
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-0342

On a physically-consistent nonlinear subgrid-scale heat

flux model for LES of buoyancy driven flows

F.X. Trias1, F. Dabbagh1,2, A. Gorobets1,3 and A.Oliva1

Corresponding author: xavi@cttc.upc.edu

1 Heat and Mass Transfer Technological Center (CTTC),
Technical University of Catalonia, C/Colom 11, 08222 Terrassa (Barcelona)

2 Christian Doppler Laboratory for Multi-Scale Modeling of Multiphase Processes,
Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

3 Keldysh Institute of Applied Mathematics, 4A, Miusskaya Sq., Moscow 125047, Russia

Abstract: In this work, we plan to shed light on the following research question: can we find a
nonlinear tensorial subgrid-scale (SGS) heat flux model with good physical and numerical properties,
such that we can obtain satisfactory predictions for buoyancy driven turbulent flows? This is
motivated by our recent findings showing that the classical (linear) eddy-diffusivity assumption,
qeddy ∝ ∇T , fails to provide a reasonable approximation for the SGS heat flux, q = uT − uT .
This has been shown in our recent work [Dabbagh et al., Phys. Fluids 29, 105103 (2017)] where
SGS features have been studied a priori for a Rayleigh-Bénard convection (RBC). We have also
concluded that nonlinear (or tensorial) models can give good approximations of the actual SGS
heat flux. The nonlinear Leonard model, qnl ∝ ∇u∇T , is an example thereof. However, this
model is unstable and therefore it cannot be used as standalone SGS heat flux model. Apart from
being numerically stable we also want to have the proper cubic near-wall behavior. Corrections in
this regard will be presented together with a priori/posteriori studies of nonlinear SGS heat flux
models for RBC. Results from LES simulations will be compared with the DNS results obtained
in the on-going PRACE project “Exploring new frontiers in Rayleigh-Bénard convection”.
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1 Introduction

Turbulent flows driven by thermal buoyancy are present in many technological applications, such as governing
flows in nuclear reactors, solar thermal power plants, indoor space heating and cooling, electronic devices,
and convection in the atmosphere, oceans and deep mantle. Most of these flows are ruled by turbulent regime
purely sustained by buoyancy, the reason that imparts a significant complexity into the flow system. Mainly,
the chief dynamics therein such as the vortical structures and thermal plumes are essentially associated
with immanent unsteadiness, energy nonequilibriums, strong pressure fluctuations and hardly interacted
different size scales of motions [1]. Following the self-sustained cycle of the plumes, they produce alternative
nonequilibriums between the buoyant production and the viscous dissipation, which are mainly compensated
by the pressure transport mechanisms [2]. As a consequence, predicting the complex coherent dynamics in
a turbulent buoyancy-driven flow derives formidable challenges, particularly within the scope of turbulence
modeling.

Direct numerical simulations (DNS) have provided a fruitful knowledge about the problem in the fields of
coherent dynamics and turbulence physics [3, 4]. Apart from overcoming the uncertainties pertaining to the
experimental studies, DNS has allowed to investigate and resolve many queries in Rayleigh-Bénard convection
(RBC) at relatively high Rayleigh (Ra) numbers [5, 6]. However, the full resolution of every generated
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Figure 1: Schema of the Rayleigh-Bénard configuration studied in Refs. [4, 8]. Displayed together with a
developed instantaneous temperature field taken of the DNS at Ra = 1010.

vortical filament in DNS requires increasing computational demands with Ra. Therefore, in the foreseeable
future, the numerical simulations of hard turbulent RBC will have to resort to turbulence modeling. We
therefore turn to large-eddy simulation (LES) to predict the large-scale behavior of incompressible turbulent
flows driven by buoyancy. In LES, the large scales of motions in a flow are explicitly computed, whereas
effects of small-scale motions are modeled. Since the advent of computational fluid dynamics many subgrid-
scale models have been proposed and successfully applied to a wide range of flows (see, for instance, the
encyclopedic work of Sagaut [7]). The main goal of the current project is to improve the diffusive (linear)
description of turbulent flows that is provided by eddy-diffusivity models for the subgrid-scale (SGS) heat
flux. To that end, we will consider nonlinear SGS heat flux models that can properly represent the dynamics
of the smallest (unresolved) scales, overcoming the inherent limitations of the eddy-diffusivity models [8].
Related with this, we also aim to find a proper definition of the subgrid characteristic length scale for
simulations on anisotropic or unstructured grids. This is particularly important for highly anisotropic grids,
on which the smallest grid spacing may start dominating the usually chosen characteristic length scale.

