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1 Introduction
Efficient direct numerical simulation and large eddy simulations (respectively DNS and LES) of compressible
turbulent flows require a smart combination of numerical ingredients. Since computations must be carried
out for extended periods of time in order to converge turbulent statistics, the choice of a suitable time
integration scheme is of the utmost importance. Furthermore, highly stretched meshes are necessary to
capture the fine-scale structures in turbulent boundary layers. With such small grid sizes, the stability
constraint on time step of explicit time-marching methods becomes very restrictive in the near-wall regions.
This constraint is much smaller than the time-step required to achieve a satisfactory accuracy level of the
solution. A way of relaxing stability constraints consists in adopting an implicit time integration method.
Unfortunately, this generally involves much larger computational and memory costs. As a consequence, fully
implicit schemes are prohibitively expensive to use and some form of partial implicitation or approximate
calculation of the Jacobians has to be used to reduce computational cost to an amenable level. The above
indicates that the choice of a suitable implicit treatment for LES or DNS simulations derives from a delicate
compromise between maximum allowable time step given, accuracy and stability constraints of the simulation
and computational cost per iteration.

In the present work we evaluate the efficiency and accuracy of a recently developed high-order Implicit
Residual Smoothing (IRS) method for the computation of complex unsteady flows, with focus on LES of
turbomachinery flows. The IRS approach, initially proposed by Lerat and Sides [1] has been widely used
in the past to speed up convergence of steady Euler and Navier-Stokes calculations based on Runge and
Kutta time stepping. The present high-order IRS uses an implicit bi-Laplacian smoothing operator (of
fourth-order accuracy) to filter out high-frequency modes of the residual, which leads to the solution of
pentadiagonal systems for each space direction and Runge-Kutta stage. Thanks to the efficient inversion of
scalar pentadiagonal matrices, the extra computational cost associated with the implicit operator remains
much lower than standard implicit schemes.

The paper is organized as follows, section two presents the time and space integration schemes in this
study. Section three reports numerical results for three well documented test cases allowing to preliminary
assess the accuracy and the accuracy of the proposed IRS scheme. In section four IRS is applied to the
LES of a severe high-pressure turbine cascade configuration. Finally section five contains some concluding
remarks and future work perspectives.
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2 Numerical methods
This study is focused on numerical methods for the solution of the compressible Euler and Navier-Stokes
equations. The latter can be written in their instantaneous, Reynolds-averaged or filtered formulation
supplemented by a turbulence or a sub-grid model. In the following of this section numerical methods are
presented for a generic system of conservation laws of the form:

∂w

∂t
+∇ · F (w) = S(w) (1)

with w ∈ Rn the state vector of unknown variables of the problem, n being the number of scalar equations of
the system, F ∈ Rn×d the linear or non linear fluxes of the problem (d being the number of space dimensions)
and S ∈ Rn the source terms, all depending on the chosen physical model. In a Cartesian reference frame,
and if no source terms are present, equation (1) writes:

∂w

∂t
+
∑
d

∂fd(w)

∂xd
= 0 (2)

where the summation is carried out over the d space dimensions, fd is the flux function in the dth direction,
and xd is the corresponding space coordinate. The flux functions contain an inviscid and a viscous part,
denoted by superscripts e and v, respectively:

fd = fed − fvd .

After approximating the space derivatives by a suitable discretization scheme, equation (2) becomes:

wt +R(w) = 0 (3)

where R is the space approximation operator. The semi-discrete equation (3) represents a set of n ordinary
differential equations, depending on the number of degrees of freedom, control volumes or grid points con-
tained in each grid. In this work, space derivatives are approximated by means of structured finite-volume
schemes. More precisely, the results reported in the following are based on a third-order and a ninth-order
accurate approximation of the inviscid fluxes using five and eleven points per mesh direction, respectively.
Such schemes are obtained by supplementing a fourth or tenth-order centered approximation, respectively,
with a nonlinear artificial viscosity term using a blending of second and fourth (respectively tenth) derivatives
[2, 3]. Such schemes are denoted DNC3 and DNC9 (for Directional Non Compact), respectively. All of the
preceding numerical methods are implemented within the in-house structured finite-volume code DynHoLab
[4].

