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Abstract

This paper describes the strategies followed to implement a nodal-based Discontinuous Galerkin Flux
Reconstruction solver (DGFR) for the compressible Navier-Stokes equations on hybrid unstructured grids,
that is going to be executed on multiple Graphics Processing Units (GPUs). DGFR schemes exhibit some
features, such as the strong data locality, that make them good candidates to be executed efficiently on
a GPU. The solver has been implemented using a mixture of C++ and OpenCL. The implementation
details of the most time consuming parts of the solver are presented. It is demonstrated that the use of
the GPU local memory has a strong impact on the solver performance. When properly adjusted, it is
shown that all the computationally relevant parts of the solver are memory bound for the GPUs used
in this work. The parallel efficiency of the code is measured running first on a single GPU and then
running on multiple GPUs of a cluster. In the first case, the efficiency of the GPU does not depend on
the case size for large enough cases. However, when the number of mesh cells decreases below a certain
threshold, the GPU performance decrease is substantial. When multiple GPUS are used in parallel,
the communication between them is carried using MPI. The penalty due to the communication of data
between GPUs has a large detrimental effect on the parallel speed-up, even in case the communications
and computations overlap. The resulting solver is fast and precise enough to be used as an industrial
tool for analysis for common turbomachinery problems.

1 Introduction
The development of high order methods for CFD has seen major advances in the last two decades, and are
considered a promising candidate to achieve better numerical solution accuracy at an affordable computa-
tional cost. However, to gain general acceptance as analysis and design tools for industrial environments,
these methods must overcome two major obstacles. On the one hand, the degree of robustness of the method
must be comparable to that of current second order discretizations. On the other hand, the cost of obtaining
a solution to the numerical problem must not be prohibitive. The development of Discontinuous Galerkin
(DG) discretizations has advanced a lot on the first front. Initially proposed by Reed and Hill[1] as a numer-
ical method for the neutron transport equation, its theoretical foundations were laid by Cockburn et al. (see
for instance [2]). Popular variants of the original DG formulation are the nodal DG, proposed by Hesthaven
and Warburton[3], and the spectral difference method (SD) of Kopriva and Kolias[3]. Huynh[4] proposed a
framework to unify both formulations under the umbrella of the so called Flux Reconstruction (FR) method.
The formulation allows to recover both nodal DG and SD schemes for the linear advection equation. The
scheme was later extended to include diffusion terms[5]. Wang et al. extended Huynh’s formulation[6], which
was initially developed for 1D and quadrilateral elements, to triangles in 2D, and later to 3D mixed grids[7].
The resulting method, known as correction procedure via reconstruction (CPR), is the one used in this work.
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Proves of its stability for whatever order of accuracy have been provided[8], and the numerical behaviour of
the resulting schemes has been thoroughly studied[9, 10, 11, 12].

The use of a Graphical Processing Unit (GPU) as a general purpose processor has surged in the last
decade. The popularization of programming languages that easily expose the inherent parallelism of the
GPU hardware, such as CUDA[13] or OpenCL[14], and the ever increasing computational power of these
architectures makes the implementation of CFD solvers on these platforms very convenient. GPUs base
their computing performance in the simultaneous use of many cores, of the order of thousands. The efficient
use of these cores, however, is only achieved when all of them execute the same piece of code over sets
of evenly spaced input data. Embarrassingly parallel applications, i.e., those applications where the data
communicated between threads is minimal, take maximum advantage of the particularities of the GPU
hardware. It turns out that DG solvers largely fit into that category, therefore several examples of GPU
implementations exist in the literature. Klöckner[15] was the first one to implement a GPU version of a DG
solver for the resolution of the Maxwell equations, demonstrating the superior performances of the resulting
code when compared with an equivalent solver executed on CPUs. The first FR implementation for hybrid
unstructured grids on that hardware was presented in 2011[16], showing similar speed-ups relative to the
CPU execution. Since then, the number of DG and FR solvers has been growing steadily[17, 18, 19, 20, 21].
Furthermore, Vermeire et al.[22] demonstrate that the GPU implementation of their pyFR[19] solver not only
is faster and more precise than other commercial solvers, but it also consumes less computational resources
to obtain the solution.

In this paper we present an implementation of a nodal DGFR solver for hybrid unstructured grids as
part of the Mu2s2T suite of ITP Aero in-house CFD solvers[23]. It has been implemented using a mixture
of C++ and OpenCL. The use of C++ templates within OpenCL is supported, therefore we can choose the
solver precision at run time. The results presented in this work are obtained running with single precision.
MPI has been used to allow the parallel execution on multiple GPUs. The solver employs state-of-the-art
programming techniques to fully exploit the computing capabilities of the GPUs. The hardware that has
been used for this work is the GeForce GTX1080Ti GPU, connected to the CPU by a PCI-e 3.0 bus at
16 GB/s. There are 20 computing nodes with 10 GPUs each, connected with a two ports Infiniband EDR
network at 100 Gb/s per port. First, the equations of the FR scheme are presented for 1D, then it is extended
to multiple dimensions, and particularised for prisms and hexahedra. The implementation of the resulting
operators is commented in section 3, and some results for a single GPU execution are discussed. Next,
the multi-GPU algorithms are described, and the factors affecting the parallel performance are analyzed.
Finally, some test cases are presented, showing the solver capabilities.

2 The Flux Reconstruction scheme
We present here a summary of the FR and CPR formulations. The detailed discussions can be found in the
articles by Huynh[4, 5] and Wang et al.[6, 7].