The specific SGS models that we consider consist of a linear eddy-viscosity term for momentum supple-
mented by a nonlinear model for the SGS heat flux. The model terms are designed to preserve important
mathematical and physical properties, such as symmetries of the Navier-Stokes equations, and the near-wall
scaling and the dissipative nature of the SGS. The desired properties are already included in existing models
for the SGS stresses. Examples of eddy-viscosity models that exhibit the proper near-wall behavior are
given by the WALE model [9], the σ-model [10] and the S3PQR model proposed in our previous work [11].
However, the (linear) eddy-diffusivity assumption fails to provide a reasonable approximation for the SGS
heat flux. This has been clearly shown in our very recent work [8] where the SGS features have been studied
a priori for a RBC at Ra = 1010. We have also conclude that nonlinear (or tensorial) models can give a good
approximation of the actual SGS heat flux. Among them, the models proposed by Daly and Harlow [12] (for
RANS modeling) and Peng and Davidson [13] will be considered together with the new approach recently
proposed on the basis of our a priori studies [8].

The rest of the paper is organized as follows. In the next section, the theoretical background of LES
simulation of buoyancy-driven flows is presented. Then, in Section 3 different nonlinear SGS heat flux models
are discussed and analyzed. Finally, conclusions are given in Section 4.

2 Background

2.1 Large-eddy simulation of buoyancy-driven flows

In large-eddy simulation, a filtering or coarse-graining operation is employed to distinguish between large
and small scales of motion. This operation is denoted by an overbar in what follows. The evolution of the
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incompressible large-scale velocity, u, and temperature, T , fields can be described by the filtered Navier-
Stokes and thermal energy equations, supplemented by the incompressibility constraint,

∂tu+ (u · ∇)u = (Pr/Ra)1/2 ∇2u−∇p+ f −∇ · τ ; ∇ · u = 0, (1)

∂tT + (u · ∇)T = (Ra/Pr)−1/2∇2T −∇ · q, (2)

where u, T and p are respectively the filtered velocity, temperature and pressure. The SGS stress tensor, τ ,
and the SGS heat flux vector, q, represents the effect of the unresolved scales,

τ = u⊗ u− u⊗ u, (3)

q = uT − uT , (4)

and they need to be modeled in order to close the system. The most popular approach is the eddy-viscosity
assumption, where the SGS stress tensor is computed in alignment with the local rate-of-strain tensor,
S = 1/2(∇u+∇ut), i.e.

τ ≈ −2νeS(u). (5)

In analogy to τ , the SGS heat flux is often approximated employing the gradient-diffusion hypothesis (linear
modeling), given by

q ≈ −κt∇T (≡ qeddy). (6)

Then, the Reynolds analogy assumption is applied to evaluate the eddy-diffusivity, κt: the heat flux is
assumed to be analogous to the momentum flux and its ratio therefore, is constant. In this case, the
eddy-diffusivity, κt, is derived from the eddy-viscosity, νe, by a constant turbulent Prandtl number, Prt,
independent of the instantaneous flow conditions, i.e. κt = νe/Prt. These assumptions have been shown to
be erroneous to provide accurate predictions of the SGS heat flux in our recent work [8]. Namely, a priori
analysis has shown that the eddy-diffusivity assumption, qeddy (Eq. 6), is completely misaligned with the
actual subgrid heat flux, q (see Figure 2, top left). In conclusion, one can corroborate the failure of the
isotropic eddy-diffusivity parametrization (qeddy) in turbulent buoyancy driven flows. In contrast, the tensor
diffusivity (nonlinear) Leonard model [14], which is obtained by taking the leading term of the Taylor series
expansion of q,

q ≈ δ2

12
G∇T (≡ qnl), (7)

provides a much more accurate a priori representation of q (see Figure 2, top left). Here, G represents the
gradient of the resolved velocity field, i.e. G ≡ ∇u. Then, the rate-of-strain, S, and the rate-of-rotation, Ω,
tensors are respectively given by the symmetric and anti-symmetric parts,

S =
1

2
(G+ G

T ) Ω =
1

2
(G− G

T ). (8)

It can be argued that the rotational geometries are prevalent in the bulk region over the strain slots, i.e. |Ω| >
|S| (see Refs [4, 8]). Then, the dominant anti-symmetric tensor, Ω, rotates the thermal gradient vector, ∇T
to be almost perpendicular to qnl (see Eq.7). Therefore, the eddy-diffusivity paradigm is only applicable in
the not-so-frequent strain-dominated areas. This also matches with the observations of Chumakov [15], who
performed a priori study of the SGS flux of a passive scalar in isotropic homogeneous turbulence.

