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1     Introduction 

Recent development of computational fluid dynamics (CFD) and intelligent optimization algorithms 

has enabled researchers and engineers to efficiently sketch feasible aerodynamic configurations with 

satisfactory performance in engineering occasions. To maintain high-fidelity, costly numerical 

simulation scheme of higher accuracy is usually preferred and raises challenges upon optimization 

efficiency under limited computation resources. In recent decades, Evolutionary algorithms (EA)[1]–

[8], surrogate models[9]–[15], adjoint method in conjunction with gradient-based search method[16], 

[17], [26], [18]–[25] and hybridization of part of above approaches are continuously proposed to tackle 

expensive aerodynamic optimization problem and brings considerable improvement in both 

optimization efficiency and performance. However, current optimizers are still faced with major defects 

while being utilized in engineering occasions, those defects can be sorted into two aspects: 

 Unable to obtain solutions that fully suit designer’s intension or satisfy realistic demands. Optimizer 

often relies on the designer to explicitly assign optimization objectives. Due to the inefficiency of 

Pareto dominance based multi-objective optimization, number of objectives is usually limited. Such 

focus on limited designated objectives cannot guarantee various off-design performances. Current 

optimizer also fails to well handle implicit objectives and constraints such as structural and 

geometrical constraints, dynamic performance characteristics, or inenarrable flow field expectation 

which are crucial but are often compromised for efficiency matter or ignored in early design stages 

for their fuzziness.  

 Poor engineering applicability. Evolutionary approaches such as genetic algorithm often need 

massive objective evaluations to achieve convergence while gradient-based methods are prone to 

get stuck in local-optimum. Careful trade-off still needs to be made between global search and local 

search. 

The key to above problems can be concluded as insufficiency of information utilization. Massive 

information exists behind the physics of the optimization problem but receives little attention. Current 

aerodynamic optimizer only focuses on the designated objectives and this is the so-called performance 

oriented optimization. However human experts focuses on the characteristics of flow field structures to 

improve current solutions’ performances. Such preference significantly differs from ubiquitous 
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performance-oriented optimization and can be called as flow structure oriented optimization (FSOO). 

Fully automatic direct optimization approach was initially proposed to extricate the optimization loop 

of human interference, which is seriously constrained by human’s limited memory, inexpertness of 

large scale trading-off and incapability of complex numerical analysis. While the most significant 

merits of human, the ability to inject physical comprehension to solutions that allows quick and precise 

analysis, is not well inherited by current optimizers, and thus leads to optimizers’ strong reliance to 

experts, which seriously deviates from its purpose[27]. To effectively alleviate above problems, 

optimizers should look beyond variables and objectives and dig further into flow fields to gain more 

information feedback. Transient flow field structure and significant flow patterns inside usually 

implicate massive latent information that’s necessary for the optimization. 

With adequate identification of essential flow structure and right means to manipulate it, efficient and 

effective flow structure oriented optimization can be achieved. In short, human experts have merely 

done four things inside the optimization loop: (1). Identify and analyze the essential flow structures in 

the flow field; (2). Discover the mapping relationship between aerodynamic performance and flow 

structures; (3). Discover the mapping relationship between geometry (design variables) and flow 

structures; (4). Exert changes to the current solutions according to (2) and (3) to guide their 

improvement. 

In this article technical framework is proposed to achieve FSOO through substituting above steps of 

human interference by machine learning and deep learning models to fully utilize and analyze the flow 

field data generated during optimization to achieve rational automated individual improvement. With 

improved utilization of information, further optimization speedup and performance boost is expected 

to be achieved. 