2.1 One-dimensional Flux Reconstruction
The FR method was first introduced by Huynh[4] for the solution of conservation equations. We summarize
the method here for equations of the form:

∂U

∂t
+∇ · F = 0 (1)

Consider a 1D integration domain Ω = [0, L] discretized in N elements with the ith element defined by
Vi = [xi, xi+1]. For each element we define p + 1 solution points (SPs) at which the state variable U is
evaluated. Given these SPs the solution is approximated using Lagrange polynomials as

U (x, t) ≈ Uhi (x, t) =

p+1∑
j=1

Uhij (t)Lj (x) (2)

where Uhij is the solution at SP j of element i, and Lj(x) is the Lagrange polynomial with value 1 at x = xj .
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The flux function is defined in an analogous manner as:

F
(
Uh
)
≈ FDi (x, t) =

p+1∑
j=1

F
(
Uhij
)
Lj (x) (3)

Since the solution is in general discontinuous across element interfaces we now seek to reconstruct the
flux function in a way that the reconstructed flux FC possesses the following properties:

1. It is of degree p+ 1, that is, one order higher than FD

2. It is close to FD, in the sense that for certain norm
∥∥FC − FD∥∥ approaches zero.

3. The value of FC at the element interfaces is a common value F I between the two neighboring cells.

The final corrected flux is of the form FCi (x) = FDi (x) + γi (x) where γi (x) is the correction flux function
and is defined as:

γi (x) =
[
F IL − FD (xi)

]
gL (x) +

[
F IR − FD (xi+1)

]
gR (x) (4)

where F IL and F IR are the left and right interface fluxes and gL (x) and gR (x)are the left and right correction
functions. As noted in the original paper by Huynh [24] the choice of correction functions determines the
properties of the discretisation. In our implementation, the left and right Radau polynomials are chosen. This
is because more accurate solutions are recovered, albeit with a somewhat more restrictive CFL condition.
This choice of correction functions recover the nodal-based discontinuous Galerkin formulation for the linear
advection equation.

For convenience the spatial dimensions are mapped onto a standard element ξ = [−1, 1]. The final
discretized form of equation 1 is of the form:

∂J · U
∂t

+

p+1∑
j=1

F
(
Uhij
) dLj

dξ
(ξ) +

[
F IL − FD (−1)

] dgL
dξ

(ξ) +
[
F IR − FD (1)

] dgR
dξ

(ξ) = 0 (5)

where J = dx/dξ is the element Jacobian, that relates the physical and standard coordinate systems. The
resulting ODE is advanced in time with a time integration scheme. The one used throughout this work is
the 4 stage fourth order Runge Kutta.

2.2 Extension to multiple dimensions
The Euler equations in 3D are

Since all derivative operations are made on the standard element (ξ, ηζ) ∈ [−1, 1], equation 1 is rewritten
using this coordinate system:

∂ |J | · U
∂t

+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= 0 (6)

with

F̃ (U) = |J | (ξxF + ξyG+ ξzH)

G̃ (U) = |J | (ηxF + ηyG+ ηzH) (7)

H̃(U) = |J | (ζxF + ζyG+ ζzH)

The relation between physical and standard coordinates is given by x
y
z

 =

K∑
i=1

Mi (ξ, η, ζ)

 xi
yi
zi


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where K is the number of points in the element. The Jacobian matrix J is

J =

 xξ xη xζ
yξ yη yζ
zξ zη zζ

 ,
whose inverse is

J−1 =

 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz


and|J | is the Jacobian determinant.

The extension to multiple dimensions of the one-dimensional element described above is readily done for
quadrilateral and hexahedral elements as tensor product of operations in multiple dimensions. The resulting
formulation is included here for completeness. The corrected fluxes are expressed as:

F̃ (ξ, η, ζ) =

p∑
i=0

p∑
j=0

p∑
k=0

F̃ijkLi (ξ)Lj (η)Lk (ζ) +
[
F̃ IW − F̃ (−1, η, ζ)

]
gL (ξ) +

[
F̃ IE − F̃ (1, η, ζ)

]
gR (ξ)

G̃ (ξ, η, ζ) =

p∑
i=0

p∑
j=0

p∑
k=0

G̃ijkLi (ξ)Lj (η)Lk (ζ) +
[
G̃IS − G̃ (ξ,−1, ζ)

]
gL (η) +

[
G̃IN − G̃ (ξ, 1, ζ)

]
gR (η)(8)

H̃ (ξ, η, ζ) =

p∑
i=0

p∑
j=0

p∑
k=0

H̃ijkLi (ξ)Lj (η)Lk (ζ) +
[
H̃I
B − G̃ (ξ, η − 1)

]
gL (ζ) +

[
G̃IT − G̃ (ξ, η, 1)

]
gR (ζ)

where the subscriptsW , E, S, N , B and T denote west, east, south, north, bottom and top hexahedra faces.
Applying eq. (6) to the expressions above we obtain the discretized equation for the quadrilateral or the
hexahedral element

∂ |J | · U
∂t

+

p∑
i=0

p∑
j=0

p∑
k=0

F̃ijkL
′
i (ξ)Lj (η)Lk (ζ) +

[
F̃ IW − F̃ (−1, η, ζ)

]
g′L (ξ) +

[
F̃ IE − F̃ (1, η, ζ)

]
g′R (ξ) +

+

p∑
i=0

p∑
j=0

p∑
k=0

G̃ijkLi (ξ)L′j (η)Lk (ζ) +
[
G̃IS − G̃ (ξ,−1, ζ)

]
g′L (η) +

[
G̃IN − G̃ (ξ, 1, ζ)

]
g′R (η) +

+

p∑
i=0

p∑
j=0

p∑
k=0

H̃ijkLi (ξ)Lj (η)L′k (ζ) +
[
H̃I
B − H̃ (ξ, η − 1)

]
g′L (ζ) +

[
H̃I
T − H̃ (ξ, η, 1)

]
g′R (ζ) = 0(9)

which is marched in time with the RK4 scheme.