2.2 Nonlinear SGS heat flux models for large-eddy simulation

Since the eddy-diffusivity, qeddy, cannot provide an accurate representation of the SGS heat flux, we turn
our attention to nonlinear models. As mentioned above, the Leonard model [14] given in Eq.(7) can provide
a very accurate a priori representation of the SGS heat flux (see Figure 2, top left). However, the local
dissipation (in the L2-norm sense) is proportional to ∇T ·G∇T = ∇T ·S∇T +∇T ·Ω∇T = ∇T ·S∇T . Since
the velocity field is divergence-free, λS

1 + λS
2 + λS

3 = 0, and the eigensystem can be ordered λS
1 > λS

2 > λS
3

with λS
1 > 0 (extensive eigendirection) and λS

3 6 0 (compressive eigendirection), and λS
2 is either positive or

negative. Hence, the local dissipation introduced by the model can take on negative values; therefore, the
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Figure 2: Joint probability distribution functions (PDF) of the angles (α, β) defined in the top right figure
and plotted on a half unit sphere to show the orientation trends in the space of the mixed model. The
PDF of γ is shown along the bottom strip of each chart. Alignment trends of the actual SGS heat flux, q
(top, left), the Daly and Harlow [12] model (see qDH in Eq. 11) (bottom, left) and the Peng and Davidson
model [13] (see qPD in Eq. 9) (bottom, right). For comparative and simplicity reasons, the JPDF and the
PDF magnitudes are normalized by its maximal. For further details the reader is referred to our recent
paper [8].

.

Leonard model cannot be used as a standalone SGS heat flux model, since it produces a finite-time blow-up.
A similar problem is encountered with the nonlinear tensorial model proposed by Peng and Davidson [13],

q ≈ Ctδ
2
S∇T (≡ qPD). (9)

An attempt to overcome these instability issues is the so-called mixed model [16], where the Leonard model
(Eq. 7) is linearly combined with an eddy-diffusivity model (Eq. 6),

q ≈ δ2

12
(G∇T − Λ|S|∇T ) (≡ qmix), (10)

where Λ is the ratio of the corresponding model coefficients. Another interesting nonlinear model was
proposed by Daly and Harlow [12] for modeling the SGS heat flux for RANS,

q ≈ −TSGSτ∇T = − 1

|S|
δ2

12
GG

T∇T (≡ qDH), (11)
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Figure 3: Energy spectra for decaying isotropic turbulence corresponding to the experiment of Comte-Bellot
and Corrsin [18]. Results obtained with the new definition δlsq proposed in Eq.(27) are compared with the
classical definition proposed by Deardorff given in Eq.(29). For clarity, latter results are shifted one decade
down. For details the reader is referred to our recent paper [19].

where TSGS = 1/|S| is an appropriate SGS timescale [15] and the SGS stress tensor, τ , is approximated
with the gradient model [17], i.e. τ ≈ (δ2/12)GGT . Notice that the model proposed by Peng and Davidson
(Eq. 9) can be viewed in the same framework if the SGS stress tensor is estimated by an eddy-viscosity
model, i.e. τ ≈ −2νeS and TSGS ∝ δ2/νe. These two models have shown a much better a priori alignment
with the actual SGS heat flux (see Figure 2, bottom).

