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Abstract: To investigate the impact of distribution of design variables on global 

optimization design, a determination strategy of variables and corresponding 

design space adjustment method based on adjoint surface sensitivities are 

introduced and applied in a two-dimensional inviscid airfoil optimization problem. 

The refinement strategy results in solutions with lower drag compared with cases 

of uniform design variables, and it may possess capacity to resist the impact of 

inferior observational data. The best geometry in this work is obtained with 11 

nonuniform design variables of which the drag coefficient is 358.50 counts, 19.73 

counts lower than that of uniform arrangement. Experiments show that there is 

strong correlation between effectivity of the refinement strategy and dimensionality 

which will be further investigated.  
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1     Introduction 
 
With consistent advancements of computational fluid dynamics (CFD) and computer hardware, 

aerodynamic shape optimization (ASO) has matured to a stage that it has been successfully 

incorporated into the aircraft design. Improving a current solution commonly uses one of two 

approaches: gradient-based or global search algorithms. Both of the approaches are applied in the 

field of aerodynamic shape optimization, although gradient-based approaches are more popular. 

Gradient-based methods usually use the local gradients to dictate the next direction of searching, with 

the forms of steepest descent, Newton’s method, conjugate gradient methods, and quasi-Newton 

methods. Despite tending to reach the local minima, gradient-based approaches have found use within 

aerodynamic shape optimization community, for example the work of Bisson [1] who used 

sequential-quadratic programming (SQP) method for drag minimization of three benchmark 

problems, the work performed by Onera [2] in which optimization convergence and the ability of 

adjoint-based optimizations were investigated on two test cases with the in-house Onera elsA 

software, and the work of Copeland et al [3] who developed a continuous formulation of the adjoint 

equations for thermochemical non-equilibrium optimization. 

Gradient-based optimization algorithms are more popular compared to global search algorithms 

primarily because of the requirement to minimize the number of objective function evaluations, which 

is CFD simulations in ASO. Despite of efficiency advantages gradient-based approaches may not 

work well with discrete variables, discontinuity in objective function or multimodality in design 

space. In these cases, global search approaches have higher possibility to reach the overall global 

optimum. Global search approaches avoid computing and relying on the gradient, instead often mimic 

swarm behaviors and natural processes such as genetic algorithms (GA) [4], particle swarm 
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optimization [5], simulated annealing (SA) [6], gravitational search algorithm (GSA) [7], and so on. 

Tremendous researches on evolutionary searching methods have been made to tackle aerodynamic 

optimization problems. Main advantages of such methods are portability and the possibility to explore 

design space thoroughly. However, the costs are quite large, and even prohibitive because high-

fidelity aerodynamic performance analyses are now necessary and many simulations of the objective 

function are needed, especially when dimensionality increases.  

The issue of impacts of dimensionality on the optimization process has been investigated. Some 

data [8, 9] shows that as dimension of design space increases, the optimum design monotonically 

improves, and appears to asymptotically approach a limiting value. For three-dimensional cases, Lyu 

[10] found that reducing the number of airfoil control points had a relatively more significant 

influence on the drag increase than decreasing the number of airfoil sections of the Common Research 

Model wing benchmark case. In contrast to the optimization with predefined variables, an adaptive 

scheme [11] was introduced that refines and coarsens the parameterization based on adjoint surface 

sensitivities in a multi-level gradient-based optimization process.  

Global search approaches associated with high-accuracy simulations often cost numerous 

computational resources and make the searching iterations inefficient which could be even worse with 

increasing dimensionality. To investigate the impact of distribution of design variables and 

dimensionality on optimization designs, and to improve the performance of global search methods, 

design variables and adjustments of design space are determined beforehand based on adjoint surface 

sensitivity information which is usually calculated in gradient-based searching approaches for a 

profile-constrained optimization case. The proposed refinement strategy has the potential for guiding 

designers to reduce design dimensionality and get better solutions. 