2.2.1 Extension to triangular and prismatic elements.

For triangular and prismatic elements we follow the Correction Procedure by Reconstruction (CPR) approach
developed by Haga et al.[7]. What follows are the final forms of the equations. For further insight into how
to derive them the reader is referred to the original work.

The prismatic element is built using a tensor product of the polynomial interpolation and correction for
triangles in the (ξ, η) directions and the one-dimensional operations of eq. (5) in the ζ direction.

The interpolation of variables and fluxes is then a tensor product of 2D and 1D Lagrange polynomials:

F̃ (ξ, η, ζ) =

NT∑
j=0

p∑
k=0

F̃jkL
T
j (ξ, η)Lk (ζ)

where NT = p (p+ 1) /2 is the number of triangle points and the super-index T denotes the Lagrange
polynomial for the triangle.
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The correction term equivalent to g′L and g′R derivatives of eq. (9) for each triangle is given by a sum of
contributions from all boundary nodes:

1∣∣∣ṼTri∣∣∣
∑
f∈∂Ṽ

p∑
l=0

αj,f,l

[
F̃n
]
flS̃f (10)

where
∣∣∣ṼTri∣∣∣ is the area of the standard triangle, f is each one of the edges of the triangle, S̃f is the edge

length and
[
F̃n
]
fl is the flux jump at each edge point. Finally, αj,f,l are the so called lifting coefficients,

which are constant, independent of the solution or the shape of the triangle. The expression for the prism
just adds the third dimension to those expressions:

∂ |J | · U
∂t

+

NT∑
j=0

p∑
k=0

F̃jk
∂LTj (ξ, η)

∂ξ
Lk (ζ) +

+

NT∑
j=0

p∑
k=0

G̃jk
∂LTj (ξ, η)

∂η
Lk (ζ) +

+
1∣∣∣ṼTri∣∣∣

∑
f∈∂Ṽ

p∑
l=0

αj,f,l

[
F̃n (ξf,l, ηf,l, ζm)

]
flS̃f

+

NT∑
j=0

p∑
k=0

H̃jkL
T
j (ξ, η)L′k (ζ) +

[
H̃I
B − H̃ (ξ, η − 1)

]
g′L (ζ) +

[
H̃I
T − H̃ (ξ, η, 1)

]
g′R (ζ) = 0(11)

2.3 Discretisation of the Navier-Stokes equations
The differential form of the Navier-Stokes equations is:

∂U

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=
∂F

∂x
+
∂G

∂y
+
∂H

∂z
(12)

being U =
[
ρ ρu ρv ρw ρE

]T the conservative variables,

[
f g h

]
=


ρu ρv ρw

ρu2 + p ρuv ρuw
ρuv ρv2 + p ρvw
ρuw ρvw ρw2 + p

u (ρE + p) v (ρE + p) w (ρE + p)

 (13)

the inviscid fluxes and

[
F G H

]
=


0 0 0
τxx τxy τxz
τxy τyy τyz
τxz τyz τzz

uτxx + vτxy + wτxz − qx uτxy + vτyy + wτyz − qy uτxz + vτyz + wτzz − qz

 (14)

the viscous terms. We use the perfect gas assumption, therefore the gas state equation p = ρRgT holds.
Besides,

E = CvT +
1

2
q2,
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where q2 = u2 + v2 + w2, and Cv is the specific heat at constant volume. The pressure is expressed as a
function of the conservative variables:

p = ρ (γ − 1)

(
E − 1

2
q2

)
,

where γ = Cp/Cv is the relation between the specific heats, at constant pressure and constant volume. The
viscous stress tensor expression is

τij = µ (∂ivj + ∂jvi)−
2

3
µ (∇ · v) δij (15)

and the heat flux vector is expressed using the Fourier’s law:

q = −k∇T (16)

In the preceding equations (15) and (16) the constants µ and k are the laminar viscosity and the conductivity,
respectively:The expression of the laminar viscosity is given by the Sutherland law

µ =
1.458 · 10−6T 3/2

T + 110.4

and the thermal conductivity is

k =
µCp
Pr

where the Prandtl number for air is 0.72.
Eq. (12) is analogous to eq. (6), but expressed in physical rather than in standard coordinates. However,

in the viscous fluxes there is a dependency on the gradient of the primitive variables, therefore we must
provide an expression for the computation of the gradient as well.

