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Abstract: This paper presents an intrusive Polynomial Chaos Expansion (iPCE) method for un-
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1 Introduction

For the solution of �ow problems under uncertainties, the (occasionally) very high computational cost of
CFD evaluations makes stochastic sampling, such as standard Monte�Carlo methods [1], extremely expensive
and, thus, una�ordable for real�world applications. As a consequence, a lot of research has been redirected
towards developing other much more e�cient Uncertainty Quanti�cation (UQ) techniques, such as those
based on Polynomial Chaos Expansions (PCE) [2, 3]. The PCE relies upon the spectral representation of
the uncertain input to and/or output from the evaluation model [4, 5, 6, 7, 8, 9]. Apart from the UQ itself,
optimization under uncertainties is pro�ting a lot from this kind of methods.
The straightforward implemention of the PCE is the so�called non�intrusive (niPCE) [10, 11, 12] one, that
requires running the CFD code as a black�box at a number of points (Gaussian nodes, as de�ned by the
Gauss Quadrature, GQ, integration rules). This method, though a�ordable in terms of computational
cost compared to stochastic sampling, su�ers from the curse of dimensionality as the number of uncertain
variables increases. In the intrusive PCE (iPCE) [8, 4], the governing equations are altered through the
spectral representation of their variables in an orthonormal stochastic space and undergo Galerkin projections
leading to a new set of coupled equations which must be numerically solved. The major burden is, thus, the
derivation of the iPCE equations and (the usually extensive) restructuring of the CFD software. Over and
above, for each change in the number of uncertain variables, governing equations must be developed anew
and additional programming is required, unless special care is taken; this is where this paper is focusing
on, by addressing not only the solution of the UQ problem but, also, the corresponding adjoint�based
optimization. In the literature, hybrid and semi�intrusive methods [13, 14, 15], combining the advantages of
both approaches, can be found as a possible remedy to the aforementioned issue.
Once an e�cient UQ method becomes available, the objective function, to be maximized or minimized during
the optimization, must be de�ned. For the optimization itself, both stochastic and gradient-based methods
can be used. Working with a stochastic method, for instance evolutionary algorithms (EAs), the UQ tool
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is used as a black�box within the EA [16, 17]. Usually, emphasis is laid on the reduction of the number of
evaluations required by the EA and the best way to do so is by means of surrogate evaluation models.

On the other side, in applications governed by (systems of) PDEs, gradient�based methods are assisted
by the adjoint method for the computation of the gradients. One may combine the PCE with the adjoint
method; by doing so, the spectral coe�cients not only of the quantity of interest but of its gradients too can
be computed and used with a gradient�based method for the design under uncertainties. In the literature,
such applications use either non�intrusive, [18], or partially intrusive, [19], approaches for the adjoint method.
This paper presents an e�cient methodology for the development of the iPCE to the Navier�Stokes equations
and their adjoint equations which can be used for any number of uncertain variables without formulating a
di�erent system of equations or changing the software. Numerical tricks for reducing the computational cost
and memory requirements of the iPCE are described. The proposed algorithm is herein applied to shape
optimization problems of airfoils with uncertain in�nite �ow conditions. Starting point for the programming
was an Euler/Navier�Stokes solver for unstructured grids [20], based on a �nite�volume discretization and
vertex�centered storage.

2 The Flow Model and the iPCE Equations

The �ow model used in this work is based on the Navier�Stokes equations for compressible �uids, namely

R(U) =
∂U

∂t
+
∂f invi
∂xi

− ∂fvisi
∂xi

= 0 (1)

where

f invi =

 ρui
ρuiv + pδi
vi(Et + p)

 , fvisi =

 0
τ i

vjτij + qi

 (2)

are the inviscid and viscous �ux vectors, qi are the thermal �ux components, δi = (δi1, δi2, δi3)T , δij is
Kronecker's symbol and τ i = (τi1, τi2, τi3)T the viscous stresses. The �ow variables array is U = (ρ, ρv, Et)

T ,
with ρ the density, v = (v1, v2, v3)T the velocity vector, Et = p

(γ−1) −
1
2ρ v

2 the total energy per unit volume

and p the pressure.