2     Technical Framework 

2.1     Definition of Aerodynamic Optimization 
Assuming the dimensionality of design variables 𝒙  and objectives 𝒚  are 𝑁𝑥  and 𝑁𝑦 . Aerodynamic 

optimization can be briefed as finding the optimal design variables 𝒙∗ such that equation (1) holds: 

 𝒚∗ = 𝒇(𝒙∗) = opt
𝒙∈𝕏∩ℝ

(𝒇(𝒙)) (1) 

Where 𝕏 is the pre-defined search space, usually hyperspace in 𝑅𝑁𝑥. 𝒚 = 𝒇(𝒙) serves as the implicit 

objective mapping, which usually refers to the non-analytical numerical evaluation process in 

aerodynamic optimization. ℝ depicts the feasible region of 𝒙 where 𝑁𝑔 non-equality constraints 𝒈(𝒙) 

and 𝑁ℎ equality constraints 𝒉(𝒙) are satisfied according to equation (2) and (3). 

 𝑔𝑖(𝒙) ≤ 0(𝑖 = 1,2… ,𝑁𝑔 , ∀𝑥 ∈ 𝕏) (2) 

 ℎ𝑖(𝒙) = 0(𝑖 = 1,2… ,𝑁ℎ , ∀𝑥 ∈ 𝕏) (3) 

opt(𝒇) denotes the feasible optimal values of given expression 𝒇. For single objective optimization 

opt(∙) is equivalent to min(∙) or max(∙) while for multi-objective optimization, opt(𝒇) denotes the non-

dominant solutions in the Pareto front of expression 𝒇. 

2.2     Differential Evolution Based Hybrid Optimizer 
Differential evolution (DE) is a real-coded evolutionary algorithm famous for its robustness and 

population diversity preservation ability[28]. It’s adopted as the basis of overall optimizer framework. 

In DE, the optimization process is carried out iteratively until pre-defined convergence criteria are 

satisfied. Here combine a solution’s design variables and objectives as an individual 𝑃 = (𝒙, 𝒚), and 

gather a group of individuals as a population 𝑷𝑘 = {𝑃𝑖
𝑘}

𝑖=1,2,…,𝑁𝑝
 while subscript denotes current 

iteration or generation. For every iteration or generation, the optimization is carried out as: 

(1).Mutation, for every individual 𝑃𝑖
𝑘 , select 𝑛  individuals’ design variables 𝒙𝑟1

𝑘 , 𝒙𝑟2
𝑘 , … , 𝒙𝑟𝑛

𝑘   from 

current population and generate the corresponding mutated individual of 𝑃𝑖
𝑘  as 𝑉𝑖

𝑘 = (𝒗𝑖
𝑘 , 𝒇(𝒗𝑖

𝑘))  . 

where 𝒇(𝒗𝑖
𝑘) is unknown and 𝒗𝑖

𝑘 is defined in different ways as formulated in equation (4) ~ (7) where 

subscript ‘best’ indicates the best individual in current population. In this article Rand/2 is adopted as 

the mutation scheme. 

 Rand/1 :𝒗𝑖
𝑘 = 𝒙𝑖

𝑘 + 𝐹 × (𝒙𝑟2
𝑘 − 𝒙𝑟3

𝑘 ) (4) 
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 Rand/2 𝒗𝑖
𝑘 = 𝒙𝑖

𝑘 + 𝐹 × (𝒙𝑟2
𝑘 − 𝒙𝑟3

𝑘 + 𝒙𝑟4
𝑘 − 𝒙𝑟5

𝑘 ) (5) 

 Best/1 𝒗𝑖
𝑘 = 𝒙𝑏𝑒𝑠𝑡

𝑘 + 𝐹 × (𝒙𝑟1
𝑘 − 𝒙𝑟2

𝑘 ) (6) 

 Best/2 𝒗𝑖
𝑘 = 𝒙𝑏𝑒𝑠𝑡

𝑘 + 𝐹 × (𝒙𝑟1
𝑘 − 𝒙𝑟2

𝑘 + 𝒙𝑟3
𝑘 − 𝒙𝑟4

𝑘 ) (7) 

(2).Crossover, combine the mutated individual 𝑉𝑖
𝑘 and corresponding parent individual 𝑃𝑖

𝑘 to generate 

the corresponding trial individual 𝑈𝑖
𝑘  (𝒖𝑖

𝑘 , 𝒇(𝒖𝑖
𝑘)) . 𝒖𝑖

𝑘  is defined in equation (8) where 𝑟  and 𝐿  are 
random integers ranging from 1 to 𝑁𝑥  that represent the starting index and length of the crossover 

operation. <∙>𝑁𝑥
 denotes modular operation towards integer 𝑁𝑥. 