The gradient can be expressed as a function of the derivatives in the standard coordinates and the
Jacobian. For each primitive variable:

∂V

∂xi
=
(
J−1

)T ∂V
∂ξi

(17)

where xi = x, y, z, and ξi = ξ, η, ζ. The derivative for each component of the standard coordinates is
evaluated using the desired component from the expression from eqs. (9) and (11) and substituting the
fluxes by the primitive variables. The common value at the flux points in this case is the average value of
the primitive variables at both sides of the element. For the hexahedra the gradient expression is then:

∂V

∂ξi
=

p∑
i=0

VijkL
′
i (ξi) +

VLneigh − VL
2

g′L +
VRneigh − VR

2
g′R (18)

and for the prism

∂V

∂ (ξ, η)
=

NT∑
j=0

Vjk
∂LTj (ξ, η)

∂ (ξ, η)
+

1∣∣∣ṼTri∣∣∣
∑
f∈∂Ṽ

p∑
l=0

αj,f,l
Vf,l,neigh − Vf,l

2

∂V

∂ζ
=

p∑
i=0

VijkL
′
i (ζi) +

VDneigh − VD
2

g′L +
VUneigh − VU

2
g′R (19)

Finally, the common fluxes at the face points must also be evaluated. For the convective term, the
common flux is computed with a Riemann solver[25]. For the viscous terms, a common viscous flux is
evaluated using the average of primitive variables and gradients.
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2.3.1 Solution points positions

The previous equations do not assume any particular position for the solution points. In this work, the
Gauss-Lobatto points have been used for the quadrilateral and hexahedral elements, and the triangle point
distributions of Warburton[26] are employed for triangles and prisms. The flux and the solution points are
overlapped, therefore there is no need to implement the interpolation mechanism to obtain the values at the
flux points using the volumetric points, reducing the computational needs of the solver. However, Jameson
et al.[27] suggest that this point distribution is not optimal, and that the volume and flux points should be
placed at different locations to prevent instabilities caused by aliasing errors. The effect of these distribution
is not addressed in this work and will be subject of further research.

3 Implementation of the operators
The formulation presented in the previous section to integrate the Navier-Stokes equations can be summarized
as follows:

1. Evaluate the derivative of the primitive variables, i.e., the first term of the right hand side of eqs.
(18) and (19). This is a matrix-vector product, where the matrix elements are the derivatives of the
Lagrange polynomials for each solution point: L′i (ξj).

2. Correct the derivative with the correction functions and the average value of the primitive variables
at the face points, i.e., the second term of the right hand side of those equations. This is again a
matrix-vector product, but now the matrix is given either by the g′L,R functions for the hexahedra or
by the lifting coefficients of eq. (10), and the vector has the differences between primitive variables at
both sides of the face points.

3. Pass the gradient to physical coordinates with eq. (17).

4. Compute the fluxes for each solution point with eqs. (13) and (14).

5. Evaluate the derivatives of the fluxes. These are the terms with the Lagrange polynomial derivatives
of eqs. (9) and (11). Like step 1, this is again a matrix-vector product, but using the fluxes instead of
the variables.

6. Correct the fluxes derivatives with the correction functions and the values of the fluxes at the face
points. These are the terms with the correction functions of eqs. (9) and (11). This matrix-vector is
analogous to that of step 2, but in this case the vector contains the common fluxes through the face
points.

7. Enforce boundary conditions.

8. Advance to the next stage of the RK4 scheme and go to 1.

From the steps described, only the boundary contributions to gradient (2) and fluxes (6) involve data from
outside the element, i.e., those needed to compute the common fluxes. The rest of steps are purely local,
either involving just the data from each solution point (steps 3, 4 and 8) or data from all nodes of the
each mesh cell (steps 1 and 5). And even in steps 2 and 6 a large part of the data that needs to be
gathered to evaluate the contributions to gradient and fluxes belongs to each mesh element. That strong
data locality is very convenient to obtain a good parallel efficiency when executing the solver in massively
parallel processing units, because all the computing threads can fetch the data from memory, perform all the
operations needed and write the result back to memory without the need to communicate between them.
This type of parallelism is ideally suited for GPUs. Therefore, the DGFR solver has been coded using
a mixture of C++ and OpenCL, which is a C-99 with some extension to express parallelism. It can be
executed on CPUs as well as GPUs and other many-core hardware thanks to the use of OpenCL language,
which is supported not only by NVIDIA but also by other major hardware vendors such as Intel and AMD.
Moreover, an external modulus has been implemented to automatically translate OpenCL code into CUDA,
taking advantage of the similarities between the OpenCL and CUDA API programming models. That
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enables the use of NVIDIA debugging and profiling tools, which are very useful when trying to optimize the
implementation. All the bandwidth measurements presented below are obtained running nvprof[28].

The GPUs base their superior computing performance in packing many cores for every processor and
communicate them with the processor memory through a high bandwidth bus. For instance, the GPU used
in this work, the NVIDIA GeForce GTX1080Ti, has 28 streaming multiprocessors (SM), with 128 cores each.
Each SM can execute up to 2048 simultaneous threads. The bandwidth between the global memory and
the processors is 484 GB/s. When the solver is executed, each function that is executed on a GPU, also
called kernel, is automatically spread into a specified number of threads, that are in turn grouped in thread
blocks whose size is also specified at run time. For an efficient use of the GPU processors, the threads must
access the memory with a regular enough pattern. The so-called coalesced memory access provides the best
bandwidth. Other non-optimal memory accesses need more clock cycles to fetch the data from memory and
consequently the effective bandwidth is much lower. Even though the GPU cache memory alleviates this
problem somehow, coalesced memory accesses are key to achieving good performances.