2.3 Wall-resolved LES: computational costs and mesh anisotropies. Choice of

the characteristic length scale

In his 1979 pioneering paper, Chapman [20] estimated the number of grid points for an LES of turbulent
boundary layers with and without wall modeling as

Nwm ∼ Re
2/5
Lx

and Nwr ∼ Re
9/5
Lx

, (12)

respectively, where ReLx
= ULx/ν is the Reynolds number based on the free-stream velocity, U , and the

flat plate length in the streamwise direction, Lx. To reach these scalings, Chapman used the following skin
friction correlation

cf = 0.045Re
−1/4
δ , (13)

where Reδ = Uδ/ν is the Reynolds number based on the boundary layer thickness, δ(x), and assumed a
seventh-power velocity distribution law, i.e. u ∼ y1/7. The later leads to an exact relation between the
momemtum thickness, θ, and δ given by θ = 7δ/72. Then, using Eq.(13) and cf = 2dθ/dx leads to

δ

x
= 0.37Re−1/5

x and cf = 0.0577Re−1/5
x , (14)

where Rex = Ux/ν is the Reynolds number based on the streamwise distance from the leading edge, x.
From these equations it is relatively easy to show the scaling given by Chapman in Eq.(12). Recently, Choi
and Moin [21] gave new estimations based on a more accurate skin friction correlation for high Reynolds
numbers (106 ≤ Rex ≤ 109) given by

cf = 0.020Re
−1/6
δ . (15)

In this case, the analysis leads to

Nwm ∼ ReLx
and Nwr ∼ Re

13/7
Lx

. (16)
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These findings are extensively used to emphasize the prohibitive costs of LES without wall-modeling and the
necessity, in the foreseeable future, of wall-modeling techniques for applications at high Reynolds numbers.
However, under some assumptions, these scalings are only valid for a range of Rex; moreover, they do not
include the costs associated with temporal scales which eventually can be even more restrictive due to the
inherent difficulty (impossibility?) to parallelize LES equations in time. These two issues are addressed in
the next paragraphs. Let us consider a general power-law for the skin friction coefficient

cf = aReβδ . (17)

Then, following the above explained reasonings it leads to

δ

x
= bReαx and cf = 7b/36(α+ 1)Reαx , (18)

where b = (36a(1 − β)/7)1/(1−β) and α = β/(1 − β). Notice that with a = 0.045 and β = −1/4 it leads to
the Chapman’s scalings given in Eqs.(14). Following the same reasonings as in Ref.[21] the number of grid
points in the outer layer and the viscous wall region can be estimated as follows

Nout = nxnynz

(

1

b2(1 + 2α)

)

Lz

Lx
Re−2α

Lx

(

(

ReLx

Rex0

)1+2α

− 1

)

, (19)

Nvis =
nw
y

∆x+
w∆z+w

7b

72

Lz

Lx
Re2+α

Lx

(

1−
(

Rex0

ReLx

)1+α
)

, (20)

where nxnynz is the number of grid points to resolve the cubic volume δ3(x) in the outer layer (typically in the
range 103−104 [21]), Lz is the spanwise length and x0 is the initial streamwise location where the skin friction
correlation (18) holds. Then, ∆x+

w , ∆z+w and nw
y are respectively the grid resolutions (in wall units) and the

number of grid points in the wall-normal direction in the viscous wall region, i.e. 0 ≤ y+ . l+y ≈ 100. Typical
values for WRLES lead to nw

y /(∆x+
w∆z+w ) ∼ 0.01 [21]. This analysis can be extended giving estimations of

the number of time-steps for the outer layer and the viscous wall region

Nout
t =

NTUnx

bCconv
ReLx

Re−(1+α)
x0

; Nvis
t = max(Nvis

tdiff
, Nvis

tconv
), (21)

where

Nvis
tdiff

=
NTU

Cdiff

7b

72

α+ 1

(∆y+w )2
ReLx

Reαx0
; Nvis

tconv
=

NTU

Cconv

√

7b

72

α+ 1

(∆x+
w)2

ReLx
Reα/2x0

, (22)

where NTU is the number of time-units, Lx/U , to be computed; Cconv and Cdiff are the convective and
diffusive constants in the CFL condition. In summary, combining Eqs.(19), (20) and (21) leads to the
following costs for LES with and without wall-modeling:

Nwm
t Nwm ∼ Re2Lx

and Nwr
t Nwr ∼ Re3+α

Lx
. (23)

Nowadays, this represents the main limitation of (wall-resolved) LES. On the other hand, it is also possible to
give estimations of the mesh anisotropy, i.e. ∆x/∆y, in the boundary layer. Namely, in the viscous sublayer,
max(∆x/∆y) = ∆x+

w/∆y+w ≈ 50 − 100 is not expected to change with the Reynolds number. However, in
the overlap region (y+ & 50, y/δ < 0.1) where control volumes of the viscous wall region and the outer layer
(y+ & 50) must be smoothly connected, the grid anisotropy can be estimated as