 𝑢𝑖𝑗
𝑘 = {

𝑣𝑖𝑗
𝑘 , 𝑗 =< 𝑟 >𝑁𝑥

, < 𝑟 + 1 >𝑁𝑥
, … , < 𝑟 + 𝐿 − 1 >𝑁𝑥

𝑥𝑖𝑗
𝑘 , 𝑗 =< 𝑟 + 𝐿 >𝑁𝑥

, < 𝑟 + 𝐿 + 1 >𝑁𝑥
, … , < 𝑟 >𝑁𝑥

 (8) 

(3).Accept external individuals and inject into the current population to take the place of worst ones. 

This is the interface set up for the need of individual improvement which serves as external interference 

as discussed above. 

(4).Parallel computation of objective functions 𝒇(𝒖𝑖
𝑘). 

(5).Selection, execute selection operation between 𝑈𝑖
𝑘  and 𝑃𝑖

𝑘  solely according to Pareto-dominance 

based greedy principle to preserve the better individual into the offspring population as 𝑃𝑖
𝑘+1. 

Above procedures are concluded in Figure 1. 

 
Figure 1: Optimization procedures of differential evolution 

2.3     Deep Neural Network Aided Flow Field Feature Extraction 
To achieve human-like individual improvement, it’s significant to capture the essential flow patterns 

that influence the objectives we concern during optimization. The flow field data should be used as 

major data sources to be subtly analyzed and then passed to the optimizer. Such analysis usually appears 

as the form of dimensionality reduction or feature extraction of the flow field data to capture its essential 

flow patterns or ‘features’. In previous studies, principal component analysis (PCA) was utilized as 

feature extractor to construct reduced order models (ROM)[29]–[35], carry out sensitivity analysis and 

variable filtering[36], [37]. Observation showed while PCA based dimensionality reduction was 

effective with prominent variance preservation and slight information loss, several severe shortcomings 

still existed while dealing with flow field data:  

 Base vectors used to map the flow field into low-dimensional features are linear combinations of 

training samples. Such linearity symbols inability to capture complicated non-linear flow patterns 

even when kernel function is used. 

 PCA treats different components of input data (features) equally, which erases both spatial and 

cross-physical-quantity relationship inside the flow field and also disables PCA to handle spatial 

invariance such as translation, rotation and scaling.  

During last decades, machine learning and deep learning technology have experienced prominent 

development. Deep neural networks (DNNs) has been widely utilized in computer vision, natural 
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language processing and big data analysis. In the field of computational fluid dynamics, DNNs have 

been used for turbulence modeling[38] and reduced order model construction[39]–[41]. With the 

development of network architecture, the maximum trainable layer of neural network has been greatly 

extended, endowing the networks with stronger ability to efficiently capture source data’s complicated 

high-level features. Convolutional neural network (CNN), which specializes in handling image-related 

data or high order tensor, is naturally amiable to structured flow field data generated by CFD solver. 

CNN is capable of handling spatial invariance and is extremely computationally efficient compared to 

traditional full-connected networks. AE is one type of feed-forward neural network architecture that 

accepts high dimensional source data as input and pass them to the decoder to gradually reduces data’s 

dimensionality to a bottleneck, which is referred to as extracted features. Then the features are passed 

to the decoder that ascends data’s dimensionality to the input size. Convolutional auto-encoder (CAE), 

which combines CNN’s ability to handle image-like data and auto-encoder (AE)’s dimensionality 

reduction architecture, is an ideal tool for the flow field feature extraction. 