2.1 Time integration schemes
In this section we first recall the baseline explicit time integration scheme, and then introduce the high-order
implicit residual smoothing procedure.

2.1.1 Explicit Runge–Kutta scheme

The baseline explicit time integration scheme is the low-storage six-step optimized Runge–Kutta (RK6)
method of Bogey and Bailly [5], largely used in the literature for LES and DNS calculation. This may be
written in compact form as 

w(0) = wn

∆w(k) = −ak∆tR(w(k−1)), k = 1, ...s
wn+1 = w(s)

(4)

where wn is the numerical solution at time n∆t, ∆wn = w(k) − w(0) is the solution increment at the kth
Runge–Kutta stage, s = 6 is the number of stages, ak are the scheme coefficients. The optimized coefficients
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ak can be found in [5]. The preceding RK6 is formally only second-order accurate but exhibits very low
dispersion and dissipation errors up to the lowest resolved frequency for a given time-step ∆t.

2.1.2 Implicit residual smoothing

The stability domain of the explicit RK schemes can be enlarged by using an implicit residual smoothing
(IRS) technique. The main idea of IRS is to run the explicit scheme with a time step greater than the stability
limit of the scheme. The scheme is then stabilized by smoothing the residual by means of a dissipative spatial
operator added to the left hand side of equation (4). Most IRS operators introduced in the past were only
first or second order accurate (e.g. [6, 7]), and introduced large additional dissipation and dispersion errors
with respect to the baseline time scheme. In this work we extend the stability domain of the baseline RK6
by means of a recently proposed high-order IRS scheme [8]. The latter smooths the residuals by means of a
bi-laplacian increment at each Runge-Kutta stage. In compact form this writes:

w(0) = wn

J∆w(k) = −ak∆tR(w(k−1)), k = 1, ...s
wn+1 = w(s)

(5)

For a one-dimensional problem, the implicit operator J is:

J = 1 + θ(∆t
δx )4δ(λe4δ3) (6)

where θ is a tuning parameter, λe the spectral radius of the inviscid flux jacobians and δ is the classical
difference operator over one cell. An analytical study of the optimum value of θ for unconditional stability
is difficult, but a numerical search shows that unconditional stability is obtained for [8]:

θ ' 0.005

For multidimensional problems, the implicit operator is obtained by factorization of 1D operators in each
mesh direction. Precisely, for a d-dimensional problem the IRS operator is of the form:

J =
∏d
l=1

[
1− θ( ∆t

δxl
)2δl(λ

e
l
2δl)

]
(7)

where δxl, δl and λel are, respectively, the space step, the difference operator and the spectral radius of the
Jacobian flux in the lth direction. The multidimensional IRS operator leads to the inversion of a pentadiago-
nal system per mesh direction at each Runge-Kutta stage. If required, the IRS operator can be applied only
in space directions leading to a stiff behaviour (e.g. the direction normal to a solid wall), thus avoiding the
inversion of systems in the other directions. For the governing Equation (2) the additional error introduced
by the IRS operator with respect to the explicit scheme is of the form:

− 1

12
θ∆t4

∑
d

(λed)
4 ∂f

e
d

∂x5
d

+O(∆t4) (8)

It is seen that the proposed IRS treatment introduces an additional error of O(∆t4), ie. higher than the
baseline RK6. For this reason the scheme is referred-to as IRS4. Being proportional to a fifth derivative of
the flux fed , this error is recognized to have a dispersive nature. It becomes larger and larger as the smoothing
coefficient is increased to stabilize the baseline scheme. A detailed study of the accuracy and stability of
IRS4 can be found in [8].

