 and 2 are more expensive than Method 3, see table
1. Also, for the reason discussed in the introduction of this section, the cost of Method 2 is higher than that
of Method 1, since two more PDEs are solved at Step 4. The shapes corresponding to the 1st (min. drag),
7th and 13rd (max. lift) Pareto points are presented in fig. 6. To minimize drag, the part of the airfoil close
to the leading edge moves downwards whereas, to maximize lift, the same part moves upwards.

10

-0.022

-0.0215

-0.021

-0.0205

-0.02

-0.0195

-0.019

 0.06104 0.061048 0.061056 0.061064

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-0.036

-0.0355

-0.035

-0.0345

-0.034

-0.0335

-0.033

-0.0325

-0.032

-0.0315

-0.031

-0.0305

 0.0612 0.06124 0.06128 0.06132 0.06136

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-0.055

-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

 0.0621 0.0624 0.0627 0.063 0.0633 0.0636

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

Figure 3: Case 1: Transitions from (a) 2nd to 3rd, (b) 7th to 8th, (c) 12th to 13th Pareto points, using
Method 1. Black squares represent the Pareto points and red triangles the intermediate steps to move from
one Pareto point to the next. Transition from the top Pareto point to the one at the bottom.

6.1.2 Case 2: Performance of Methods 1 to 3 for a larger design space

In Case 1, eqs. 5 and 7 were exactly solved using GMRES at the first step when moving to the next Pareto
point, since the small number of design variables (N = 2) made it possible to afford the max. number of
Nbases. In Case 2, the optimization problem of Case 1 is revisited to investigate the performance of Methods 1
and 2, when fewer than the max. number of bases are used in GMRES. The first and last control points
along the x and y directions of the control box are kept fixed and the remaining 6 control points are allowed
to move along the x and y axis. Thus, N = 12 and 3 bases are used in the GMRES solver to perform Step
4, in both Methods 1 and 2. The points on the Pareto front, as computed with Methods 1 to 3, are given
in fig. 7. In figs. 8 to 10, the transitions from one Pareto point to another, as computed by Methods 1 to
3 is presented for a sample of the front points. It can be observed that the solution provided at Step 4 of
Methods 1 to 2 manages to lead close to the next Pareto point, in contrast to Method 3 in which Step 4
fails to do so, since the constraints are not taken into consideration. However, Method 3 still outperforms
the others in terms of CPU cost as seen in table 2. In figs. 11, the baseline geometry is compared with
three points of the Pareto front; the two extreme points and one between them. In figs. 12, the velocity
magnitude fields are depicted for the geometries of fig. 11 and in figs. 13, the corresponding Cp and Cf
distributions are presented. Regarding lift, the point where the local load (pressure difference between the
pressure and suctions sides) becomes negative moves from 1/10 of the chord length to 8/10; a similar trend
is observed for minimizing drag. Also, the Cf of the suction side close to the trailing edge becomes higher
than zero (as opposed to the baseline geometry), increasing local lift production. In order to minimize drag,

11

-0.022

-0.0215

-0.021

-0.0205

-0.02

-0.0195

-0.019

 0.06104 0.06105 0.06106 0.06107

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-0.036

-0.0355

-0.035

-0.0345

-0.034

-0.0335

-0.033

-0.0325

-0.032

-0.0315

-0.031

-0.0305

 0.0612 0.06124 0.06128 0.06132 0.06136

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-0.055

-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

 0.0621 0.0624 0.0627 0.063 0.0633 0.0636

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

Figure 4: Case 1: Transitions from (a) 2nd to 3rd, (b) 7th to 8th, (c) 12th to 13th Pareto points, using
Method 2. Notation as in fig. 3.

the Cp difference becomes smaller than in the baseline geometry and from the 4/10 of the chord length on,
it becomes almost equal to zero.

6.2 Case 3: Pareto front computation starting from the NACA0012 airfoil
In Case 3, the study conducted in Case 2 is repeated for a second airfoil, the NACA0012 one. In this case,
the mesh consists of ∼ 38k cells, the Reynolds number is Re= 1000, the farfield velocity angle is 2 degrees
and, after computing the first front point, a constant change of ∆f̂2 = 5% imposed at the current f̂2 value
is applied to move from one Pareto point to another. In order to solve eqs. 5 and 7 with GMRES, 2 and 1
bases are used respectively (see discussion in the introduction of section 6).