(

∆x

∆y

)

overlap

≈ (∆x)out
(∆y)vis

=
δ

nx

nw
y

ly
, (24)

where ly is the size of the viscous wall region, i.e. l+y = uτ ly/ν ≈ 50 − 100. Recalling the definition of the
skin friction coefficient, cf = τw/(ρU

2/2), and using the relation given in Eq.(18), an expression in terms of
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Rex can be obtained
(

∆x

∆y

)

overlap

≈ 1√
2

nw
y

nx

b

l+y

√

7b

36
(α + 1)Re1+3α/2

x . (25)

Therefore, for any value of α > −2/3 the mesh anisotropy, ∆x/∆y, tends to grow with Rex. Taking typical
values for nx = 10, nw

y = 20 and l+y = 100, and using, respectively, the skin friction coefficient correlations
used by Chapman [20], i.e. α = −1/5 and b = 0.37, and Choi and Moin [21], i.e. α = −1/7 and b = 0.17, it
simplifies

(

∆x

∆y

)Chapman

overlap

≈ 0.00125Re7/10x ;

(

∆x

∆y

)Choi&Moin

overlap

≈ 4.047× 10−4Re11/14x . (26)

Just as examples, this leads to mesh anisotropies of 19.9 and 20.96 at Rex = 106, and 99.7 and 127.97 at
Rex = 107. Therefore, numerical techniques that behave robustly in such meshes are of great interest.

In this context, the question that arises is how to compute the subgrid characteristic length, δ, that needs
to be specified for all the models. It is usually associated with the local grid size. That is, for isotropic grids,
δ is taken equal to the mesh size, δ = ∆x = ∆y = ∆z. However, for anisotropic or unstructured grids, a
consensus has not been reached yet. With the aim to overcome the limitation of the Deardorff definition [22]
(cube root of the cell volume), the following definition for δ was proposed and studied in a recent paper [19],

δlsq =

√

GδG
T
δ : GGT

GGT : GGT
, (27)

where G ≡ ∇u, Gδ ≡ G∆ and ∆ ≡ diag(∆x,∆y,∆z) (for a Cartesian grid). This definition of δ fulfills a
set of desirable properties. Namely, it is locally defined and well bounded, ∆x ≤ δlsq ≤ ∆z (assuming that
∆x ≤ ∆y ≤ ∆z). Moreover, it is sensitive to flow orientation and applicable to unstructured meshes (by
simply replacing the tensor ∆ by the Jacobian of the mapping from the physical to the computational space).
This definition (27) is obtained minimizing (in a least-squares sense) the difference between the leading terms
of the Taylor series of the SGS tensor, τ(u), for an isotropic and an anisotropic filters lengths; namely,

τ(u) =
δ2

12
GG

T +O(δ4) ; τ(u) =
1

12
GδG

T
δ +O(δ4), (28)

Results displayed in Figure 3 correspond to the classical experimental results obtained by Comte-Bellot and
Corrsin [18]. LES results have been obtained using the Smagorinsky model, for a set of (artificially) stretched
meshes. In contrast with the results obtained using the Deardorff definition [22],

δvol = (∆x∆y∆z)1/3, (29)

the proposed definition of the subgrid characteristic length, δlsq, significantly minimizes the effect of mesh
anisotropies on the performance of SGS stress tensor models. For further details the reader is referred to
our recent paper [19].

3 Building a proper SGS heat flux model

3.1 Exploring nonlinear SGS heat flux models

In this work we focus on finding a nonlinear SGS heat flux model with good physical and mathematical
properties, that provides both accurate a priori representation of the actual SGS heat flux, q, and satisfactory
a posteriori predictions for turbulent buoyancy driven flows.