2.1.3 Matrix systems for IRS schemes

The IRS4 applied at kth Runge–Kutta step (5) leads to the inversion of a pentadiagonal matrix, presented
hereafter in the simple case of a constant coefficient equation (fd = Adwd with Ad a constant matrix). When
Dirichlet boundary conditions are applied , the solution increment at the boundary is set to 0. In this case,
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the IRS operator leads to the inversion of the following n× n matrix:

Jn×n =



γ α β 0 0 0 0 0 · · · 0
α γ α β 0 0 0 0 · · · 0
β α γ α β 0 0 0 · · · 0

0 β α γ α β 0 0 · · ·
...

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 β α γ α β · · · 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 0 β α γ α β
0 · · · 0 0 0 0 β α γ α
0 · · · 0 0 0 0 0 β α γ


where β = θCFL4, α = −4β, γ = 1 + 6β, CFL = ∆t

h λ
e (with λe constant) and h the local mesh size.

For other kinds of boundary conditions (ie. Neumann, mixed or periodic) and at inter-subdomain bound-
aries (multi-block computations), two layers of ghost cells are used. This results in the inversion of a
(n+ 2)× (n+ 2) matrix on each subdomain:

J(n+2)×(n+2) =



1 0 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 0 · · · 0
β α γ α β 0 0 0 · · · 0

0 β α γ α β 0 0 · · ·
...

...
. . . . . . . . . . . . . . . . . . . . . . . .

...
0 · · · 0 β α γ α β · · · 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 · · · 0 0 0 β α γ α β
0 · · · 0 0 0 0 0 0 1 0
0 · · · 0 0 0 0 0 0 0 1


Information in the layers of ghost cells is also used to compute the right-hand side of Eq. (5). For Neumann
or mixed boundaries where ∂(∆w(k))

∂xi
must be set to 0, the rigth-hand side term is extrapolated from the first

inner cell :
R(w(k−1))1−j = R(w(k−1))1 for j = {1, 2} (9)

For inter-subdomain boundaries, ghost-cell information is transferred from the adjacent subdomain. This
strategy is used for the parallel implementation of the method, leading to satisfactory results for a variety
of LES simulations, like the ones presented in sections 3.2 and 4. Nevertheless it involves MPI exchanges
between adjacent subdomains, which implies a communication overcost. The additional cost remains however
rather small, so that the minimal cell number is about 503 in each block to keep a good scalability. The above-
mentioned strategy may however deteriorate the overall stability at subdomain boundaries if very high CFL
numbers are used. In the present simulations, based on maximal CFL numbers below 10 (limitation imposed
by the proper resolution of the smallest time scales in DNS or LES), no stability problems were observed
due to the boundary treatment. Finally, the efficiency and accuracy of the method at subdomain-boundaries
could be further improved in the future, e.g. by using the approach described in [9]

3 Preliminary validations
In this section the accuracy and efficiency of IRS4 are first assessed for selected well-documented test cases
of increasing complexity. These include the propagation of an acoustic pulse (gouverned by the Euler
equations), the direct Navier-Stokes simulation of freely decaying homogeneous isotropic turbulence and a
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preliminary application to the unsteady flow around a turbine cascade, solved at this stage by the unsteady
RANS equations.

3.1 Propagation of an acoustic pulse
The IRS4 scheme is first assessed against the test case used in Kremer and al. [10]. In this case, the 2-D
compressible Euler equations are used to model the flow. The mesh spacing in the x and y directions are
named ∆x and ∆y respectively. A set of grids is considered whereby ∆x is fixed, whereas ∆y ≤ ∆x is
different for each mesh. The number of grid points in each mesh is 140 × (140 ×∆x/∆y). For the spatial
discretisation we consider both the third-order and the ninth-order accurate DNC schemes (see Section 2).
The smoothing parameter of IRS4 is set equal to θ = 0.005 and the dissipation parameters of DNC3 and
DNC9 are {k2 = 0.5 ; k4 = 0.016} and {k2 = 0.5 ; k10 = 0.00015} respectively. A simple extrapolation is
applied at the domain boundaries and the initial conditions are defined by

p = p0 + ∆p exp(−ln(2)
(x2 + y2)

b2
) (10)

ρ = ρ0 + (p− p0)/c2 (11)
ux = uy = 0 (12)

Where b = 3∆x, p0 = 105 Pa, ∆p = 10 Pa, c =
√
γp0/ρ0, ρ0 = p0/(T0(γ − 1)cv) , T0 = 293K and

cv = 717.5J.K−1.kg−1. Simulations are performed with RK6 and IRS4 schemes for aspect ratios ∆x/∆y =
1,2,4,8,16 and 32. The IRS4 is initially applied only in the y direction and then in both directions.