Inviscid �uxes are expressed in terms of their Jacobians as f invi = AiU , Ai =
∂f inv

i

∂U and the state equation
of perfect gases is assumed. A vertex�centered �nite�volume formulation is used and the equations are
discretized on unstructured grids through the Flux Vector Splitting (FVS) technique.
To account for the uncertainties, a set of m uncorrelated stochastic variables ξ = (ξ1, . . . , ξm), each with its
own probability density function wi(ξi) de�ned in the domain Ei is assumed to a�ect the �ow through the
boundary conditions. According to the iPCE theory, the �ow variables are expanded using a polynomial
basis Y which is orthonormal in E :=

∏m
i=1 Ei with respect to W :=

∏m
i=1 wi, as follows

U(ξ) =

q∑
i=0

U iYi(ξ) (3)

where q+1= (m+C)!
m!C! terms are retained in the truncated eq. 3. C denotes the user�de�ned chaos order [3].

The spectral coe�cients U i are de�ned through Galerkin projections as

U i =

∫
E
UYiWdξ (4)

and, in the intrusive approach, their computation requires the numerical solution of the iPCE equations
which are symbolically expressed as

Gq [R(U)] = 0 (5)

Hereafter the Galerkin operator Gq [.] will be denoted by G [.]. The latter is applied to scalars, vectors
or matrices. For a scalar φ(ξ), G [φ] = (φ0, φ1, . . . , φq)T . For a vector U(ξ) = (U1(ξ), . . . , Un(ξ))T with
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Ui =
∑q
k=0 U

k
i Yk(ξ), G [U ] = (U0,U1, . . . ,U q)T , whereUk = (Uk1 , . . . , U

k
n), superscripts denote the spectral

components and subscripts the U components. Finally, for a matrix A ∈ Rn×n with components Aij =∑q
k=0A

k
ijYk(ξ) this operation yields

G [A] =


A00 A01 . . . A0q

A10 A11 . . . A1q

...
...

...
...

Aq0 Aq1 . . . Aqq


with the (i, j) element of the Aλµ ∈ Rn×n block given by Aλµij :=

∫
E AijYλYµWdξ.

2.1 Numerical Solution of the iPCE equations

In the problem without uncertainties, let R(U)=0 denote the �ow equations, with the values of U at each
mesh node as the unknowns. This non�linear system is solved for ∆U through the iterative scheme(

∂R

∂U

)
old

∆U = −Rold, Unew = Uold + ∆U (6)

In the presence of uncertainties, by applying the G [.] operator (index `old' is omitted hereafter) we get

G

[
∂R

∂U
∆U

]
= −G [R] , G [Unew] = G [U ] + G [∆U ] (7)

It can be shown that for any matrix A and vector x

G [A x] = G [A] G [x] (8)

which results to

G

[
∂R

∂U

]
G [∆U ] = −G [R] (9)

Eq. 9 is solved iteratively for G [∆U ], as G [U ] are the unknowns of the iPCE equations. We are, thus,
setting up an iterative solver for the iPCE equations without �rst deriving them. Regarding the LHS matrix
in eq. 9, the Galerkin projection of the �ow Jacobian is equal to the Jacobian of G [R] with respect to G [U ],
or

G

[
∂R

∂U

]
=
∂(G [R])

∂(G [U ])
(10)

To prove eq. 10 one may �rst show that, for any scalar �eld φ,

∂φ

∂Uλ
=

∂φ

∂Uλ

∂U

∂Uλ

eq.3
= Yλ

∂φ

∂U
(11)

Because of eq. 11, the (i, j) element of the (λ, µ) block of matrix G
[
∂R
∂U

]
is(

∂R

∂U

)λµ
ij

=

∫
E
YλYµ

(
∂R

∂U

)
ij

Wdξ
eq.4
=

∫
E
Yµ

∂Ri
∂Uλj

Wdξ =

(
∂Ri
∂Uλj

)µ
=
∂Rµi
∂Uλj

Thanks to eq. 10, computing the Jacobian of the discrete iPCE equations solely requires the Jacobian of the
problem without uncertainties. Upon the numerical solution of the iPCE equations, the Quantity of Interest
(QoI), denoted by F , can also be expanded as

F (ξ) =

q∑
i=0

F iYi(ξ) (12)
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so that its mean value and standard deviation become

µF = F 0 , σF =

√√√√ q∑
i=1

(F i)2 (13)

The spectral coe�cients F i are found by the Galerkin projections of the QoI, which in turn requires the
known spectral coe�cients of U .