 

2     Model Problem 
 
The optimization case [1] under study is the drag minimization of a modified NACA0012 in transonic 

inviscid flow with freestream Mach number (M) of 0.85 subject to a thickness (t) constraint at zero 

degrees incidence ( ). The case is based on work done by Vassberg [12] with a slight modification 

to NACA0012 to make sure the trailing edge is sharp. The airfoil is defined as 

( )2 3 40.12
0.2969 0.1260 0.3516 0.2843 0.1036

0.2
y x x x x x=  − − + −  

Where,  0,1x . The problem is formally described as 

Minimize: 
dC  

Subject to: 0.85M = , 

            =0 , 

        baselinet t   0,1x   

This benchmark case has been investigated substantially previously and a range of highly 

optimized drag results ranging from 32 to 86 drag counts were produced [2]. The only source of drag 

is that arises with any shocks and this case requires relatively moderate computational costs which 

make it appropriate to investigate the selection of design variables. 

 

3     Shape Parameterization 

 
Proper parameterization method applied to certain problem depends on the structure of the 

optimization framework, efficiency requirement of solutions and geometry characteristics that 

designers concern with. In addition, the determination of design variables is often subject to the 

parameterization method. Based on study of Samareh [13] and Masters [14], the Bèzier surface Free-

form deformation (FFD) approach developed by Sederberg and Parry [15] proves to be one of well-

performing parameterization schemes. It possesses several features: preservation of smoothness for 
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surface grids; independence of geometry complexity; flexibility in determination of variables. A 

Bèzier surface FFD can be used in two-dimensional and three-dimensional space. For geometries in a 

plane, generally, a rectangular lattice of ( ) ( )1 1l m+  +  uniformly spaced control points, ijP , is 

placed around the initial geometry with a local coordinate system 'O -STU . The control point 

positions are defined as 

ij

i j

l m
= + +'

P O S T  

For i=0,...,l , 0,...,j m= . Thus the undeformed domain defined by the lattice is normalized to a unit 

domain by the notation of local coordinates. The displacement of any point in the lattice is associated 

with all control points which stays the same when a user-defined lattice is applied such to gain 

enhancement to the control of the geometry. A Newton iterative method is deployed in this paper to 

calculate local coordinates of deformed geometry within the customized lattice, as shown in Figure 1. 

If the trivariate Bernstein polynomial function is used as base function in the FFD approach, new 

global coordinates of surface points with respect to the control point positions ijP  is defined as  

( ) ( ) ij
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− −
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= − −    

    
 X P  

Preliminary drag resolution study shows that a 513 257 O-mesh (in Figure 1) captures drag to 

within 0.1 counts. The farfield resides 100 chord lengths away from the airfoil. Movement of control 

points is restricted to the y-direction and symmetry is preserved by pairing equivalent upper and lower 

control points symmetrically. There are 11 design variables (DV) initially, and two sets of fixed 

control points near the leading edge and trailing edge besides, as shown in Figure 1. 

 
Figure 1: Close-up view of the 513 257  O-mesh (left) and stretched Bèzier surface control lattice in 

red line corresponding to 11 uniform design variables (right). 

 

4     Optimization Framework 
 

This inviscid compressible flow problem is investigated with SU2 software suite [16], a 

computational analysis and design package, which is capable to solve both the flow and adjoint 

systems of equations to provide high-quality flow simulation and sensitivity information that can be 

used for a gradient-based optimization design. SU2 flow solutions and calculation of surface 

sensitivity with discrete adjoint equation modules are performed for the case described above. 

 

4.1     Aerodynamic Model 
The numerical solver of the Euler equations implemented in SU2 suite is employed. The second-order 

JST scheme is used among several space discretization schemes provided by the software. An implicit 

Euler, local time-stepping and multigrid method of three levels are used to converge to the steady-

state solution quickly, and the FGMRES method in conjunction with the LU-SGS preconditioner is 
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used to solve the system. 

 

4.2     Determination of Design Variables 
Optimizers always pursue solutions with better aerodynamic characteristics while keeping less 

variables to make the design process efficient. Sensitivity data is usually calculated throughout 

gradient-based optimization process to obtain the local gradients which can dictate the surface 

deformation direction at a computational cost in the order of one flow solve. By solving the discrete 

adjoint equations [17] the sensitivity of drag coefficient with respect to the unit normal at each surface 

mesh point is obtained, i.e 

d

i

C

x
 

for unit normal ,i i i
x y =
 

x .  

