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Abstract: Porous trailing edges for the wings are an active area of research to reduce the aircraft
noise.Therefore, it is neccessary to predict the effect of such porous surfaces on the aerodynamics
of the wings. In order to simulate the turbulent flow through the porous media, a VRANS model
for flow through isotropic and uniform porous media was previously developed. This numerical
model is further extended to simulate flows through non-uniform porous media. The model is
verified with the help of generic test cases for laminar and turbulent flows. Numerical results are
presented for a non-uniform porous medium at the trailing edge of an airfoil.
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Nomenclature

Afs Surface area of porous structure
cF Forchheimer coefficient
ct Modelling constant for velocity fluctuation triple correlations
E Energy
H Enthalpy
kd Thermal diffusion
ni i-component of the normal vector
p Pressure
Re Reynolds number
t Time
uτ Shear stress velocity
VB Bulk velocity i.e. mean velocity in the free flow
vi Velocity in direction i
xi Coordinate in direction i
κ Permeability
µ Dynamic viscocity
ν Kinematic viscosity
φ Porosity
ρ Density
τij Element i, j of tensor of viscous stresses
ϕ Time average of arbitrary variable ϕ
ϕ Density weighted time average of arbitrary variable ϕ
〈ϕ〉 Volume average of arbitrary variable ϕ
〈ϕ〉F Density weighted volume average of arbitrary variable ϕ
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1 Introduction

Aircraft wing noise reduction is an active area of interest for the current collaborative research center SFB880,
located at the Technische Universität at Braunschweig, Germany. Porous materials have been used by
Herr [1] to reduce the trailing edge noise of airplanes where a noise reduction on the order of 2-6 dB is
achieved. It is expected that the introduction of porous materials would lead to change in the aerodynamic
and turbulent flow behavior in and around the wings. In an attempt to numerically simulate these changes
a volume and Reynolds averaged Navier-Stokes (VRANS) based numerical model is developed that can
resolve the turbulent flows in and around the porous surfaces. The other possibilities such as LES and
DNS are also being used within the research center, however they are computationally expensive for trying
out a large number of porous materials at different flow conditions such as high Reynolds numbers. The
previous VRANS model [2, 3] computes the turbulent flow over porous media with uniform and isotropic
material properties. It is desirable to have the capabilities to also simulate a non-uniform and anistropic
porous materials. The model is extended for nonuniform porous medium here based on Navier-Stokes (NS)
equations. The additional drag due to the porous medium in the momentum equation is compensated by the
Darcy and Forchheimer terms for the flow through porous media. In addition, the volume averaging procedure
leads to additional terms for spatial gradients of porosities in the basic conservation laws of NS equations.
Furthermore, Reynolds averaging principles are employed to model the turbulence inside the porous media.
The JHh-v2 Reynolds stress model [4, 5] is extended to model the various complex terms of the Reynolds
stress equations. Additional terms due to the gradients of porosity appear in the equations as compared to
the original homogenous porosity numerical model [3]. The VRANS model has been implemented in the
DLR-TAU code [6] .

The previous model for uniform porous materials has been extensively tested in the past using the generic
test cases [2] as well as for aircraft wings [7]. The present version of the model is verified here for similar cases
based on generic channel flows. The results of a numerical simulation for an airfoil with porous trailing edge
with nonuniform porous material are also presented. Section 2 describes the derivations of the equations for
the flow model. Section 3 outlines the setup of testcases for model verification and the numerical results for
a laminar flow followed by a turbulent flow. The results of a simulation for a 2D airfoil are presented in
section 4. The final section, 5, presents the conclusions and plans for the future work.

2 Numerical model

The governing volume and Reynolds averaged Navier-Stokes (VRANS) equations for the turbulent flow
through a uniform and isotropic porous medium were already presented in [3, 7] in great detail. The
equations have to be extended such that the effect of the variable porous properties can be accounted for
the present work. Navier-Stokes equations are first volume averaged, taking into account the porosity effects
by applying additional drag [8] and then time averaging also known as Reynolds averaging is applied on the
resulting equations to obtain a set of VRANS equations.