3.1 Point-based kernels
In those kernels where the data used belongs only to each solution point the coalesced memory accesses are
easy to obtain. The only thing to take into account is that the bandwidth is worse with the so-called array
of structure (AoS) data layouts than with structure of arrays (SoA) layouts. I.e., in case we are solving the
Navier-Stokes equations, we have 5 conservative variables per node. If the mesh has Np solution points, it
is better to place ρ in the first Np positions, then ρu, etc. and access them as

ρi = U [i]

ρui = U [i+Np]

ρvi = U [i+ 2Np]

ρwi = U [i+ 3Np]

ρEi = U [i+ 4Np]

than to pack
(
ρ ρu ρv ρw ρE

)
for each node and access them the way it is optimal for CPUs:

ρi = U [5i]

ρui = U [5i+ 1]

ρvi = U [5i+ 2]

ρwi = U [5i+ 3]

ρEi = U [5i+ 4]

With the SoA memory access, optimal bandwidth is obtained for kernels implemented to execute steps 3, 4
and 8. By optimal bandwidth we understand the maximum achievable bandwidth, which is not always the
peak but the measured bandwidth in benchmarks such as STREAM[29], which is around 80% of the peak
value. Thus, if the peak bandwidth of the GeForceGTX1080Ti is 484 GB/s, the measured bandwidth for the
flux evaluation (step 4) is 358 GB/s, a 74% of the peak. It must be observed that the performance of this
kernel, and this is also true for the kernels of steps 3 and 8, is entirely determined by the rate at which the
memory is accessed, i.e., the processor remains idle around 90% of the time waiting for data to be fetched
from memory.

3.2 Cell-based kernels with in-cell data access
Kernels that implement steps 1 and 5 use data from some if not all cell solution points simultaneously. Since
this kernel performs several matrix-vector operations, one option would be to use linear algebra libraries
like cuBLAS[30] in CUDA or ViennaCL[31] in OpenCL. However, several authors[15, 16] have compared
the performance of such libraries with kernels tailored for the specific data layout, and the latter generally
outperform the former. In those cases, the efficient execution of these kernels is achieved using local or
shared GPU memory, in OpenCL or CUDA terminology respectively. As the name suggests, shared memory
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is a portion of GPU memory that is shared among all threads of a thread group. The shared memory is
physically located near the processor. It serves as a sort of cache memory that can be accessed at a faster
rate. The data placed there can be reused with much less cost when compared with a load from global
memory. The drawback is that it has a reduced size (48 KB, currently), therefore we have to be cautious
selecting which data is placed in that memory, since we can run out of it rather quickly.

The strategy followed for these kernels is to assign each cell to a thread block. The maximum number of
threads per block is 1024. That allows having p = 10 hexahedra and p = 12 prisms. The amount of shared
data is different for hexahedra and prism.

The former have derivative matricesDp×p in each direction, which could be different if different collocation
strategies are employed for each direction, but we assume them to be equal for each direction. Then the
shared data are the coefficients of the matrix Dp×p and the values of the primitive variables or fluxes at
each solution point. That is p2 + p3 shared data. In single precision, each datum is stored in 4 bytes, and
8 bytes in double precision. For p = 10 that amounts to 4400 bytes in single precision and 8800 bytes in
double precision, which is below the 48 KB limit. Therefore in this case the limiting factor is the number of
threads.

In prisms, the derivative matrices for the ξ and η are DNT×NT
, and the derivative in ζ direction has

Dp×p elements, as in the prism case. If the number of solution points is p2 (p+ 1) /2 the total amount of
shared data is p2 (p+ 1)

2
/4 + p2 + p2 (p+ 1) /2. For single precision this limits the order of the element to

p = 14 and p = 11 for single and double precision respectively.
The sequence of operations is:

• Execute as many thread blocks as cells. For each cell block, use as many threads as cell solution points.
Then for each block:

1. Fetch the data from global memory and put it in the shared memory arrays. Since the data is
loaded in order and there are no repeated nodes between cells, the data loading is equivalent to
the optimal one of previous section.

2. Each thread evaluates its corresponding row of the D ·U or D ·F matrix vector product for each
variable. The memory access here is not ordered, but since it is contained in the shared memory,
the access is not a limiting factor.

3. Write the result to the corresponding global memory position. The data storage is also done with
an optimal data arrangement.

The memory bandwidth for these kernels is around 350 GB/s, which is near the 75% peak value reported
for the point-based kernels, a clear sign of the correct memory access pattern. The kernels are also memory
bound, i.e., the cost of accessing to data and writing the result is in general larger than the cost of executing
the kernel operations, even though the gap is smaller and for larger values of p the opposite could occur.

3.3 Cell-based kernels with adjacent cells data access
The kernels for steps 2 and 5 make use of data from adjacent cells in addition to the in-cell data to evaluate
the common values at the face points. The access pattern for these data will hardly be coalesced, since the
memory positions from adjacent cell points are seldom consecutive to those of in-cell data. Some authors[16]
pre-compute the face points common values and then convert the kernel into one with in-cell data only.
However, this has only displaced the problem to another kernel, namely, the one that must compute the
common values, and does not really address the limiting effect of non-coalesced data accesses. Some gain
could be obtained from having a simpler kernel, but there is a clear penalty due to having to write and then
read the common values. By computing the common values at the same kernel where the derivative correction
is applied the extra write and read operations are avoided, but the resulting kernel is more complex. This is
the approach taken in this work.