The fronts computed by Methods 1 to 3 are presented in fig. 14, along with the point corresponding to
the baseline geometry. The computational cost is summarized in table 3 and the intermediate steps when
moving between Pareto points is presented for a sample of points along the front in figs. 15 to 17.

Even though a small number of bases are used, the solution provided by GMRES at Step 4, in both
Methods 1 and 2, manages to approach the next Pareto point. However, even in this case, Method 3 has
a smaller computational cost even though the first step in each transition to the next point moves to the
wrong direction. In fig. 18, the geometries for three Pareto points compared with the baseline geometry are
depicted and in 20, the corresponding Cp and Cf distributions are illustrated. For the same geometries, the
velocity magnitude fields are presented in figs. 19. In order to reduce drag, the suction side moves downwards
at the first half of the chord length and upwards at the second half. Smaller changes occur at the pressure
side. In this way, the difference in the static pressure between the pressure and suction side decreases from

12

Method
Computational cost [EFS] Average Computational cost [EFS]

1st SOO included 1st SOO excluded 1st SOO included 1st SOO excluded

Method 1 211 193 21.1 16.08

Method 2 235 217 23.5 18.08

Method 3 124 106 12.4 8.83

Table 1: Case 1: Computational cost (in EFS) of Methods 1 to 3, to compute 13 points on the Pareto front,
with (2nd column) and without (3rd) counting the EFS to reach the first point of the Pareto front. The
average cost concerns the EFS needed to reach each point on the Pareto front (4th and 5th columns). The
SOO to compute the first front point costed 19 EFS.

Method
Computational cost [EFS] Average Computational cost [EFS]

1st SOO included 1st SOO excluded 1st SOO included 1st SOO excluded

Method 1 156 124 15.6 13.78

Method 2 174 142 17.4 15.78

Method 3 102 70 10.2 7.78

Table 2: Case 2: Computational cost (in EFS) of Methods 1 to 3, to compute 10 points on the Pareto front,
with (2nd column) and without (3rd) counting the EFS to reach the first point of the Pareto front. Notation
as in table 1. The SOO to compute the first point of the front costed 33 EFS.

Method
Computational cost [EFS] Average Computational cost [EFS]

1st SOO included 1st SOO excluded 1st SOO included 1st SOO excluded

Method 1 141 123 12.81 12.3

Method 2 153 135 13.91 13.5

Method 3 97 79 8.81 7.9

Table 3: Case 3: Computational cost in EFS of Methods 1 to 3, to compute 11 points on the Pareto front,
with (2nd column) and without (3rd) counting the EFS to reach the first point of the Pareto front. Notation
as in table 1. The SOO to compute the first point of the front costed 19 EFS.

13

-0.0215

-0.021

-0.0205

-0.02

-0.0195

-0.019

-0.0185

 0.061 0.06102 0.06104 0.06106

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-0.034

-0.0335

-0.033

-0.0325

-0.032

-0.0315

-0.031

-0.0305

-0.03

-0.0295

-0.029

 0.06111 0.06118 0.06125 0.06132

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-0.055

-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

-0.048

 0.0621 0.0624 0.0627 0.063 0.0633 0.0636

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

Figure 5: Case 1: Transitions from (a) 2nd to 3rd, (b) 7th to 8th, (c) 12th to 13th Pareto points, using
Method 3. Notation as in fig. 3.

(a) (b) (c)

Figure 6: Case 1: Comparison of the baseline geometry (blue) with the optimized ones (red) referring to (a)
the 1st (min. drag), (b) the 7th and (c) the 13th (max. lift) Pareto points.

the 1/5 of the chord length on. To increase lift, the airfoil becomes thinner close to the leading edge and the
part of the pressure side closer to the trailing edge moves downwards. That change in the geometry resulted
in increasing the difference in the static pressure between the pressure and suction sides along the whole
chord length.