2.1 Volume Averaging

The Navier-Stokes equations in the differential form in Einstein notation can be written as:

∂ρ

∂t
+

∂ρvi
∂xi

= 0 (1a)

∂ρvi
∂t

+
∂ρvivj
∂xj

+
∂p

∂xi
− ∂τij

∂xj
= 0 (1b)

∂ρE

∂t
+

∂ρviH

∂xi
− ∂viτij

∂xj
− ∂kd,i

∂xi
= 0 (1c)

where t is the time, xi are the Cartesian coordinates, ρ is the density, vi are the velocity components, p is
the pressure, τij is the tensor of viscous stresses, H is the total enthalpy, E is the total energy including
internal energy e and the kinetic energy

vivj
2 and kd is the thermal diffusion.
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These equations serve here as the starting point. The volume averaging principles are defined similar to
[2, 3], whereby the spatial averaging can be written as

〈ϕ〉 = 1

Vf

∫
Vf

ϕdV (2)

with Vf being the fluid volume inside the porous structure and ϕ as an arbitrary variable to be averaged and
the density weighted averaging is defined as

〈ϕ〉F =
1

Vf 〈ρ〉

∫
Vf

ρϕ dV =
〈ρϕ〉
〈ρ〉

. (3)

Additional relations are required for the derivatives of an averaged state variable in the Navier-Stokes equa-
tions. Mößner [2] following the derivations from Bear [9] for a rigid porous structure with variable porosities φ
shows these relations to be 〈

∂ϕ

∂t

〉
=

∂ 〈ϕ〉
∂t

+
〈ϕ〉
φ

∂φ

∂t
(4a)〈

∂ϕ

∂xi

〉
=

∂ 〈ϕ〉
∂xi

+
〈ϕ〉
φ

∂φ

∂xi
+

1

Vf

∫
Afs

ϕni dA (4b)

where ni is the i-th component of the normal vector ~n and Afs is the surface area of the pores. Following these
relations and neglecting the correlations between spatial deviations, spatial averaging of the Navier-Stokes
equations (1) results in

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 〈vi〉F

∂xi
+

〈ρ〉 〈vi〉F
φ

∂φ

∂xi
= 0 (5a)

∂ 〈ρ〉 〈vi〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈vj〉F

∂xj
+

〈ρ〉 〈vi〉F 〈vj〉F
φ

∂φ

∂xj
+

∂ 〈p〉
∂xi

+
〈p〉
φ

∂φ

∂xi

−∂ 〈τij〉
∂xj

− 〈τij〉
φ

∂φ

∂xj
+

1

Vf

∫
Afs

p · ni − τijnj dA = 0
(5b)

∂ 〈ρ〉 〈E〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈H〉F

∂xi
+

〈ρ〉 〈vi〉F 〈H〉F
φ

∂φ

∂xi
+

∂ 〈kd,i〉
∂xi

+
〈kd,i〉
φ

∂φ

∂xi

−
∂ 〈vi〉F 〈τij〉

∂xj
−

〈vi〉F 〈τij〉
φ

∂φ

∂xj
= 0 .

(5c)

The surface integral in the momentum equation (5b) describes the additional drag inside the porous
medium. It is modelled with Darcy’s law extended by a quadratic relation called Forchheimer term (cf. [8]):

1

Vf

∫
Afs

p · ni − τiknk dA = φ
µ

κ
〈vi〉F︸ ︷︷ ︸

Darcy

+φ2 cF√
κ
〈ρ〉 〈vi〉F · |〈~v〉F |︸ ︷︷ ︸
Forchheimer

− 〈p〉
φ

∂φ

∂xi
+

〈vi〉F 〈τij〉
φ

∂φ

∂xj︸ ︷︷ ︸
forces due to porosity gradients

(6)

with the dynamic viscosity µ, the permeability κ and the Forchheimer coefficient cF . The momentum
equation (5b) then becomes

∂ 〈ρ〉 〈vi〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈vj〉F

∂xj
+

〈ρ〉 〈vi〉F 〈vj〉F
φ

∂φ

∂xj
+

∂ 〈p〉
∂xi

− ∂ 〈τij〉
∂xj

+ φ
µ

κ
〈vi〉F + φ2 cF√

κ
〈ρ〉 〈vi〉F · |〈~v〉F | = 0

(7)

The spatial gradient terms of the porosities ∂φ
∂xi

are the additional terms to be considered in all equations
when compared to the original equations for homogenous porous materials as used in [2, 3].
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2.2 Reynolds Averaging