The purpose of CAE is to find the essential elements that can best describe the input data distribution. 

To achieve that, the overall training target of CAE is to recover the input data as much as possible, and 

the training loss of CAE can be formulated in equation (9): 
 𝐿(𝑻, 𝑻̃,𝒘) = ∑∑∑(𝑇𝑖𝑗𝑘 − 𝑇̃𝑖𝑗𝑘)

2

𝑘𝑗𝑖

+ 𝑅(𝒘) (9) 

𝑻 denotes input tensor, 𝑻̃ denotes the output tensor, 𝒘 symbols the network parameters. The first term 

on the right side denotes the recovery or reconstruction loss, and the second is the regularization term 

used to avoid over-fitting which is taken as L2-norm in most cases. 

In our application the input 𝑻 is the flow field data in structured mesh, and the encoded feature vector 

𝒄 is the flow field feature representation. The network structure of CAE can be depicted as Figure 2. 

 
Figure 2:  Convolutional autoencoder 

Convolutional encoder is a stack of convolution layers and pooling layers, used for feature extraction 

while convolutional decoder is composed of convolution layers, deconvolution layers and pooling 

layers which specializes in recovering the input data using encoded features. The arithmetic of 

convolution, pooling and deconvolution layer are introduced in detail in tutorial[42].  

2.4     MLP Aided Mapping Analysis 
Multi-layer perceptron (MLP) is the most typical model of artificial neural network. Here MLPs are 

adopted for mapping relationship analysis between design variables 𝒙, objectives 𝒚 and flow field 

features 𝒄. A typical MLP architecture with one hidden layer is presented in Figure 3. 

 
Figure 3: MLP Structure With One Hidden Layer 
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MLP is also called fully-connected network which symbols the nodes in adjacent layers are densely 

connected to each other. Output of each layer can be given by equation (10) and (11): 

 Hidden Layer：𝑝𝑖 = 𝜑𝑖(∑ 𝑤𝑗𝑖
𝑁𝑥
𝑗=1 𝑥𝑗 + 𝑤𝑗0) (10) 

 Output Layer：𝑦𝑖 = 𝜑𝑖(∑ 𝑣𝑗𝑖
𝑁𝐻
𝑗=1 𝑝𝑗 + 𝑣𝑗0) (11) 

Training loss of MLP on one sample is given by equation (12): 

 

𝐿(𝒚, 𝒅,𝒘) =
1

𝑁𝑆
∑ ∥ 𝒚𝑖 − 𝒅𝑖 ∥2

𝑁𝑆

𝑖=1

+ 𝑅(𝒘) (12) 

Similarly, 𝒚 denotes the network output and 𝒅 is the ground truth output. The first term on the right 

side denotes the regression loss contributed by this sample and the second term is regularization term. 

2.5     Gradient Based Individual Improvement Strategy 
Combining the models depicted in 2.3 and 2.4, the overall model architecture can be summarized in 

Figure 4. It’s noted that the mapping relationship from flow feature to design variable is established not 

the other way around. The reason is that the information contained in 𝒄  is sufficient to deduce 

corresponding 𝒙 while the latter cannot fully infer the former. Training session for each model adopts 

gradient back-propagation incorporated with Adam optimizer. 

 
Figure 4: Overall model architecture 

After gathering well-trained models, the individual improvement procedures can be defined with 

respect to the four major steps processed by human experts depicted above. Assuming a set of 

individuals 𝑃𝑖 = {𝒙𝑖, 𝒚𝑖 , 𝑻𝑖} are selected from current population as origin of improvement where 𝑻𝑖 

represents the structured flow field data. For every 𝑃𝑖, step (1) ~ (4) are carried out. 