 
Figure 2: Customized control lattice of 11 

design variables determined based on surface 

sensitivities. 

 
Figure 3: Customized control lattice of 9 

design variables determined based on surface 

sensitivities. 

 
Figure 4: Customized control lattice of 7 

design variables determined based on surface 

sensitivities. 

 
Figure 5: Customized control lattice of 5 

design variables determined based on surface 

sensitivities. 
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Instead of calculating gradients further, surface sensitivities are analyzed and employed in global 

search framework to determine efficient design variables. Surface sensitivities along the wall are 

shown in Figure 2. For this transonic NACA0012 problem, inviscid flow field is dominated by a 

strong shock wave located near 75% chord length. Moreover, two high sensitivity areas located at 5% 

to 15% and 75% chord length are observed. Mesh points with high sensitivities may have significant 

impact on the flow characteristics when they are stretched through movements of control lattice. 

Therefore, control points are put around high sensitivity areas with dimensionality from 11 to 5 as 

depicted in Figures 2 to 5. Control points #7 and #9 are designed to control surface near the shock 

wave. Control point #11 brings geometry near the trailing edge under control, and point #6 together 

with #10 is expected to reinforce the control over the whole geometry. 

For uniform distribution of design variables, search space is bounded within  0,0.02
DV

m. For 

nonuniform distribution of variables, search space is adjusted based on surface sensitivities to explore 

the promising space thoroughly. Specifically, control points near which surface sensitivities are 

negative are designed with larger space to raise the possibility of reaching global optimum, while for 

high sensitivity areas search space is contracted to construct more efficient surrogates and avoid 

inferior solutions. The adjusted design space is defined as  

0.02 1 0.2
peak valley

rand
S S

 
=  −   

 − 

S
D  

Where = { , ,..., }1 2 DVD D DD  denotes design space and = { }1 2 DVS ,S ,...,SS  is the surface sensitivity of 

the mesh point nearest to a certain control point. peakS  is the peak value of surface sensitivities, which 

is obtained at surface mesh point #3. valleyS denotes the valley value of sensitivities corresponding to 

that at mesh point #2. 

 

5     Optimization Results 
 

Optimization design starting from an initial NACA0012 has been performed in this work. The number 

of design variables gradually reduces from 11 to 5. The effects of nonuniform variables along with 

search space adjustments are demonstrated by comparison with optimization solutions of uniform 

design variables.  

 
Figure 6: Results for the inviscid optimization of NACA0012 with increased number of variables. 

 

Figure 6 shows drag coefficients of optimum solutions with respect to number of design variables. 

It can be seen that, in general, the final results improve with increasing dimensionality. There is 

however one instance where this is not true. For uniform distribution of design variables, drag 

coefficient rises by 7.88 counts with dimensionality increasing from 9 to 11. This could be related to 

inferior training dataset of 11 uniform design variables, which worsens performance of Radial Basis 
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Function approximation models and besides, may impact on the performance of Multi-island GA 

module. It can also be seen that nonuniform distribution of design variables tends to result in solutions 

with lower drag, in particular the optimized shape with 11 nonuniform variables proved to be the best 

geometry in this work with drag coefficient of 358.50 counts, nearly 20 counts lower than that of 

uniform arrangement. When dimensionality reduces from 7 to 5, the advantage of refinement strategy 

of design variables expires, and the highest drag was obtained of 476.29 counts, which is even larger 

than the baseline drag coefficient of 471.69 counts. This shows that the adjustments of variables and 

design space may be not robust enough to handle low dimensionality under 7 for airfoil profiles. For 

the design with 5 variables, 3 control points are around the high sensitivity area near the nose, and 

only other two manipulate a majority part of the surface, which leads to strong linearity of surrogate 

construction and noneffective control lattice. Despite the failure with 5 variables, it is noteworthy that 

the case of 9 nonuniform variables has lower drag coefficient of 359.98 counts compared with that of 

11 uniform design variables which is 378.23 counts. The refinement strategy could help make wiser 

decisions on choosing design variables to search optimal solutions more effectively and efficiently. 