Time averaging of the compressible Navier-Stokes equations is a well known procedure for computing the
mean flow instead of fully resolving the turbulent flow motion. The procedure is thoroughly described in
Wilcox [10] and was discussed in detail for the uniform and isotropic porous media in the [3]. Time averaging
the previously derived volume averaged Navier-Stokes equations from section 2.1 following a similar procedure
and time averaging principles results in:

∂ρ

∂t
+

∂ρvi
∂xi

+
ρvi
φ

∂φ

∂xi
= 0 (8a)

∂ρvi
∂t

+
∂ρvivj
∂xj

+
∂ρv′′i v

′′
j

∂xj
+

∂p

∂xi
− ∂τij

∂xj
+ φ

µ

κ
vi

+ φ2 cF√
κ
ρvi|~v|+

ρ(vivj + v′′i v
′′
j )

φ

∂φ

∂xj
= 0

(8b)

∂ρE

∂t
+

∂ρviH

∂xi
+

∂ρv′′i H
′′

∂xi
− ∂viτij

∂xj
− ∂v′′i τij

∂xj
+

∂kd,i
∂xi

+
ρ(viH + v′′i H

′′)

φ

∂φ

∂xi
− (viτij + v′′i τij)

φ

∂φ

∂xj
+

kd,i
φ

∂φ

∂xi
= 0

(8c)

where ϕ and ϕ are the time averages and the density weighted time averages of an arbitrary quantity ϕ
and ϕ′′ = ϕ − ϕ. A number of unknowns appear in these equations which require further derivations and
modeling, however the main difference to the isotropic porous model equations is again the presence of spatial

gradients of the porosities. The v′′i H
′′ term can be simplified as single terms:

v′′i H
′′ = v′′j v

′′
i v

′′
j +

1

2
v′′i v

′′
j v

′′
j + v′′i h

′′

A second order approximation of the Forchheimer term (see [3] for details) results in:

φ2 cF√
κ
ρvi|~v| ≈ φ2 cF√

κ
ρ

[
vi|~v|+

1

2

vi

|~v|
v′′kv

′′
k +

vk

|~v|
v′′i v

′′
k − 1

2

vivkvl

|~v|3
v′′kv

′′
l

]
. (9)

The additional unknown variables of the Reynolds averaged volume averaged Navier-Stokes equations (8)

are the Reynolds stresses v′′i v
′′
j , the velocity-shear-stress correlations v

′′
i τ

′′
ij and, the triple correlations v

′′
i v

′′
j v

′′
k

and the velocity-enthalpy correlations v′′i h
′′.

2.3 Turbulence modelling

In order to obtain turbulence quantities such as Reynolds stresses as required for equations (8b), the deriva-
tions of Reynolds stress equations are extensively discussed by Wilcox [10] mainly based on the formulation:

viNj + vjNi − viNj − vjNi = 0

where Ni is the momentum equation (7) and Ni is the Reynolds averaged momentum equation (8b). The
derivation of Reynolds stress equations inside the porous regions leads to the following additional terms:

PRSij,Darcy = −φ
µ

κ

[
v′′i vj + v′′j vi + 2v′′i v

′′
j

]
(10a)

PRSij,Forch = −φ2cF√
κ

ρ
(
v′′i vj |~v|+ v′′j vi|~v|

)
(10b)
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PRSij,gradients =
ρ

φ

∂φ

∂xk

(
v′′i v

′′
j v

′′
k + v′′j v

′′′
k v′′i + v′′kv

′′
i v

′′
j + v′′i v

′′
j v

′′
k

)
(10c)

which have to be added to Reynolds stress equations. In this work, the terms are modelled similar to the
JHh-v2 turbulence model. This Reynolds stress model was first presented by Jakirlic and Hanjalic [4, 5]
and uses the homogeneous dissipation rate εh as the length scale variable. Recently, Ccora et al. [11]
recalibrated several parameters for better performance in transonic flow applications to attain version v2.
The triple correlations in equation (10c) are modelled by the model of Hanjalic and Launder [12]

v′′i v
′′
j v

′′
k = ct

k

εh

[
v′′i v

′′
l

∂v′′j v
′′
k

∂xl
+ v′′j v

′′
l

∂v′′i v
′′
k

∂xl
+ v′′kv

′′
l

∂v′′i v
′′
j

∂xl

]
(11)

with the modelling constant ct and the turbulent energy k =
u′′
i u

′′
i

2 . The other unknown term v′′i h
′′ is

modelled similar to the nonporous regions as:

ρv′′kh
′′ = −cpλt

∂T

∂xk
(12)

where the turbulent thermal conductivity λt =
µt

σt
, µt is the turbulent eddy viscosity and σt is the turbulent

Prandtl number. This formulation limits the model as the gradients of temperature due to the presence of
porous structures are ignored. Note that a closure the Forchheimer term in equation (10c) is not provided in
this text as it has been thoroughly covered in previous publications [2, 3]. The remaining unknown variable
v′′i τij is neglected. It is to be noted here that a special interface treatment is required for the grid points
where the porosity jumps from a smaller number to 1 in the nonporous region. This includes a calculation
based on the isentropic change in the flow properties at the interface and conversation of the mean flow
fluxes as well as momentum fluxes due to turbulence as discussed in [3] in details.

The additional terms based on the porosity gradients as obtained in the equations (5) and (8) are
implemented in the finite-volume method based flow solver DLR-TAU code.

3 Verification of Numerical Model with generic channel cases

Two test cases based on channels are presented here for investigating the present model. The first test
case would focus on verification of the basic laminar flow through the channel compared with an analytical
solution for the same. The second test case with nonuniform porous media in the bottom half would be used
to analyze the turbulent properties.

3.1 Laminar flow Through a Channel

The setup for a channel with porous blockage is shown in Figure 1. The boundary conditions are set to
slip walls at the top and bottom of the channel, and a set of inflow-outflow conditions driving the flow in
x-direction. A similar test case was previously presented [3] for the verification of Darcy and Forchheimer
contributions for a uniform porous media. For the purpose of current work, the porous block has a constant
porosity φ = 0.5 for the first half and the porosity φ increases linearly to φ = 0.75 by the end of the porous
block. The Darcy number is Da = κ

L2 = 1 · e−5 for the porous medium and the Forchheimer coefficient is
CF = 0 i.e. the contribution of the Forchheimer term is neglected for simplification purposes. The inflow
conditions are Mach number Ma = 0.02 and Reynolds number Re = 200000. The solution is shown in
Figure 2. The velocity distribution along the length of the channel is normalized with the inflow velocity v0
and the pressure difference (p − p0) is normalized by the inflow dynamic pressure 0.5ρ0v

2
0 . The analytical

solution for the velocity is obtained from the continuity equation [5a] which reduces to

∂vx
∂x

= −vx
φ

∂φ

∂x
(13)
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Figure 1: Numerical setup for a laminar channel case with porous blockage.
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Figure 2: Porosity, velocity and pressure distribution along the laminar channel with porous blockage.

for such incompressible flows. Since ∂φ
∂x is a constant, it is fairly easy to solve the equation 13 analytically.

The pressure distribution is obtained from the momentum equation [7] which simplifies to the following form:

∂p

∂x
= −φ

µ

κ
vx − ρv2x

φ

∂φ

∂x
(14)

The analytical solution for the velocity and pressure is also shown in Figure 2 which matches the numerical
solutions obtained from the flow solver TAU very well.

3.2 Turbulent flow Through a Channel

The previous testcase verifies the model for a laminar flow, whereas analysis for turbulent flow is presented
here. We seek a generic test case with non-uniform porosity. However, an experimental or numerical database
for verification is not available to the best of the knowledge of authors. Therefore a variation of the validation
case from the previous work [3] is considered here. The resolved DNS computation for a generic channel case
called CUB by Breugem [8] were used previously for validations where lower half of the channel is filled with
porous material defined by a grid of cubes. The setup for this channel is shown in Figure 3 where the height
and length of the channel are 2H x 5H and the interface between porous and nonporous media is at 0.9H.
The material properties for the uniform porous medium for the CUB testcase are given as porosity φ = 0.875,
Darcy number Da = 3.4e−4, and Forchheimer coefficient cF = 0.026.