(1).Pass 𝑻𝑖 through trained CAE to obtain its corresponding flow field feature 𝒄𝒊. 

(2).Use the MLP modeling mapping relationship 𝒚̃ = 𝒎1(𝒄) from 𝒄 to 𝒚 to calculate the local gradient 

matrix from 𝒚𝑖 to 𝒄𝑖 as 𝑶𝑖. 

𝑶𝑖 = [𝒐1
𝑖 , 𝒐2

𝑖 , … , 𝒐𝑁𝑦

𝑖 ]
𝑇

=

[
 
 
 
 
 
𝜕𝑦̃1

𝜕𝑐1
|𝑐1=𝑐𝑖1

⋯
𝜕𝑦̃1

𝜕𝑐𝑁𝑐

|𝑐𝑁𝑐=𝑐𝑖𝑁𝑐

⋮ ⋱ ⋮
𝜕𝑦̃𝑁𝑦

𝜕𝑐1
|𝑐1=𝑐𝑖1

⋯
𝜕𝑦̃𝑁𝑦

𝜕𝑐𝑁𝑐

|𝑐𝑁𝑐=𝑐𝑖𝑁𝑐]
 
 
 
 
 

 

(3).Use the MLP modeling mapping relationship 𝒙̃ = 𝒎2(𝒄) from 𝒄 to 𝒙 to calculate the local gradient 

matrix from 𝒚𝑖 to 𝒙𝑖 as 𝑽𝑖. 

𝑽𝑖 = [𝒗1
𝑖 , 𝒗2

𝑖 , … , 𝒗𝑁𝑥

𝑖 ]
𝑇

=

[
 
 
 
 
 
𝜕𝑥̃1

𝜕𝑐1
|𝑐1=𝑐𝑖1

⋯
𝜕𝑥̃1

𝜕𝑐𝑁𝑐

|𝑐𝑁𝑐=𝑐𝑖𝑁𝑐

⋮ ⋱ ⋮
𝜕𝑥̃𝑁𝑥

𝜕𝑐1
|𝑐1=𝑐𝑖1

⋯
𝜕𝑥̃𝑁𝑥

𝜕𝑐𝑁𝑐

|𝑐𝑁𝑐=𝑐𝑖𝑁𝑐]
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(4).Use the improvement direction ∆𝑗 of design variables for every objective 𝑦𝑗 of this individual with 

respect to equation (5). 𝑚𝑗 = −1 if 𝑦𝑖 desires to be minimized and 𝑚𝑖 = 1 for maximization. 

 ∆𝑖𝑗= 𝑚𝑗𝑽𝑖
𝑇𝒐𝑗

𝑖/|𝑽𝑖
𝑇𝒐𝑗

𝑖| (13) 

Generate improved individuals 𝑪𝑖 = {𝐶𝑖𝑗}𝑗=1,2,…,𝑁𝑦
 of 𝑃𝑖  according to certain optimization strategy. 

𝐶𝑖𝑗’s design variables 𝒙𝑖𝑗 is given by equation (14) where 𝛼 is previously defined learning rate. 

 𝒙𝑖𝑗 = 𝒙𝑖 + 𝛼∆𝑖𝑗 (14) 

2.6     Overall Flow Chart  
The total technical framework above is called flow structure oriented optimization (FSOO). Overall 

flow chart is described in the figure below: 

 
Figure 5: Overall Optimization Flow Chart 

3     Test Case Validation 

3.1     Introduction 
Considering a multi-point drag reduction process for 2-D airfoils. Geometry is generated using class 

shape transformation (CST)[43] approach with 14 control points, among which 7 are used for upper 

surface and 7 for lower surface. The design variables, objectives and constraints are briefed in Table 1. 