7 Conclusion
In this paper, three gradient-based algorithms, namely Methods 1 to 3, were compared for computing the
front of non-dominated solutions in multi-objective aerodynamic optimization problems. In the cases studied,
it was observed that the first step of an SQP-based method initialized with the identity matrix (Method 3)
moved in the opposite direction of the next Pareto point, due to the inability of taking into consideration
constraints. In an attempt to mitigate this effect, Methods 1 and 2 were implemented. The latter use a
combination of Direct Differentiation and adjoint to compute the Hessian-vector products existing on the

14

-0.065

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

 0.0595 0.06 0.0605 0.061 0.0615 0.062 0.0625
-
l
i
f
t

[
N
]

drag [N]

Method 1
Method 2
Method 3
baseline

Figure 7: Case 2: Baseline geometry point (”baseline”) and Pareto fronts computed by Methods 1 to 3.

-0.0355

-0.035

-0.0345

-0.034

-0.0335

-0.033

-0.0325

-0.032

-0.0315

-0.031

-0.0305

 0.05985 0.059875 0.0599 0.059925 0.05995 0.059975

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-0.038

-0.0375

-0.037

-0.0365

-0.036

-0.0355

-0.035

-0.0345

-0.034

-0.0335

 0.059875 0.0599 0.059925 0.05995 0.059975 0.06 0.060025

-
L
i
f
t

[
N
]

Drag [N]

pareto points

history

(b)

-0.057

-0.056

-0.055

-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

 0.0603 0.06035 0.0604 0.06045 0.0605 0.06055 0.0606

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

-0.061

-0.06

-0.059

-0.058

-0.057

-0.056

-0.055

-0.054

 0.0605 0.0606 0.0607 0.0608 0.0609

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(d)

Figure 8: Case 2: Transitions from (a) the 2nd to the 3rd, (b) the 3rd to 4th, (c) the 7th to 8th and (d) the
8th to the 9th Pareto points, using Method 1. Notation as in fig. 3.

LHS of two linear systems emerging from the KKT conditions and (approximately) solve the aforementioned
systems using GMRES. Methods 1 and 2 are devised in an attempt to take constraints into consideration
even in the first step of moving from a Pareto point to the next and, hence, speed up the whole process.
For all cases examined, Method 1 indeed manages to move in the vicinity of the next Pareto point, even if
the corresponding linear system is not solved exactly (i.e. even if the number of GMRES inner iterations

15

-0.035

-0.0345

-0.034

-0.0335

-0.033

-0.0325

-0.032

-0.0315

-0.031

-0.0305

 0.05985 0.0599 0.05995

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-0.038

-0.0375

-0.037

-0.0365

-0.036

-0.0355

-0.035

-0.0345

-0.034

-0.0335

 0.0599 0.059925 0.05995 0.059975 0.06

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-0.055

-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

 0.06025 0.0603 0.06035 0.0604 0.06045 0.0605 0.06055

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

-0.06

-0.059

-0.058

-0.057

-0.056

-0.055

-0.054

 0.0605 0.0606 0.0607 0.0608 0.0609

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(d)

Figure 9: Case 2: Transitions from (a) the 2nd to the 3rd, (b) the 3rd to 4th, (c) the 7th to 8th and (d) the
8th to the 9th Pareto points, using Method 2. Notation as in fig. 3.

used is less than the size of the linear system). Method 2 does so for two out of the three examined cases.
However, each inner iteration of GMRES requires the computation of an Hessian-vector product that costs
2 Equivalent Flow Solutions. In the end, this additional cost makes Methods 1 and 2 more expensive than
Method 3, even if the latter is based in a much worse initialization each time a new Pareto point is computed.

Acknowledgments
The PhD thesis of the first author is funded by the General Secretariat for Research and Technology (GSRT)
and the Hellenic Foundation for Research and Innovation (HFRI).

References
[1] D.W. Zingg, M. Nemec, and T.H. Pulliam. A comparative evaluation of genetic and gradient- based al-

gorithms applied to aerodynamic optimization. European Journal of Computational Mechanics, 17:103–
126, 2012.

[2] S. Shankaran and B. Barr. Efficient gradient-based algorithms for the construction of pareto fronts. In
ASME Paper GT2011-45069, Vancouver, Canada, 6-10 June 2011.

[3] J. Fliege and B.F. Svaiter. Adaptive weighted-sum method for bi-objective optimization: Pareto front
generation. Structural and Multidisciplinary Optimization, 29:149–158, 2005.