2.2 Reducing Computational Cost & Memory Requirements of the iPCE Solver

In the iPCE problem, the involved LHS matrices are now of much larger dimensions ((q + 1)2 times larger)
than their deterministic counterparts and this noticeably increases memory requirements. To keep the
memory footprint of the iPCE solver as low as possible, the following treatment is proposed. Let ξz be the
vector formed by the roots of all orthonormal polynomials Yi of �rst degree. Then, U0 is approximated
by U(ξ = ξz), which is obtained through the solution of eq. 1 for the problem without uncertainties. If,
for instance, uncertainties are related to the �ow conditions, the ξz values determine the �ow conditions at
which the equations should be solved to approximate U0. The error of this approximation is relatively small
since

U(ξz)−U
0 =

∞∑
i=0

U iYi(ξz)−U
0 =

q2−1∑
i=1

U iYi(ξz)︸ ︷︷ ︸
=0

+

∞∑
i=q2

U iYi(ξz) (14)

where q2 = (m+2)!
2!m! . For C=1, eq. 9 is written as

∂R
∂U

00 ∂R
∂U

01 ∂R
∂U

02
. . . ∂R

∂U

0q1

∂R
∂U

10 ∂R
∂U

00
0 . . . 0

∂R
∂U

20
0 ∂R

∂U

00
. . . 0

...
...

...
...

...
∂R
∂U

q10
0 0 . . . ∂R

∂U

00




∆U0

∆U1

∆U2

...
∆U q1

 = −


R0

R1

R2

...
Rq1

 (15)

because < Yρ, Yλ, Yµ >= δ0ρδλµ, 1 ≤ λ, µ ≤ q1, 0 ≤ ρ ≤ q1, where q1 is de�ned by setting C = 1 in
the de�nition of q, i.e. q1 =m and δij is the Kronecker symbol. Moreover, since U0 is well�approximated,
∆U0 ≈ 0. This justi�es the decision to keep only the diagonal blocks in eq. 15, which are all equal to
each other. As a result, for C = 1, the equations are solved by keeping only the diagonal of the Jacobian
approximated as

∂R

∂U

00

≈ ∂R

∂U

∣∣∣∣
U=U(ξz)

(16)

and obtained by solving the problem without uncertainties at ξ = ξz.
For C > 1, the solution process is quite similar since the (constant) diagonal block is retained on the extra
rows as well. Moreover, the solution for C= 1 can be used to initialize the remaining coe�cient �elds Uk,
in order to facilitate convergence if C=2. If C=3, the solution �elds to the equations for C=2 are used for
the subsequent initializations and so forth.

3 The Adjoint iPCE Formulation

This section proposes a way to derive the continuous adjoint equations of the primal iPCE problem presented
in section 2, for use in aerodynamic shape optimization under uncertainties. Emphasis is laid on establishing
a formulation which is easy to program, with just a reasonable amount of interventions in the existing adjoint
code for the problem without uncertainties.
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3.1 Continuous Adjoint Formulation without Uncertainties

Let us consider the following (primal) problem de�ned in a domain Ω with boundary S

LU − f = 0 , in Ω
BU − e = 0 , on S

(17)

and a QoI given by

F =

∫
S

hTCUdS (18)

where L, B and C are linear di�erential operators; on the other hand f , e and h may depend on the
spatial coordinates xi but not on the primal variables U . Assuming the QoI is an objective function to be
minimized/maximized constrained by eqs. 17, the augmented objective function

Faug = F +

∫
Ω

ΨT (LU − f)dΩ +

∫
S

(C∗Ψ)T (BU − e)dS (19)

is de�ned using the adjoint variables Ψ. Let b denote the array of design variables, δ ≡ δ/δb the total
derivative w.r.t. b and ∂ ≡ ∂/∂b the partial derivative representing variations due to changes in the design
and �ow variables excluding space deformations. In general,

δ(CU) = C(δU) + (δC)U (20)

For instance, if C ≡ ∂
∂xi

, then δ(CU) = ∂(δU)
∂xi

− ∂(δxk)
∂xi

∂U
∂xk

hence δC = − ∂(δxk)
∂xi

∂()
∂xk

. Thus, the total
derivative of the objective function F is

δF =

∫
S

δhTCUdS +

∫
S

hT (δC)UdS +

∫
S

hTCUδ(dS)︸ ︷︷ ︸
=:δFSD

+

∫
S

hTC(δU)dS (21)

or that of the augmented function Faug

δFaug = δFSD +

∫
S

hTC(δU)dS +

∫
Ω

ΨTL(δU)dΩ +

∫
S

(C∗Ψ)TB(δU)dS

+

∫
Ω

ΨT [(δL)U − δf ]dΩ +

∫
S

(C∗Ψ)T [(δB)U − δe]dS︸ ︷︷ ︸
=:δFΨ

SD

(22)

where terms indexed by SD contribute to the Sensitivity Derivatives. Integration by parts of the �rst volume
integral on the RHS yields∫