Table 1: Optimization Problem Settings 

Design Variables Objectives Constraints 
Upper Surface Range Lower Surface Range   

𝑈1 
𝑈2 
𝑈3 
𝑈4 
𝑈5 
𝑈6 
𝑈7 

[0.096,0.14] 

[0.04 , 0.14] 

[0.12 , 0.20] 

[0.02 , 0.08] 

[0.20 , 0.26] 

[0.13 , 0.19] 

[0.192,0.26] 

𝐿1 
𝐿2 
𝐿3 
𝐿4 
𝐿5 
𝐿6 

𝐿7 

[-0.20,-0.10] 

[-0.10, 0.00] 

[-0.24,-0.14] 

[-0.16,-0.09] 

[-0.21,-0.11] 

[-0.11, 0.00] 

[ 0.16, 0.22] 

𝐶𝑑1 

(Minimize) 

 

𝐶𝑑2 

(Minimize) 

𝐶𝑑1 < 0.010 

𝐶𝑑2 < 0.014 

𝐶𝐿1 > 0.849 

𝐶𝐿1 < 0.851 

𝐶𝐿2 > 0.849 

𝐶𝐿2 < 0.851 

𝑅 > 0.01 

𝐶𝑑1 and 𝐶𝑑2 are the total drag coefficients at Mach 0.72 and 0.75 with fixed lift coefficient be set to 

0.85. An in-house developed program NSAWET[44], [45] is used in this paper as CFD evaluation tool. 

Other CFD settings are listed in Table 2. 

Table 2: CFD Evaluation Settings 

Grid Size 
Reynolds  

number 

Discretization 

scheme 

Reconstruction 

scheme 

Turbulence  

model 

257 × 97 6,100,000 Roe 3rd order MUSCL 𝑘 − 𝜔 SST 

Table 3 gives the parameters of the optimizer. In this problem we compare FSOO to basic differential 

evolution optimizer. The parameters listed applies to both optimizers. 
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Table 3: Optimizer Settings 

Total Generation 𝑁𝑔 Population Size 𝑁𝑝 𝑁𝐼 𝐹 𝐶𝑅 

200 28 2 0.5 0.2~0.7 

Physical Quantities 

Used for Analysis 

Flow Feature 

Dimension 𝑁𝑐 
Learning Rate 𝛼 

Regularization 

Term 

Regularization 

Weight 

(𝑥, 𝑦, 𝑢, 𝑣, 𝑝, 𝑇) 40 0.001 L2 0.01 

The neural network architecture used by convolutional encoder and decoder is ResNet-50[46] and the 

total number of parameters in CAE is nearly 6,000,000. The MLPs used for relationship analysis has 3 

hidden layers and nodes of hidden layer is set to be 400. 

3.2     Model Training 
Around 12,000 previously collected solutions are used to train the models. For CAE, the concerned 

flow field quantities are coordinates of grid vertexes 𝑥 and 𝑦, velocity 𝑢 and 𝑣, static pressure 𝑝 and 

temperature 𝑇, as shown in Table 3. Figure 6 gives the convergence curve for CAE and MLPs used in 

this optimization. Figure 7 gives performance illustration for the well-trained CAE on a random test 

flow field. The final loss of both CAE and MLPs is at 10−3 level. 

 
(a).Loss Curve for CAE (b).Loss Curve for MLPs 

Figure 6: Convergence Curves 

 
(a).Source Mach Contour (b).Recovered Mach Contour 

Figure 7: CAE Feature Extraction Performance 

3.3     Optimization Process and Results 
Figure 8 shows the convergence curves of FSOO and basic DE. The convergence criterion is defined 

as the generation distance which refers to the average Euclidean distance from current population to the 

combined Pareto front obtained by optimizers. Figure 9 shows the Pareto front obtained by FSOO and 

basic DE. Figure 10 gives typical comparisons of surficial pressure distribution of 3 pairs (marked as 

A, B and C) of similar optimal solutions obtained by competing optimizers. 
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Figure 8: Convergence Curve for Competing Optimizers 