Let us remark that the focus of this study is not on the eddy-viscosity part of the model (see Eq. 5),
but on the nonlinear approximation of the SGS heat flux, q (see Eq. 4). We do, however, have to make a
specific choice for the SGS stress tensor model. We can, for instance, take one of the previously mentioned
models: the WALE model [9], the σ-model [10] or the S3PQR models [11] (with the same near-wall scaling
as the true turbulent stresses). Aiming to include several of the desirable properties according to which these
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β is defined in Figure 2. The analized data corresponds to the bulk region of the air-filled Rayleigh-Bénard
configuration at Ra = 1010 studied in Refs. [4, 8].

models have been designed, we suggest to take the S3QR model proposed in our work [11],

νS3QR
e = (Cs3qrδ)

2Q−1
GGTR

5/6
GGT , (30)

where QGGT and RGGT , are the second and the third invariants of the GGT tensor, respectively. This model
exhibits the same near-wall scaling behavior as the turbulent stresses and it vanishes in all two-component
flows, as well as in states of pure shear and pure rotation. Moreover, from a numerical point-of-view, it
is solely based on the local flow topology contained in the tensor of the resolved velocity field, G, it is
well-conditioned and it always provides non-negative values for νe ≥ 0.

As mentioned before, (linear) eddy-diffusivity (see Eq. 6) assumption cannot provide an accurate repre-
sentation of the SGS heat flux, q; hence, we turn our attention to nonlinear models. The least to be expected
from a SGS model is to keep the stability of the numerical solution. This is not the case of the Leonard
(Eq. 7) and the Peng and Davidson models (Eq. 9). Both of them have directions of negative diffusive that
make the model numerical unstable. This is clearly observed in Figure 4 where the joint PDF for the Peng
and Davidson model (Eq. 9) in the space (|qPD|/|qnl|, β) is displayed. It is worth noticing that both models
collapse to the same formula for β = 0, i.e. qPD = qnl ∝ qeddy, since they corresponds to flows with null
rate-of-rotation, Ω = 0. This is also observed in Figure 4. On the other hand, the model proposed by Daly
and Harlow [12] (see Eq. 11) does not suffer these problems since the tensor GG

T is positive semi-definite.
Moreover, this model has shown a rather good a priori alignment with the actual SGS heat flux (see Figure 2,
bottom left). Therefore, hereafter we will consider nonlinear models based on the tensor, GGT .

3.2 Near-wall scaling

It can be shown that due to the no-slip condition and the incompressibility constraint, the production of
turbulent kinetic energy follows a cubic behavior near the wall [23], i.e. y+ . 5. The major drawback of
the classical Smagorinsky model is that the differential operator it is based on does not vanish in near-wall
regions. First attempts to overcome this inherent problem of the Smagorinsky model made use of wall
functions [24, 25]. However, the first outstanding improvement was the dynamic procedure proposed by
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Germano et al. [26] in the early 90s. Alternatively, it is possible to build models based on invariants that do
not have this limitation. Examples thereof are the WALE [9], the Vreman’s [27], the Verstappen’s [28] and
the σ-model [10] described in the previous section. This list can be completed with a novel eddy-viscosity
model proposed by Ryu and Iaccarino [29] and two eddy-viscosity models recently proposed by the authors
of this paper: namely, the S3PQR models [11] and the vortex-stretching-based eddy-viscosity model [30].

A similar analysis can be performed for the subgrid heat flux, q. Namely, due to the no-slip condition and
the incompressibility constraint, ∇ ·u = 0, the stream-wise, wall-normal and span-wise velocity components
and the temperature have the following scalings

u = ay +O(y2); v = by2 +O(y3); w = cy +O(y2); T = dy +O(y2), (31)

where y is the distance to the wall and a(x, z), b(x, z), c(x, z), d(x, z) are smooth functions that do not depend
on y. Hence, the actual subgrid heat flux, q, also follows a cubic behavior near the wall, i.e.

q ∝ 〈v′T ′〉 = O(y3). (32)

The results displayed in Figure 5 confirms that this cubic scaling is valid for y+ . 8. Let us consider now
the near-wall scaling of the Daly and Harlow model given in Eq.(11),

G ∝





y 1 y
y2 y y2

y 1 y



 ; ∇T ∝





y
1
y



 =⇒ GG
T∇T ∝





y
y2

y



 = O(y1). (33)

Therefore, the near-wall cubic behaviour is also recovered if the SGS timescale, TSGS , would scale quadrati-
cally. This is not the case of the timescale used in the Daly and Harlow [12] model, i.e. TSGS = 1/|S| = O(y0).

At this point it is interesting to observe that new timescales can be derived by imposing restrictions
on the differential operators they are based on. For instance, let us consider models that are based on the
invariants of the tensor GG

T

q ≈ −CM

(

P p
GGT Q

q
GGTR

r
GGT

) δ2

12
GG

T∇T (≡ qS2) (34)
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Ra = 1010 studied on Refs. [4, 8].