3.1.1 Stability limits

The aim here is to find the maximum initial CFL number (CFL = c∆t/∆x with c the speed of sound of
the medium at rest) ensuring stability. The maximum allowed CFL (CFLmax) is reported in Figure 1 as
a function of the aspect ratio, for both schemes. The axes are in logarithmic scale. Results in Figure 1 are
obtained by applying IRS4 only in the y direction. The IRS4 removes the dependency of the aspect ratio,
although the maximum value is limited by the use of an explicit treatment in the x direction.
When applying IRS4 in both directions, CFLmax � 10 is found, independently of the spatial scheme order.

3.1.2 Accuracy

Afterwards, the accuracy of the IRS4 on anisotropic meshes is evaluated. The simulations are carried out up
to t = 32∆x/c, and CFL numbers ranging between 0.1 and 2.0. The spatial scheme DNC9 is used in order
to minimize the spatial discretization errors. The results are compared with a reference solution obtained
using RK6 and a small CFL equal 0.01 for each mesh. The reference pressure field is displayed in Figure 2.
The error rate E defined as :

E =

√∫ ∫
S

(p− pref )2ds√∫ ∫
S

(pref − p0)2ds
(13)

is evaluated for each mesh and reported on Figure 3 as a function of the CFL number for two different aspect
ratio: uniform (panel a) and ∆x/∆y = 8 (panel b) ). In the preceding equation pref is the reference pressure
field at CFL = 0.01 and p the computed pressure. The error trend does not change significantly with the
aspect ratio. Between CFL = 0.1 and CFL = 0.8 the IRS4 error is negligible and an overall convergence
order similar to that of the RK6 scheme (second order accurate) is recovered.
Figure 4 displays the normalized error fields for the RK6 and IRS4 (applied in the y or in both directions).
Using the IRS4 only in the y direction (Figure 4 b) ) leads to an anisotropic error distribution. On the other
hand applying ISR4 in both directions (Figure 4 c) ) leads to a more isotropic repartition of the error (which
is maximum in the directions aligned whit the mesh) but to globally lower error levels than RK6.
The influence of the mesh aspect ratio on the error is illustrated in Figure 5 for the IRS4 in the y direction and
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in Figure 6 for the IRS4 in both directions. The error anisotropy tends to increase slightly when increasing
∆x/∆y. This effect is also visible when applying IRS4 in both direction.
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Figure 1: Maximum CFL number as a function of the
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Figure 2: Pressure field at CFL number of 0.01,
∆x/∆y = 1 (scale in Pa),and at t = 32∆x/c
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Figure 3: Error rate as a function of the CFL number for: a) ∆x/∆y = 1 and b) ∆x/∆y = 8
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Figure 4: Distribution of normalized pressure error (p−pref )/max(p−pref ) at CFL = 0.8 and ∆x/∆y = 1.
a) RK6, b) IRS4 applied only in direction y and c) IRS4 applied in both directions.
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Figure 5: Distribution of the normalized pressure error (p−pref )/max(p−pref ) at CFL = 0.8. IRS4 applied
in y direction. a) ∆x/∆y = 1 and b) ∆x/∆y = 32
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Figure 6: Distribution of the normalized pressure error (p−pref )/max(p−pref ) at CFL = 0.8. IRS4 applied
in both directions. a) ∆x/∆y = 1 and b) ∆x/∆y = 32
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3.2 Homogeneous isotropic turbulence
In this section a the IRS4 is applied to the DNS of a geometrically simple flow ie. the natural decay of
homogeneous isotropic turbulence (HIT). The HIT decay is solved on a cubic computational domain with
extension [0, 2π]3. Periodic boundary conditions are imposed in the three Cartesian directions. The initial
mean-square-root velocity is defined by prescribing the turbulent Mach number. Temperature and pressure
fluctuations are specified in accordance with velocity fluctuations. The initial velocity spectrum is of the
Passot and Pouquet [11] type:

E(k) = Ak4exp

[
−2

(
k

k0

)2
]

(14)

where k0 = 4 is the initial pic of energy and A = 1 the amplitude of the initial energy. The simulations were
performed until a final time tf = 10τeddy with τeddy the turnover time is define as:

τeddy =

√
32

A
(2π)1/4k

−7/2
0 (15)

For the present simulations the ninth-order accurate DNC scheme is selected for space discretization (dissi-
pation coefficient are imposed as k2 = 1.0 and k10 = 0.00028). The computational domain is made of 128
points in each direction and the time step is defined as:

∆t =
∆x

(1 + 2Mt0)c0
CFL0 (16)

where Mt0 the initial Mach number, CFL0 the initial stability condition and c0 the initial speed of sound.
This is a less restrictive definition than the one used in [8] and leads to higher values of the time step for
the same value of CFL0. Specifically, CFL0 = 10 in [8] correspond CFL0 = 2.5 with the present definition.
Simulations were carried out at Mt0 = 0.2.

An overview of the flow is reported in Figure 7, which shows an isosurface of the Q-criterion colored by
the velocity magnitude.

Figure 7: Iso-surface of the Q-criterion (Q = 1000) colorized with the velocity magnitude at t = tf and IRS4
with CFL = 5
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To evaluate the accuracy of the calculation the IRS4 is compared with a reference solution based on RK6
with a CFL number of 1. A set of simulations with IRS4 are carried out for CFL numbers equal to 5 and
10. Figure 8 displays the time evolution of the enstrophy Ω normalized by the initial enstrophy Ω0 (panel
a) ), the skewness (panel b)) and the flatness (panel c)) of the velocity fluctuation gradient. The enstrophy
Ω is defined as:

Ω =

∫ ∞
0

k2E(k)dk (17)

where k is the wave-number and E(k) is the spectrum of the turbulent velocity integrated over shells of
radius k. The skewness Sa and the flatness Fa of a random field a are defined as:

Sa =
〈a3〉
〈a2〉3/2 (18)

.

Fa =
〈a4〉
〈a2〉4/2 (19)

where the operator 〈•〉 refer to a volume average over the computational domain at a fixed time instant. The
IRS4 solution for Ω at CFL0 = 5 is very close to the reference, while considerable differences are observed
at CFL0 = 10, leading to too large time step for correctly resolving the tiny structures populating the flow
in the vicinity of the enstrophy peak. The high-order moments are more sensitive to the time discretization.
Nevertheless, IRS4 with CFL0 = 5 still ensures a rather satisfactory representation of the flow dynamics.
Table 1 reports the overall computational time up to t = tf (CPU second on one Intel Xeon E5-2680V2
2.8GHz) as a function of the CFL number. One calculation iteration using IRS4 need approximately 1.5 times
more CPU time than the same iteration using RK6. Despite the over-cost introduced by the inversion of the
pentadiagonal systems, IRS4 leads to efficiency gains (for a similar solution accuracy) using CFL0 = 2÷ 5.
For higher values of CFL0 numerical errors become too large.

CFL0 1 1.25 2.5 5 10
RK6 36005.31 X X X X
IRS4 X 45866.00 22932.14 11446.07 5999.42

Table 1: CPU time (second) as a function of the CFL and the time discretization
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Figure 8: Comparison of the time evolution of a) normalized enstrophy b) skewness factor of the velocity
fluctuation gradient and c) flatness factor of the velocity fluctuation gradient using IRS4 at various CFL
numbers, comparison with reference solution using RK6 at CFL0 = 1
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3.3 Turbine cascade VKI LS-59
In view of LES of turbine flows IRS4 is preliminary applied to the unsteady flow around the VKI LS-59
transonic turbine rotor cascade previously considered in several experimental and numerical studies [12, 13,
14, 15]. The flow is modeled though the unsteady RANS equations, supplemented by the Wilcox k − ω [16]
model of turbulence.