16

-0.034

-0.033

-0.032

-0.031

-0.03

-0.029

-0.028

 0.05975 0.0598 0.05985 0.0599 0.05995

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-0.037

-0.036

-0.035

-0.034

-0.033

-0.032

-0.031

-0.03

 0.05975 0.0598 0.05985 0.0599 0.05995 0.06

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-0.055

-0.054

-0.053

-0.052

-0.051

-0.05

-0.049

-0.048

-0.047

-0.046

-0.045

-0.044

 0.06 0.0601 0.0602 0.0603 0.0604 0.0605

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

-0.06

-0.058

-0.056

-0.054

-0.052

-0.05

-0.048

 0.0602 0.0603 0.0604 0.0605 0.0606 0.0607

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(d)

Figure 10: Case 2: Transitions from (a) the 2nd to the 3rd, (b) the 3rd to 4th, (c) the 7th to 8th and (d)
the 8th to the 9th Pareto points, using Method 3. Notation as in fig. 3.

[4] I. Das and J.E. Dennis. A closer look at the drawbacks of minimizing weighted sums of objectives for
pareto set generation in multicriteria optimization problems. Structural Optimization, 14:63–69, 1997.

[5] S. Schmidt and V. Schulz. Pareto-curve continuation in multi-objective optimization. Pacific Journal
of Optimization, 4(2):243–257, 2008.

[6] D.I. Papadimitriou and K.C. Giannakoglou. Direct, adjoint and mixed approaches for the computation of
Hessian in airfoil design problems. International Journal for Numerical Methods in Fluids, 56(10):1929–
1943, 2008.

[7] D.I. Papadimitriou and K.C. Giannakoglou. Aerodynamic design using the truncated newton algorithm
and the continuous adjoint approach. International Journal for Numerical Methods in Fluids, 68(6):724–
739, 2012.

[8] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods for turbulent flows,
applied to shape and topology optimization: industrial applications. Archives of Computational Methods

(a) (b) (c)

Figure 11: Case 2: Comparison of the baseline geometry (blue) with the optimized ones (red) referring to
(a) the 1st (i.e. min. drag), (b) the 6th and (c) the 10th Pareto points.

17

(a) (b)

(c) (d)

Figure 12: Case 2: Velocity fields for (a) the baseline geometry and those referring to (b) the 1st (c) 6th and
(f) 10th Pareto points.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.2 0.4 0.6 0.8 1

C
p

x/L

baseline
1st point
6th point

10th point

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

C
f

x/L

baseline
1st point
6th point

10th point

(b)

Figure 13: Case 2: (a) Cp and (b) Cf distributions along the pressure and suction sides of the baseline
(black), the min. drag (red) and max. lift (blue) airfoils.

18

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

 2.155 2.16 2.165 2.17 2.175 2.18 2.185 2.19 2.195 2.2
-
l
i
f
t

[
N
]

drag [N]

Method 1
Method 2
Method 3
baseline

Figure 14: Case 3: Baseline geometry point (”baseline”) and Pareto fronts computed by Methods 1 to 3.

-1.68

-1.66

-1.64

-1.62

-1.6

-1.58

-1.56

-1.54

-1.52

-1.5

 2.1588 2.1592 2.1596 2.16 2.1604 2.1608 2.1612

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-1.85

-1.84

-1.83

-1.82

-1.81

-1.8

-1.79

-1.78

-1.77

-1.76

-1.75

 2.1616 2.162 2.1624 2.1628 2.1632 2.1636

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-2.26

-2.24

-2.22

-2.2

-2.18

-2.16

-2.14

-2.12

 2.1712 2.172 2.1728 2.1736 2.1744 2.1752 2.176 2.1768

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

-2.62

-2.6

-2.58

-2.56

-2.54

-2.52

-2.5

-2.48

-2.46

 2.1885 2.19 2.1915 2.193 2.1945 2.196 2.1975 2.199

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(d)

Figure 15: Case 3: Transitions from (a) the 1st to the 2nd, (b) the 3rd to 4th, (c) the 7th to 8th and (d)
the 10th to the 11th Pareto points, using Method 1. Notation as in fig. 3.

in Engineering, 23(2):255–299, 2016.
[9] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the proper treatment of grid

sensitivities in continuous adjoint methods for shape optimization. Journal of Computational Physics,
301:1–18, 2015.