Ω

ΨTL(δU)dΩ ≡
∫

Ω

(AΨ)T δUdΩ +

∫
S

(DΨ)TE(δU)dS (23)

where A,D and E are appropriate di�erential operators depending on L. Then, eq. 22 is rewritten as

δFaug = δFSD + δFΨ
SD +

∫
Ω

(AΨ)T δUdΩ +

∫
S

(h−B∗Ψ)TC(δU)dS

+

∫
S

(C∗Ψ)TB(δU)dS +

∫
S

(B∗Ψ)TC(δU)dS +

∫
S

(DΨ)TE(δU)dS︸ ︷︷ ︸
=:M

(24)

where B∗ is a newly introduced di�erential operator which facilitates the expression of the adjoint boundary
conditions. Both B∗ and C∗ are determined by setting M to zero, giving rise to the adjoint �eld equation,
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the adjoint boundary conditions
AΨ = 0 , in Ω
B∗Ψ = h , on S

(25)

as well as the expression of the gradient of F

δF = δFSD + δFΨ
SD (26)

3.2 The Continuous Adjoint iPCE Problem

In the presence of uncertainties, the primal equations are

G [LU − f ] = 0 , in Ω
G [BU − e] = 0 , on S

(27)

and the objective function J of the problem is de�ned as a linear combination of the absolute values of the
spectral coe�cients F i of the QoI

J :=

q∑
i=0

ζi|F i| =
q∑
i=0

ζisign(F i)︸ ︷︷ ︸
ζi

F i (28)

where ζi are user�de�ned weights. By considering ζi to be the spectral coe�cients of a stochastic quantity

ζ(ξ) =

q∑
i=0

ζiYi(ξ) (29)

the objective function to be minimized becomes

J =

q∑
i=0

ζiF i = G [ζ]
T

G [F ] (30)

Similarly to the case without uncertainties, we de�ne

Jaug := J +

∫
Ω

G
[
Ψ
∼

]T
G [LU − f ] dΩ +

∫
S

G
[
C∗Ψ
∼

]T
G [BU − e] dS (31)

where the new adjoint �elds (G
[
Ψ
∼

]
, G

[
C∗Ψ
∼

]
) introduced in eq. 31 are considered to be the Galerkin

projections of two stochastic �elds Ψ
∼

and C∗Ψ
∼

. For the sake of simplicity, symbol ∼ will hereafter be

omitted. Since δ() and G [.] permute, the total derivative of J is given by

δJ = δ(G [ζ]
T

G [F ]) = G [ζ]
T

(
G [δFSD] +

∫
S

G
[
hTC(δU)

]
dS

)
(32)

Based on the above, the total derivative of Jaug becomes

δJaug = δJ +

∫
Ω

G [Ψ]
T

G [L(δU)] dΩ +

∫
S

G [C∗Ψ]
T

G [B(δU)] dS

+

∫
Ω

G [Ψ]
T

G [(δL)U − δf ] dΩ +

∫
S

G [C∗Ψ]
T

G [(δB)U − δe] dS
eq.32
=

= G [ζ]
T

G [δFSD] +

∫
S

G [ζh]
T

G [C(δU)] dS +

∫
Ω

G [Ψ]
T

G [L(δU)] dΩ

+

∫
S

G [C∗Ψ]
T

G [B(δU)] dS + G
[
δFΨ

SD

]T
G [1]

(33)
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where G [1] = [1, 0, . . . , 0]T . Through integration by parts and since G [AU ] = G [A] G [U ], we get∫
Ω

G [Ψ]
T

G [L(δU)] dΩ =

∫
Ω

G [AΨ]
T

G [δU ] dΩ +

∫
S

G [DΨ]
T

G [E(δU)] dS (34)

Then, eq. 33 is written

δJaug = G [ζ]
T

G [δFSD] + G
[
δFΨ

SD

]T
G [1]

+

∫
Ω

G [AΨ]
T

G [δU ] dΩ +

∫
S

G [ζh−B∗Ψ]
T

G [C(δU)] dS

+

∫
S

G [C∗Ψ]
T

G [B(δU)] dS +

∫
S

G [DΨ]
T

G [E(δU)] dS +

∫
S

G [B∗Ψ]
T

G [C(δU)] dS︸ ︷︷ ︸
=G[M ]T G[1]

(35)