Optimal solutions are compared in Figures 7 to 10. With uniform design variables, optimal shapes 

are almost identical to NACA0012 at the forepart of about 0.2m. Then the discrepancy is getting 

larger and reaches extremum value of about 0.1m at 75% to 80% chord length. In general, optimized 

shapes with different uniform variables are similar to each other. As a result, the four solutions 

present similar pressure distributions wherein initial shock wave is put off. The locations of shock 

wave for optimal shapes are different. A strong shock wave that locates at about 0.83m for the case of 

11 variables gradually moves forward as dimensionality declines.  

For cases designed with nonuniform variables, optimum airfoil geometries and flow characteristics 

have significantly changed from uniform cases. Most optimal configurations are pushed outwards 

drastically from initial surface, especially at the forepart of about 40% chord length, which leads to a 

single suction peak at 0.07m. A pressure plateau is observed to extend to the shock wave area. 

Deformation near the initial shock wave is less significant compared to designs with uniform 

variables, and the optimized configurations keep moving towards initial NACA0012 with decreasing 

dimensionality. It can be seen from the pressure field that shock wave strength of the optimal shape 

with 5 variables is almost the same as the initial one and gradually weakens as dimensionality 

increases which results in the trend of drag coefficient in Figure 6.  

Refinements of design variables associated with space adjustments applied in optimization design 

has improved aerodynamic characteristics of baseline geometry. In areas where surface sensitivity 

reaches extrema, the surface is stretched outwards further which makes the leading edge blunter and 

thus changes the pressure load. The strong shock wave imposed on NACA0012 is significantly 

weakened although the location is ahead of that in the design with uniform variables. It can be seen in 

Figure 10 that the three control points at the forepart didn’t deform the geometry effectively despite of 

their locations where surface sensitivities reach extrema. This phenomenon suggests that, to guarantee 

the effectivity of the determination strategy introduced in this work and the function of control lattice, 

dimensionality should be above 7 for optimization design of airfoil profiles. 

 

 
a) Optimum airfoil shapes 
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b) Pressure distributions for optimum airfoil shapes 

Figure 7: Results of the optimization of a NACA0012 with 11 design variables. 

 
a) Optimum aerofoil shapes 

 
b) Pressure distributions for optimum airfoil shapes 

Figure 8: Results of the optimization of a NACA0012 with 9 design variables. 

 
a) Optimum aerofoil shapes 
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b) Pressure distributions for optimum airfoil shapes 

Figure 9: Results of the optimization of a NACA0012 with 7 design variables. 

 
a) Optimum aerofoil shapes 

 
b) Pressure distributions for optimum airfoil shapes 

Figure 10: Results of the optimization of a NACA0012 with 5 design variables.

 

6     Conclusion and Future Work 
 
In this study, based on adjoint surface sensitivity information, a determination strategy of design 

variables and corresponding design space adjustment method are proposed and applied in global 

optimization design of NACA0012 airfoil. Specifically, FFD control points have been put near high 

sensitivity areas to investigate the impact of distribution of design variables and dimensionality on 

optimization designs. Effects of the proposed methods are verified by contrasting with designs from 

uniform distributed variables. 

In general, drag reduces as dimensionality increases, except that for uniform distribution of design 

variables, drag coefficient rises by 7.88 counts with dimensionality increasing from 9 to 11, which is 

caused by inferior training dataset.  

The refinement strategy introduced in this work results in solutions with lower drag compared with 

cases of uniform design variables under the same dimensionality and helps get improved 
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aerodynamic characteristics using fewer variables. Moreover, it may possess capacity to resist the 

impact of inferior observational data. The best geometry in this work is obtained with 11 nonuniform 

design variables of which the drag coefficient is 358.50 counts, 19.73 counts lower than that of 

uniform arrangement. Optimal shapes with nonuniform design variables are pushed outwards 

drastically, especially at the forepart of about 40% chord length, which makes the leading edge 

blunter and changes the pressure field. In the area near initial shock wave, the optimal configurations 

keep moving towards baseline geometry when dimensionality reduces, while the optimal shapes with 

uniform variables are much more stable. This indicates that there is a close correlation between the 

effectivity of the strategy and dimensionality.  

In the future, the refinement strategy of design variables based on adjoint sensitivities will be 

further investigated with increased dimensionality. Improving the adjustments of design space is 

expected so that global optimum would be reached more efficiently. 
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