[10] M. Ghavami Nejad, E.M. Papoutsis-Kiachagias, and K.C Giannakoglou. Aerodynamic shape opti-

19

-1.68

-1.66

-1.64

-1.62

-1.6

-1.58

-1.56

-1.54

-1.52

-1.5

 2.1585 2.159 2.1595 2.16 2.1605

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-1.84

-1.83

-1.82

-1.81

-1.8

-1.79

-1.78

-1.77

-1.76

-1.75

-1.74

 2.1605 2.161 2.1615 2.162 2.1625 2.163

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-2.26

-2.24

-2.22

-2.2

-2.18

-2.16

-2.14

-2.12

 2.17 2.171 2.172 2.173 2.174 2.175 2.176

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

-2.62

-2.6

-2.58

-2.56

-2.54

-2.52

-2.5

-2.48

-2.46

 2.1855 2.187 2.1885 2.19 2.1915 2.193 2.1945

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(d)

Figure 16: Case 3: Transitions from (a) the 1st to the 2nd, (b) the 3rd to 4th, (c) the 7th to 8th and (d)
the 10th to the 11th Pareto points, using Method 2. Notation as in fig. 3.

mization using the adjoint-based truncated newton method. In EUROGEN 2015, 11th International
Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Ap-
plications to Industrial and Societal Problems, Glasgow, UK, September 14-16 2015.

[11] M. Ghavami Nejad, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. Aerodynamic shape opti-
mization using the truncated Newton method and continuous adjoint. In ECCOMAS Congress 2016,
VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete island,
Greece, June 5-10 2016.

[12] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 1999.
[13] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.
[14] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer, and K.C. Giannakoglou. Noise reduc-

tion in car aerodynamics using a surrogate objective function and the continuous adjoint method with
wall functions. Computers & Fluids, 122:223–232, 2015.

20

-1.68

-1.66

-1.64

-1.62

-1.6

-1.58

-1.56

-1.54

-1.52

-1.5

 2.1585 2.159 2.1595 2.16 2.1605

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(a)

-1.85

-1.84

-1.83

-1.82

-1.81

-1.8

-1.79

-1.78

-1.77

-1.76

-1.75

-1.74

 2.1605 2.161 2.1615 2.162 2.1625 2.163

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(b)

-2.26

-2.24

-2.22

-2.2

-2.18

-2.16

-2.14

-2.12

 2.17 2.171 2.172 2.173 2.174 2.175

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(c)

-2.62

-2.6

-2.58

-2.56

-2.54

-2.52

-2.5

-2.48

-2.46

-2.44

 2.1825 2.184 2.1855 2.187 2.1885 2.19 2.1915

-
L
i
f
t

[
N
]

Drag [N]

pareto points
history

(d)

Figure 17: Case 3: Transitions from (a) the 1st to the 2nd, (b) the 3rd to 4th, (c) the 7th to 8th and (d)
the 10th to the 11th Pareto points, using Method 3. Notation as in fig. 3.

(a) (b) (c)

Figure 18: Case 3: Comparison of the baseline geometry (blue) with the optimized ones (red) referring to
(a) the 1st Pareto point, i.e. min drag (left), (b) the 6th (centre) and (c) the 11th (right).

21

(a) (b)

(c) (d)

Figure 19: Case 3: From left to right: velocity fields for the flow around (a) the baseline geometry and those
referring to (b) the 1st (i.e. for min. drag), (c) 6th and (d) 11th Pareto points.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
p

x/L

baseline
1st point
7th point

11th point

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
f

x/L

baseline
1st point
7th point

11th point

(b)

Figure 20: Case 3: Cp (left) and Cf (right) distributions along the pressure and suction sides of the baseline
(black) geometry and of those referring to the 1st (red), 6th (blue) and 11th (magenta) Pareto points.

22

	Introduction
	The Pareto-tracing problem
	Linearizing the KKT conditions w.r.t.
	Linearizing the KKT conditions w.r.t. z
	Discussion

	The Continuous adjoint method for incompressible flows
	Computation of matrix-vector products
	Overview of the three methods
	Method 1
	Method 2
	Method 3

	Applications
	Pareto front computation starting from the NACA4412 airfoil
	Case 1: Performance of Methods 1 to 3 for a small design space
	Case 2: Performance of Methods 1 to 3 for a larger design space

	Case 3: Pareto front computation starting from the NACA0012 airfoil

	Conclusion