Operators B∗ and C∗ are determined by setting G [M ]
T

G [1] to zero. Note that, in such a case, B∗ and C∗

will be identical to those of the case without uncertainties. Starting from eq. 35, Ψ (Ψ
∼
, in fact) must satisfy

the adjoint iPCE equation and the adjoint boundary conditions,

G [AΨ] = 0 , in Ω
G [B∗Ψ] = G [ζh] , on S

(36)

whereas

δJ = G [ζ]
T

G [δFSD] + G
[
δFΨ

SD

]T
G [1] (37)

Eq. 36 implies that the �eld adjoint equations to the iPCE primal problem result from the Galerkin projec-
tions of eq. 25. The imposed adjoint boundary conditions are though di�erent since these now include ζ,
de�ned in eq. 29. Eq. 37 is also quite similar to eq. 26, as it involves the Galerkin projections of its terms.

3.3 Programming Issues

The numerical solution of the adjoint iPCE equation is carried out in a similar manner to that of the primal
problem. The iterative scheme is written as

G

[
∂RΨ

∂Ψ

]
G [∆Ψ] = −G

[
RΨ
]

(38)

where RΨ =AΨ. Eq. 38 is solved similarly to the iPCE equations, i.e. by keeping only the diagonal blocks
on the LHS. For the RHS, the computation of RΨ is required, which is based on the same routines used in
the problem without uncertainties; there is a slight di�erence though: without uncertainties ζ= 1, while in
their presence ζ is given by eq. 29. For the initialization of Ψ, the adjoint problem without uncertainties is
solved by setting

ζ = ζ0 = ζ0sign(F 0) (39)

corresponding to the solution of the adjoint iPCE equation for C = 0; Ψ(ξ = ξz) is thus computed. The
solution of the iPCE adjoint equations is followed by the computation of the sensitivity derivatives, eq. 37
for which existing routines are also used.
Finally, regarding the choice of weights ζi, two comments should be made. First, since E[F ] = F 0 and
V ar[F ] =

∑q
i=1(F i)2, the magnitude of |ζ0|, compared to |ζi|, i ∈ [1, q] determines whether emphasis is laid

on minimizing the mean value or the variance. Second, the signs of the coe�cients are important. Without
loss of generality, we may assume that J is to be minimized. Therefore, ζi > 0, i ∈ [1, q] since we are always
interested in minimizing the variance. For instance, if F is to be minimized in the deterministic problem, ζ0
will be positive.
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4 Method Demonstration

The aforementioned iPCE methods are used for both UQ and shape optimization studies. In speci�c, a UQ
around an aircraft con�guration is initially presented with emphasis on the accuracy of the obtained results
and the gain in computational cost of the iPCE compared to the non�intrusive PCE variant. Then, shape
designs of a 2D isolated airfoil without and under uncertainties are carried out and the optimized solutions
are compared.

4.1 UQ of the Inviscid Flow Around an Aircraft Con�guration

The �rst case is concerned with the inviscid transonic �ow around an aircraft con�guration (practically the
wing�fuselage con�guration of DLR�F6 of [21], herein studied at inviscid �ow conditions). The free�stream
�ow conditions are: M∞=0.75 and a∞=0o and the QoI is the lift coe�cient CL. Uncertain �ow conditions
are considered as follows

M∞ ∼ N(0.75, 0.02), a∞ ∼ U(−1o,+1o)

where N (a, b) denotes the normal distribution, with mean value a and standard deviation b and U(a, b)
the uniform distribution in [a, b]. Note that the orthogonal polynomials used for these distributions are the
Hermite and the Legendre polynomials, respectively.
UQ computations using both the iPCE and the niPCE approaches were carried out and the results are com-
pared in table 1. Note that the CPU time is non�dimensionalized with the time of a single UQ computation
on the same processor(s) using the proposed iPCE method. The mean value and the standard deviation of
the Mach number around the aircraft is illustrated in �g. 1.
From table 1 it can be seen that the results of the iPCE and the niPCE for two uncertain variables are in
full agreement and the proposed method is more e�cient in terms of computational cost (about 50% faster
for C=1 and 40% for C=2). This di�erence is attributed to the bene�ts of the method described in section
2.2. Namely, the well�chosen initialization of the mean �ow �eld, along with the decoupling of the iPCE
equations led to their convergence in 120 iterations of the point�implicit Jacobi solver, for C=1, compared
to the 160 iterations required for the niPCE. This is depicted in �g. 2, which shows the convergence of the
spectral coe�cients of the QoI as a function of the number of iterations.

iPCE niPCE iPCE niPCE
C=1 C=2

µCL
0.47172 0.47172 0.47172 0.47172

σCL
0.06661 0.06689 0.06694 0.06694

CPU time 1 1.941 1 1.598

Table 1: Inviscid �ow around an aircraft con�guration. Statistical moments of the lift coe�cient computed
using the iPCE and niPCE (with C=1, 2) and the normalized computational cost of the two methods.