PGGT QGGT RGGT

Formula 2(QΩ −QS) V 2
G
+Q2

G
R2

G

Wall-behavior O(y0) O(y2) O(y6)
Units [T−2] [T−4] [T−6]

Table 1: Properties of the first, second and third invariants of the GGT tensor where QΩ = −1/2tr(Ω2),
QS = −1/2trS2, QG = −1/2trG2 are the second invariants of Ω, S and G, respectively, and RG = det(G)
is the third invariants of G. Finally, the invariant V 2

G
is equal to the L2-norm of the vortex-stretching

term, i.e. V 2
G
= |Sω|2. For further details the reader is referred to Ref. [11].

where PGGT , QGGT and RGGT are the first, second and third invariant of the GGT tensor. This tensor is
proportional to the gradient model [17] given by the leading term of the Taylor series expansion of the
subgrid stress tensor τ(u) = (δ2/12)GGT +O(δ4). Formulae of these invariants, their wall behavior and their
units are given in Table 1. Then, the exponents p, q and r in Eq.(34), must satisfy the following equations

−6r − 4q − 2p = 1; 6r + 2q = s, (35)

to guarantee that the differential operator has units of time, i.e. [P p
GGT Q

q
GGTR

r
GGT ] = [T 1] and a slope s for the

asymptotic near-wall behavior, i.e. O(ys). Solutions for q(p, s) = −(1+s)/2−p and r(p, s) = (2s+1)/6+p/3
are displayed in Figure 6. It we restrict ourselves to solutions with the proper near-wall scaling, i.e. s = 2
(blue lines in Figure 6), a family of p-dependent models follow. Hereafter, this family of models will be
referred as S2PQR-model. Restricting ourselves to solutions involving only two invariants of GGT three
models are found. Namely,

qS2PQ = −Cs2pqP
−5/2
GGT QGGT

δ2

12
GG

T∇T , (36)

qS2PR = −Cs2prP
−3/2

GGT R
1/3

GGT

δ2

12
GG

T∇T , (37)

qS2QR = −Cs2qrQ
3/2

GGTR
5/6

GGT

δ2

12
GG

T∇T , (38)

for p = −5/2, p = −1.5 and p = 0, respectively. These three solutions are also represented in Figure 6. The
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Figure 7: Joint PDF for the S2PR model (Eq. 37) in the space (|qPD|/|qnl|, β) where the angle β is defined
in Figure 2. The analized data corresponds to the bulk region of the air-filled Rayleigh-Bénard configuration
at Ra = 1010 studied in Refs. [4, 8].

alingment trends of all these three new models have also been studied a priori. For the sake of brevity, only
results for the S2PR (Eq. 37) are shown in Figure 7. Apart from being unconditionally stable, this model
displays the best alignment with the actual subgrid heat flux, q. Hence, we consider that this a very good
candidate for a posteriori LES simulations of buoyancy-driven flows.

4 Concluding remarks and future research

Motivated by our recent findings showing that the classical (linear) eddy-diffusivity assumption, qeddy ∝ ∇T ,
fails to provide a reasonable approximation for the SGS heat flux, q = uT −uT (see Figure 2), in this work
we plan to shed light on the following research question: can we find a nonlinear SGS heat flux model
with good physical and numerical properties, such that we can obtain satisfactory predictions for a turbulent
Rayleigh-Bénard convection? We aim to answer this question by first studying the capability of the eddy-
viscosity assumption (see Eq. 5) to model the SGS stress tensor, τ , without any modelization of the SGS
heat flux. To do so, we will carry out LES simulations for very low Pr numbers. In this case, the ratio
between the Kolmogorov length scale and the Obukhov-Corrsin length scale is given by Pr1/2 [7]; therefore,
for a Pr = 0.005 (liquid sodium) we have a separation of more than one decade. Hence, it is possible to
combine a LES simulation for the velocity field, u, with the numerical resolution of all the relevant scales of
the thermal field, T . Furthermore, we will study the performance of the above-mentioned nonlinear SGS heat
flux models. Results from LES simulations will be compared with those obtained from DNS. In this regard,
it is expected to play an important role the results obtained from the on-going PRACE supercomputing
project “Exploring new frontiers in Rayleigh-Bénard convection” awarded with 33.1Mh in last PRACE 15th
call. Results will be presented during the conference.
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