The configuration investigated experimentally in four European wind tunnel [17] is characterized by
an outlet isentropic Mach number equal to 1. and by a Reynolds number (based on the chord and exit
conditions) of 8.8× 105. The computational domain containing a single blade passage, is discretized by a C-
grid of 384×32 grid points, with a first cell height leading to ∆y+ ≈ 2. The third order DNC spatial scheme
(using k2 = 0.5 and k4 = 0.032 as dissipation coefficients) is used for this series of calculations. Non reflective
boundary conditions are applied at the inlet and outlet boundaries, and periodic conditions are applied at
the lower and upper boundaries of the domain. The result of IRS4 (using θ = 0.02 as smoothing parameter
and CFL ≈ 5) are compared tothe available experimental data. Unsteady simulation are initialized with a
(partially converged) steady RANS field.

In Figure 9 the computed iso-contours of the density gradient are compared to a Schlieren picture obtained
experimentally by Kiock et al. [17] The flow is characterized by shock waves departing from the blade trailing
edge and by vortex shedding in the wake. Figure 10 b) shows the time-averaged isentropic Mach number
distribution along the blade. Present results are compared to experimental data from [17] and numerical
results of [15], obtained using a Residual-Based-Compact scheme, IRS4 is in good agreement with the
reference numerical data and matches reasonably well the experiments (which are highly uncertain). The
largest differences observed are at the upper side in the vicinity of x/c = 0.6 (corresponding to the reflection
of the impinging shock). Figure 10 a) shows the Fourier transform of the time-depending tangential force
acting on the blade. A peak is observed for a Strouhal number (based on the leading edge thickness and
exit velocity) of 0.21, corresponding to the shedding frequency. The latter is in excellent agreement with the
previous numerical results [15] and in reasonable agreement with the range of frequency [0.2,0.4] observed
experimentally for similar configuration [18]

a) b)

Figure 9: VKI LS-59 turbine cascade a) density gradient computed with IRS4 b) Schlieren picture experi-
mented by Kiock and al. [17] (Mis = 0.96, Re = 8.8 ×105)
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Figure 10: URANS of the VKI LS-59 cascade a) Fourier spectra of the tangential force applied on the blade
and b) comparison of the time averaged wall distribution of the isentropic Mach number

4 Large-eddy simulation of the VKI LS-89 turbine cascade
In the present section, the IRS4 scheme is applied to the LES of the flow around a turbine cascade instru-
mented at the Von Karman Institute in 1990 by Arts et al. [19]. This configuration was chosen because
experimental data are available, and because it has often been used as a test case for LES. Literature about
this configuration is huge because experimental data are available for several flow conditions using the same
set up. In the following of the section, we first describe the experimental setup and then we present the IRS4
results. These are compared with those generated by Collado et al. [20].

Arts and al. [19] carried out an experimental campaign to produce data for qualification of LES simula-
tions. The tested configuration is a 2D turbine blade cascade, called the VKI LS-89 blade, described in [19].
The blade chord C is 67.647 mm long with a pitch-to-chord ratio of 0.85 a stagger angle of 55◦. The flow
angle at turbine inlet is equal to 0◦. The flow condition simulated in the following correspond to experiment
conditions named MUR129. These are characterized characterized by outlet Reynolds number Re2 = 106,
and inlet free-stream turbulence intensity Tu0 = 1%. The total pressure at inlet is P0 = 1.87 × 105Pa and
the static mean wall temperature is Tw = 298K. The isentropic Mach number at the outlet is Mis,2 = 0.840.