In these kernels there is the possibility to load the in-cell data to shared memory to speed-up at least
those data access. However, the amount of shared data becomes considerable. If we take for instance
the flux derivative correction (step 6) for the hexahedra, and we pre-load all the data needed to compute
the common fluxes, we must load the primitive variables, the three gradient components and the Jacobi
matrix for each face point, and we must store the common flux. That amounts to 34 values for each of
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Figure 1: Bandwidths of GPU to CPU (PCI-e 3.0 at 16 GB/s) and CPU to CPU (bidirectional Infiniband
at 100 Gb/s) data transfer for different message sizes

the p2 + 4p (p− 1) + (p− 2)
2 face points. The shared memory limit of 48KB is reached for p = 8 in single

precision and p = 6 for double precision. In the prism, the amount of shared data is

34 [p (p+ 1) + 3 (p− 1) (p− 2)] +
3

2
p2 (p+ 1)

considering that the 3p2 (p+ 1) /2 lifting coefficients αj,f,l should be kept too. The limit is reached for p = 9
in single precision and p = 7 for double precision. Given the limitations imposed by the shared memory
size, we have decided not to pre-load the in-cell data and to pay the corresponding penalty, which is deemed
small in any case due to the use of the GPU own cache memory and to the fact that the data from adjacent
cells cannot be optimally loaded anyway, hence the gain would be restricted to half the total global memory
fetches. Indeed, the measured bandwidth for these kernels is 330 GB/s for the hexahedra and 282 GB/s for
the prisms, which is 68% and 58% of the peak memory bandwidth, which is not catastrophic, but signals
that for these kernels there is still room for improvement, given the fact that the kernels are also memory
bound.

4 Parallel use of multiple GPUs
In addition to the fine grained parallelism natural to the use of the GPU, when the problem size is large
enough and it does not fit in a single GPU, multiple GPUs are used in parallel. The domain is decomposed
using the parallel domain decomposition library ParMeTiS[32]. The strategy followed is that every GPU
is controlled by an MPI process assigned to a single CPU core. When there are several GPUs sharing a
computing node, this may not be the optimal solution, because we are forced to send data via MPI to
transfer it from GPU to GPU. If one MPI process controlled all GPUs inside the same computing node, that
extra MPI communication could be avoided, and only inter-node communications would be needed. But
that comes at the expense of making the code structure more complicated because intra-node and inter-node
communications should be treated differently. Moreover, managing that in real environments where the
MPI process distribution inside the computing nodes is not known a priori is a task that requires a careful
thought.

Therefore, some data residing on the GPU memory must be sent to the GPU memory in charge of
computing the adjacent domain. When using OpenCL on NVIDIA hardware, the only option is to send the
GPU data to an array located in the CPU memory, and then send the data via MPI, and receive the data sent
by other MPI processes, and place it again on the GPU. This is a serious limitation, because the bandwidth
for the data transfer between GPU and CPU is given by the PCI-e bus at 16 GB/s, with an effective
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bandwidth around 12 GB/s, which is an abysmal difference with the 360 GB/s achievable bandwidth of the
GPU memory bus. In addition to the GPU to CPU transfer, the transfer rate via MPI for the Infiniband
network is around 22.5 GB/s (90% of the peak value of 25 GB/s for the 100 Gb/s two-port Infiniband).
Together, the combined bandwidth, given by

1

BW
=

1

BWGPU↔CPU
+

1

BWIB

is around 7.5 GB/s for large enough message sizes (see figure 1). To minimize the penalty, some mitigation
strategies have been implemented.

• Use pinned, or page-locked memory to perform the data transfers between CPU and GPU, which is
why the 12 GB/s are obtained. Otherwise the effective bandwidth is almost halved.

• Overlap the GPU to CPU data transfers with the computation, hiding the extra cost of communicating
somehow.

• Use MPI non-blocking communications and overlap them with the computations. The latter has a
mixed effect, because once OpenCL is instructed to launch a kernel, the control is immediately returned
to the CPU, and the OpenCL driver is in charge of managing the queue independently. Therefore, the
CPU flow of events and the GPU flow of events do not necessarily coincide, and sometimes the CPU
has reached the point where the non-blocking communication termination is reached and the GPU is
still executing the operations in between, hence limiting the usefulness of the overlapping.

When the code is treated as CUDA instead of OpenCL there is an alternative to that communication
procedure, which is the use of the unified memory addressing to avoid memory transfers between CPU and
GPU, or rather to let the CUDA driver take care of that process. With that approach, the bandwidth of
the GPU to GPU transfer would be equal to the Infiniband network bandwidth. The tests performed with
that option show that the problem is then translated to the kernel that packs the global data to the array
that is communicated via MPI. When that array is declared to be in the unified memory, the GPU memory
bandwidth when writing to it is no longer close to the optimal 360 GB/s but it is rather similar to the PCI-e
bus bandwidth, and the overall performance of the transfer is similar, or even worse for small arrays, than
the one obtained with the overlapped data transfers.

The complete sequence for flux evaluation and update with multiple GPUs is then:

1. Gather the parallel boundary primitive variables into an array and pass it from the GPU to the CPU.

2. Evaluate the derivative of the primitive variables (step 1 in section 3).

3. Finish the GPU->CPU transfer and then send the CPU array via MPI to the MPI process of the
adjacent domains and receive the parallel boundary data from those processes. Pass the received data
to the GPU and scatter them into the corresponding GPU global array. There is no possibility of
overlapping here, therefore the communications are started and finished before moving on.