 
Figure 9: Pareto Front Comparison 

  
(a). Pair A, Ma=0.72 (b). Pair A, Ma=0.75 
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(c). Pair B, Ma=0.72 (d). Pair B, Ma=0.75 

 
(e). Pair C, Ma=0.72 (f). Pair C, Ma=0.75 

Figure 10: Surfacial Pressure Comparison of Solutions of Compting Optimizers 

3.4     Discussion 
The convergence curve shows that FSOO apparently converges faster than basic DE, about 40% of total 

iterated generations can be reduced to reach the same degree of convergence. Such speedup is within 

expectation because even if the individual improvement strategy is ineffective due to incorrect direction 

calculation by models, the improvement process degenerates to a random walk in the neighborhood of 

origin individuals which serves as a local search process and cannot cause serious optimization 

efficiency loss. 

It can also be observed that the convergence curve sometimes bumps up, that is due to the selection 

mechanism of DE that forces the individual in parent population and offspring population to carry out 

one on one selection. Although such mechanism cannot guarantee to eliminate the individual with 

greater distance to the Pareto front, the population diversity can be well preserved. 

Figure 10 shows the comparison of solutions obtained by FSOO and basic DE. (a) and (b) show that 

the solution 4853 obtained by FSOO has a single shock wave with middle intensity at Mach 0.72 while 

solution 5511 obtained by basic DE has two weak shock waves and shows apparent second acceleration 

in the upper surface, and solution 4853 has slightly weaker shock wave at Mach 0.75. (c) and (d) show 

that at Mach 0.72, solution 5057 obtained by FSOO has one weaker shock wave than solution 4051 

obtained by basic DE, which leads to the superiority upon drag coefficient while their pressure 

distribution is nearly identical at Mach 0.75. (e) and (f) show that solution 5589 obtained by FSOO 

successfully avoids the apparent pressure bump at Mach 0.72 comparing to solution 5738 obtained by 

DE at Mach 0.72, and at Mach 0.75 the former solution has weaker shock wave intensity. Those 

comparisons show that FSOO is able to obtain solutions with more reasonable flow structures and better 

performance under the same optimization iterations. 
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4     Conclusions and Future Work 

In this article a technical framework to achieve flow structure oriented optimization (FSOO) is proposed 

by utilizing convolutional autoencoder as flow field feature extractor and multi-layer perceptrons to 

analyze mapping relationships. Validation cases have shown that CAE is able to capture the essential 

flow pattern inside the flow field with profound information compression rate (from nearly 150,000 to 

40, about 0.027%) without significant information loss. Utilization of FSOO in test case validates that 

with proper incorporation of deep learning based individual improvement, the performance and 

efficiency of current optimizers can be significantly boosted. 

While incorporating deep learning as analysis tool within aerodynamic optimization is preliminarily 

proven effective in this article, there are still apparent obstacles to utilize deep learning and deep neural 

networks in engineering occasions. The biggest challenge here is the collection of sufficient samples 

for training deep neural network. The case used in this article is a 2-D optimization problem whose 

computation cost is acceptable and large scale of samples can be affordably collected before or during 

optimization. While for more complicated 3-D optimization problems and unsteady optimization 

problems, since the computation is extremely expensive, available samples may not be sufficient for 

the training process thus extra auxiliary tools need to be incorporated to tackle the insufficiency of 

training samples at early stages of optimization.  

Aside from autoencoder, there are other network architectures that can be effectively incorporated in 

the optimization process, literature[47] utilizes generative adversarial network (GAN) to learn to 

generate flow fields that satisfies the partial differential equations (PDE) that govern the flow physics 

of a 2-D steady incompressible cavity according to arbitrarily defined boundary conditions, this work 

is enlightening since utilization of those generative models enables direct generation of the feasible 

ideal optimal flow field, which can be used to directly guide the optimization process in flow structure 

oriented optimization problems. 
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