4.2 Shape Optimization of a 2D Airfoil � Laminar Flow

The second case deals with the shape optimization of a 2D isolated airfoil in the presence of uncertainties.
The airfoil geometry is parameterized using two Bezier curves and the coordinates of their control points are
the design variables.
Initially, a shape optimization without uncertainties is carried out. The �xed �ow conditions are: M∞=0.5,
a∞ = 2o and chord�based Reynolds number Re = 6000;the �ow is laminar �ow. The optimization aims
at minimizing the drag coe�cient (CD), i.e. the objective function is F = CD. The resulting optimized
geometry yields a CD value of about 20% smaller than that of the initial symmetric airfoil, �g. 3.
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Figure 1: Inviscid �ow around an aircraft con�guration. Fields of the mean (left) and standard deviation
(right) of the Mach number (iPCE, C=1), plotted on the aircraft surface.
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Figure 2: Inviscid �ow around an aircraft con�guration. Comparison of the convergence of the spectral
coe�cients of the lift coe�cient (computed using iPCE and niPCE, C=1). Mean lift coe�cient C0
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left), spectral coe�cients C1

L corresponding to M∞(top � right) and C2
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Figure 3: Shape optimization of a 2D airfoil; laminar �ow. History of the objective function value in the
optimization without uncertainties for min. drag.
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Shape�optimization under uncertainties follows. Uncertainties are introduced in the �ow conditions with the
following probability distributions

M∞ ∼ N (0.5, 0.05) , a∞ ∼ U(1.5o, 2.5o) , Re ∼ N (6000, 250)

and the objective function is formulated as

J =

q∑
j=0

ζj |F j |

with q=19 (for m=3 uncertain variables and chaos order C=3), ζ0 =1 and ζj=3 ∀ j > 0.
A reduction of the QoI of about 18% is achieved, see �g. 4. The optimized airfoil geometries resulted from
the two runs (without and under uncertainties) compared to the initial one are shown in �g. 5. The �elds
of the adjoint velocity magnitude on the optimized geometries are illustrated in �g. 6. Table 2 compares
the statistical moments of CD from both optimization runs. The values on the left column are computed by
a UQ run of the geometry resulted from the optimization run without uncertainties. As expected, the run
without uncertainties yields lower mean value but has higher standard deviation.
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Figure 4: Shape optimization of a 2D airfoil; laminar �ow. History of the objective function in the optimiza-
tion under uncertainties.
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Figure 5: Shape optimization of a 2D airfoil; laminar �ow. Comparison of the optimized geometries with
and without uncertainties with the initial one.

Without Under
Uncertainties Uncertainties

µCD
6.81 · 10−2 6.97 · 10−2

σCD
1.11 · 10−3 1.05 · 10−3

Table 2: Shape optimization of a 2D airfoil; laminar �ow. Comparison of the statistical moments of the drag
coe�cient of the optimized geometries which resulted from the two runs.
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Figure 6: Shape optimization of a 2D airfoil; laminar �ow. Field of the non�dimensional adjoint veloc-
ity magnitude computed by the design without uncertainties (top) and mean (bottom�left) and standard
deviation of the adjoint velocity from the design under uncertainties.

5 Conclusions

This paper presented an intrusive Polynomial Chaos Expansion method for UQ and shape optimization
under uncertainties. A generalized mathematical development for obtaining the iPCE to the Navier�Stokes
equations and ways for reducing the computational cost and memory requirements were presented. To
perform a gradient�based optimization, the adjoint to the iPCE equations has also been developed using the
same mathematical framework. The great advantage of the proposed method is that (a) it can be formulated
without �rst developing the PDEs governing the spectral �elds of the �ow variables and (b) the programming
of both the primal and the adjoint code bene�ts, to the greatest extent, of the code for the problem without
uncertainties. The proposed method was demonstrated in shape optimization problems under uncertainties
associated with the in�nite �ow conditions in external aerodynamics. The optimal solutions from the design
under uncertainties, as expected, are more robust compared to those found by the optimization without
uncertainties.
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