4. Correct the gradient with the correction functions and pass the gradient to physical coordinates (steps
2 and 3 in section 3).

5. Gather the parallel boundary gradients into an array and pass it from the GPU to the CPU.

6. Compute the fluxes for each solution point (step 4 in section 3).

7. Finish the GPU->CPU transfer and then send/receive the data via MPI.

8. Evaluate the derivative of the convective fluxes (step 5a in section 3, because now convective and
viscous fluxes are treated separately to have an opportunity for computation/communication overlap).

9. Finish the MPI transfer and place the received data in the GPU array.

10. Evaluate the derivative of the viscous fluxes (step 5b in section 3).
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Nc 753 643 483 323 163 83 43

t/tref/Nc/Nref 0.995 1 0.996 0.981 0.891 0.537 0.144
NSP /NGPU threads 470.8 292.6 123.4 36.6 4.6 0.57 0.07

Table 1: Parallel efficiency of the Taylor-Green vortex run on a NVIDIA GTX1080Ti GPU for different
hexahedral mesh sizes. p = 4, NGPU threads = 28× 2048

11. Finish the CPU->GPU transfer.

12. Correct the fluxes derivative (step 6 of section 3).

13. Enforce boundary conditions.

14. Advance to the next stage of the RK4 scheme and go to 1.

5 Code Benchmarking
The code has been benchmarked using the 3D Taylor-Green vortex[33] as test case. It is a three-dimensional
periodic flow whose initial condition is

ρ =
p

RT0

u = V0 sin
( x
L

)
cos
( y
L

)
cos
( z
L

)
v = −V0 cos

( x
L

)
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)
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w = 0

p = p0 +
ρ0V

2
0

16

(
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)
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(
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L

))(
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(
2z

L

)
+ 2

)
and then it undergoes a transition to anisotropic turbulence with a subsequent decay. The Reynolds number
is

Re =
ρ0V0L

µ
= 1600

and the Mach number
M =

V0

c0
= 0.1

is small enough to assume that the flow is incompressible. The Prandtl number Pr = 0.71 and the gas
γ = Cp/Cv = 1.4 The characteristic convective time is tc = L/V0. The computational domain is a cube of
dimensions (x, y, z) ∈ [−πL, πL], and it has been meshed with hexahedra.

5.1 Single GPU
5.1.1 GPU efficiency

The first test is meant to quantify the parallel efficiency of the GPU as a function of the problem size. To
that effect, we run meshes of degree p = 4 of varying sizes, up to the maximum size that fits in the 11 GB
GPU memory. The results are displayed in table 1, where the non-dimensional time per cell is measured
against the number of cells. The non-dimensionalizer is the time per cell that reaches the maximum efficiency,
which is 643. When the problem size is large enough, that number remains constant, meaning that the GPU
parallel efficiency is constant. We observe that for 163 the efficiency has a 10% decrease, and for smaller sizes
the behaviour is rather poor. This is mainly due to the small occupancy of the GPU. It has been mentioned
above that the GPU has 28 SM and each one can execute up to 2048 threads. When the number of solution
points NSP is lower than the number of threads the GPU is not used at full capacity, and overheads that
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Figure 2: Percentage of time spent executing each of the 8 steps enumerated in section 3 for the Taylor-Green
vortex with a 483 p = 4 hexahedra mesh.

remain hidden when the number of demanded threads is large enough arise. That should be kept in mind
when splitting the domain to run on multiple GPUs; if the split size is too small, the GPU will behave like
a much slower processor.

5.1.2 Kernel time budget

The percentage of time spent on each of the steps enumerated in section 3 is represented in figure 2 for the
483 p = 4 mesh. The correction of the fluxes (step 6) is the most time consuming step, followed by the
derivation of the fluxes (step 5), the Runge-Kutta operations (step 8) and then the gradient correction and
pass to physical (steps 2 and 3), that are performed in a single step to save global memory accesses. Then the
convective and viscous flux evaluation (step 4), and finally the derivation of the primitive variables (step 1).
The boundary conditions are generally applied over a reduced sub-set of the mesh points and do not account
for more than a few percentage points. In this case only periodic boundary conditions are applied, and they
consume around 1% of the total time. It is noticeable that the Runge-Kutta consumes a lot of the total
time. This is due to the use of single precision arithmetics. In that scenario, care must be taken to avoid
accumulating round-off errors in the summation that is produced at every step of the Runge-Kutta method.
Therefore, we have employed the Kahan summation algorithm[34] to minimize the summation round-off.
The algorithm involves two extra arrays with the size of the conservative variables, that have to be accessed
and updated every Runge-Kutta step. It must be emphasized once again that for mesh order p = 4 every
kernel is memory bound, i.e., the majority of the kernel execution time is spent loading and storing data
from the global memory.

5.1.3 Influence of mesh order

The next test is aimed at finding out whether the increase of mesh order affects the solver performance.
Figure 3 represents the increase in cost respect to the p = 4 baseline case. It is observed that for increasing
mesh order, the cost is increased slightly more than the theoretical cubic curve. This is due to the fact that
the most time consuming kernels are a 4.5% slower for higher order. The situation is the opposite for mesh
order lower than 4.