A schematic view of the computation domain used for the present LES is displayed in Figure 11 a). The
mesh is a H type structured mesh composed of 850 grid points in the stream-wise direction, 180 grid points
in the pitch-wise direction and 200 grid points in the span-wise direction. The total number of grid points
for the blade passage is equal to 30.6 ×106. The blade is discretized by 550 grid points at the upper surface
and the same number at the lower surface. The corresponding distribution of y+,x+ and z+ is displayed
in Figure 11 b) c) and d). The average first layer size is 2.5µm, leading to an average y+ about 2. While
the average x+ is about 100 and the average z+ is about 25. These values correspond to a coarse LES,
but are similar to those of reference [20]. The present calculations are based on the DNC3 (using k2 = 0.
and k4 = 0.064 as dissipation coefficients) scheme and IRS4 (using θ = 0.01 as smoothing parameter). The
LES is initialized with a preliminary 2D laminar calculation. A sinusoidal perturbation of the conservative
variables with an amplitude of 10 % is applied for the span-wise direction to favor transition toward a fully
3D field. The dimensional time-step is set equal to 4 × 10−8 seconds, which correspond to a CFL number
of approximately 10.
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Figure 11: a) Mesh description where C = 67.647mm and time-averaged wall distribution of b) y+ c) x+

and d) z+ averaged in the span-wise direction.

In the following we present preliminary results, corresponding to zero inlet turbulent intensity. Calcula-
tions with Tu 6= 0% are planned as future work. The statistics are based on 2 flow-though time (time for
a particle dropped at the inlet to reach the outlet ≈ 2ms) taken after an initial transient of 3 flow-though
times. The calculations are being continued and more converged results will be presented at the conference.
Figure 12 displays the time averaged wall distribution of the isentropic Mach number and the convective
heat transfer coefficient. The results are compared to the experimental data of [19] and to the numerical
results of [20].

The isentropic Mach number does not match exactly the experiments, which correspond to case MUR43
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(no Mach number data are available for MUR129). For MUR43 the inlet turbulence intensity and the
outlet Mach and Reynolds number are the same as for MUR129, but the total inlet pressure is different
P0 = 1.435× 105Pa. Present results match nicely with the calculation of reference [20].

Figure 12 b) presents the wall distribution of the convective heat transfer coefficient, defined as

H =
qw

T0 − Tw
(20)

where qw is the wall heat flux, T0 the total free stream temperature and Tw the local wall temperature.
The present results are a bit noisy, due to the incomplete convergence of the flow statistics and to

irregularities in the turbine blade geometry, leading to a non smooth wall normal along the blade. The present
simulations are in rather good agreement with the experimental and numerical data form the literature.
Specifically, the present LES provides a reasonably good prediction of the increase of H at the upper surface
blade due to boundary layer transition. On the contrary the present simulation tends to under-estimate H
along the first half of the upper surface and at near part of the lower surface. It is expected that the results
could improve by using a non-zero turbulence intensity at the inlet. Finally an overview of the flow is shown
in Figure 13 which report an iso-contour of the Q-criterion colored by the velocity magnitude.
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Figure 12: LES of the VKI LS-89 cascade comparison of Time-averaged wall distribution of a) the isentropic
Mach number and b) the friction heat flux averaged in the span-wise direction.
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Figure 13: LES of the VKI LS-89 cascade iso-contour of the Q-criterion (Q = 1×1010) colorized with the
norm velocity.

5 Conclusions
The IRS4 time integration scheme was investigated in this study. Accuracy and computational efficiency
were compared with an optimized six step Runge and Kutta scheme. Three different test cases are considered
namely, the acoustic pulse, homogeneous isotropic turbulence and two dimensional RANS simulation around
turbine cascade VKI LS-59. The IRS4 based on the RK6 conserves the same theoretical order (second order
accurate) removing the restrictive stability constraint on the maximum time step limitation. However to
keep satisfactory accuracy, the CFL number must be kept below 10.

Afterwards, preliminary LES results for the LS-89 turbine cascade are presented. The simulations could
be run with a CFL of approximately 10 at a moderate overcost. The results are found to be in rather good
agreement with experimental data and numerical solutions from the literature. IRS4 thus appears to be
a promising numerical technique to speed-up large eddy simulations of complex wall bounded flows while
preserving solution accuracy.
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