5.2 Multiple GPUs
The parallel scalability for the benchmark case for a 483 mesh is depicted in figure 4. Two factors help
understand the pronounced decrease in parallel speed-up for NGPU > 4. On the one hand, the small values
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Figure 3: Relative execution cost for different values of p for the Taylor-Green vortex 483 hexahedra mesh.
The cost increase with p is consistent with the increase in the problem size.
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Figure 5: Parallel speed-up of the 1283 p = 4 Taylor-Green cube

of the bandwidth reported in section 4 make the data transfer between domains very expensive compared
with the time spent executing the kernels. The benefits of the overlapping fade out quickly as the number of
MPI processes grows and the execution time is reduced accordingly. On the other hand, for low mesh orders
(p < 4) the NSP /NGPU threads ratio falls below one, therefore the GPU is not fully occupied and the GPU
performance decays abruptly, as explained in table 1. Yet another factor helps explain why the higher order
meshes perform better. While the cost of the computation increases with p3, the size of the parallel frontiers
increases with p2, and then the ratio of computation to communication grows linearly with p. Thus, from
the point of view of the parallel efficiency, it is preferable to run with higher mesh orders.

Figure 5 shows the solver scalability for a 1283 hexahedra mesh used to solve the Taylor-Green vortex.
The speed-up quickly deteriorates as the number of GPUs is increased, because the cost of transferring the
data from GPU to GPU becomes dominant, even with the use of overlapped data transfers. The simulation
has reached the t = 20tc in 75 minutes using 200 GPUs.

6 Results

6.1 Taylor-Green vortex
The same Taylor-Green vortex case at Re = 1600 of the previous section has been meshed with a 1288 p = 4
hexahedral mesh and has been compared against the solution of a 5123 spectral solver simulation, that is
provided as one of the verification cases of the High Order CFD Workshop[35]. The iso-vorticity surfaces for
the initial and the t = 10tc solutions are depicted in figure 6. The comparison of the minus time derivative
of the kinetic energy, defined as:

−dEk
dt

= − d

dt

(
1

ρ0Ω

∫
Ω

ρ
u · u

2
dΩ

)
is presented in figure 7. It is seen that the solver slightly underpredicts the peak value, but the overall
agreement with the spectral solution is good. The t = 20tc has been reached after 18 hours using 10 GPUs.
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Figure 6: Iso-vorticity surfaces at t = 0 (left) and t = 10tc (right) for the Taylor-Green vortex at Re=1600
with a 1283 p = 4 mesh
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Figure 7: Evolution of −dEk/dt for the Taylor-Green vortex at Re = 1600 with a 1283 p = 4 mesh.
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Figure 8: Instantaneous vorticity iso-surfaces for the T106C at Re=140000

DG-Mu
2
s
2
T

M
is

0

0.2

0.4

0.6

0.8

1

x/Cx

0 0.2 0.4 0.6 0.8 1

Figure 9: Instantaneous vorticity iso-surface coloured with u velocity component for the T106C at Re=140000
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6.2 T106C Lower Pressure Turbine blade
The T106C was used as a validation case for the European project TaTMo, and was tested at the vKI[36] for
a set of Reynolds numbers and for different inlet turbulent intensities, to see the effect of those parameters
on the size and length of the suction side bubble. We have used the case as a test to see if we are able to
simulate the bubble breakdown and the transition to turbulence that it induces. The unstructured hybrid
mesh is made of p = 4 prisms (910k elements) and hexahedra (430k elements), with 100 elements in the z
direction, and a total of 63.8 million points. It has been run on 40 GPUs and the statistics have converged
after 44 hours. To perform a proper comparison with the experimental measurements, it would be necessary
to define an inlet turbulence level to match the experimental one and also its decay rate. This has not been
implemented yet, therefore comparisons with the experiments at this stage are misleading. Figure 8 plots
the iso-surfaces of vorticity. It is observed that the suction side bubble shear layer begins to oscillate and
promotes the turbulent transition, which in turn forces the bubble reattachment around 90% of the axial
chord. The resulting average isentropic Mach distribution along the blade is depicted in figure 9. Even
though the simulation parameters are not right, it seems that the solver is capable of reproducing the main
physical phenomena of this transitional flow.

7 Conclusions
A three-dimensional high order flux reconstruction solver for the compressible Navier-Stokes equations on
hybrid unstructured grids has been presented. The solver can run in multiple GPUs, taking advantage of
the hardware platform significant computational power. The implementation of the most time consuming
parts of the solver has been discussed. Those kernels that involve data from all cell points benefit from the
use of the GPU shared memory to achieve coalesced memory accesses, that are the ones that provide the
highest bandwidth. It has been found that, at least for p = 4 mesh elements, all kernels are memory bound,
meaning that the majority of time is spent loading and storing data from the GPU memory. Almost all
kernels analyzed are capable of reaching nearly optimal memory access, meaning that the GPU is efficiently
used. The performance of the simulations involving multiple GPUs is also analyzed. It is found that the
main bottleneck to achieve optimal parallel speed-ups is the bandwidth of the GPU to GPU communication,
which has a strong influence when the number of partitions is large. Strategies to mitigate that effect, such
as the overlapping of data transfers with computations and the use of GPU pinned memory to speed-up
the transfers between CPU and GPU, are implemented. The code has been benchmarked running a three-
dimensional case with hexahedral meshes. The GPU must have enough active threads to operate efficiently.
When multiple GPUs are used, speed-ups are far from the optimal, especially for large numbers of MPI
processes. The results show that the solver is precise enough to perform simulations involving turbulent
structures, and that it is fast enough to be a promising tool for Large Eddy Simulation analysis in industrial
environments.
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