For the current work, the porosity is linearly increased from φ = 0.875 at z/H = 0.70 to φ = 1.0 at
z/H = 0.9 in order to simulate a testcase where the porous medium gradually turns into freeflow before
the interface. This should in effect turn off the interface jump of the solution, which was required for the
numerical model in the previous validation cases where the porosity jumps from φ = 0.875 to 1.0 at this
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Figure 3: Numerical setup (above) and the grid (below) for the generic channel with turbulent flow.

interface. Note that, the permeability κ changes with porosity φ are modelled in the region of interest
according to the following equation:

κ = Ckc
φ3

(1− φ)2

where Ckc is a constant. This relationship is known as Kozeny-Carman (KC) model[13, 14]. Although
this equation is only valid for incompressible laminar flow, it is here considered to systematically model the
permeability in order to accomodate the proposed porosity variations inside the porous medium. Alterna-
tively, a previously known linear distribution of permeabilities can also be supplied to the flow solver. Here,
Ckc = 7.93e−6 based on the uniform porosity and permeability below the variable porosities. The numerical
grid is shown in Figure 3 with 360 points along the channel height. The grid-spacing at the wall is kept so
that y+ < 1 near the walls and at the interface.

The Reynolds number is defined as Re = HVB

ν = 5500 where H is the free flow height, VB is the average
velocity inside the free flow and ν is the kinematic viscosity. The average flow velocity VB in the free
flow channel region is set according to a Mach number Ma = 0.15. The velocity profile from the VRANS
simulations for the testcase is compared with the uniform porous medium case in Figure 4. A higher velocity
at and around the interface is observed as expected in this case as the 0.2H before the interface is more
porous than the CUB case with constant porosity. It can also be seen that the CFD solutions from the
variable porosities are in good agreement around the maximum of the free flow and also along the lower part
of the porous medium. This is also expected since the flow velocity far away from the non-uniform porosity
should eventually be the same for both cases. This trend also continues in the Reynolds stress distributions
as shown in Figure 4, here the Reynolds stresses are normalized by the shear stress velocity uτ of the upper

channel wall. The shear stress velocity is defined as uτ =

√
ν
∣∣∣∂vx

∂y

∣∣∣. The normal Reynolds stresses Rxx along

the flow direction as seen in Figure 4 is smaller compared to the case with a constant porous medium. This is
due to 1.3 times higher gradients of the x-velocity at the interface for the latter case, leading to larger values
of normal stresses along the flow direction, as the source term in the stress equation is larger. However, the
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Figure 4: The velocity, normal and shear Reynolds stresses distributions along the channel height

normal stresses along the channel height Rzz are larger for the variable-φ solution. This is obviously caused
by a local change in the Reynolds-stress redistribution term, where damping caused by partially solid wall is
taken into account in the original model[3]. As a result of the different behaviours observed for streamwise
and wall-normal stresses, the Reynolds shear stress Rxz remains approximately the same at the interface.
We conclude that introducing a local zone of varying porosity at a porous surface has a strong effect on
stress anisotropy.

The behaviour of the turbulent flow in the channel appears to be appropriate as implemented in the flow
solver TAU-Code.

4 Simulations of an airfoil with porous trailing edge

2D VRANS simulations are performed for the DLR F16 airfoil to show the capability of the numerical model
to simulate the flow around the airfoil with a porous trailing edge. The numerical and experimental results
for the setup with uniform porous media were presented previously in [7]. The computational grid as shown
in Figure 5 is an O-type mesh with sufficient cell spacing at the walls in order to resolve the boundary layer
for Re = 1, 000, 000 at flow Mach number Ma = 0.15. The last 10 % of the airfoil is porous and this porous
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trailing edge is meshed according to the spacing of the nonporous mesh. Total number of resulting grid
points for the 2D simulation is ≈ 175000. The porous material considered in the previous study was derived
from porous aluminium PA 80-110 with the properties: porosity φ = 0.46, permeability κ = 1.24e−10 and
Forchheimer coefficient CF = 0.1. For the present case, the porosity is linearly varied from φ = 0.46 to
φ = 1.0 from the beginning to the end of the porous trailing edge. The permeability varies according to the
KC-model with CKC = 3.7e−10 along the length of the porous part. The results from the simulations for

Figure 5: Numerical grid for 2D simulations of flow around DLR F16 airfoil with the porous trailing edge
(insert and right).

this synthetic material are shown in Figure 6 and Figure 7 compared with the uniform porous material PA
80-110. Figure 6 shows the cp distribution around the airfoil and at the porous trailing egdes at an angle of
attack α = 6o. The flow motion from the pressure side through the porous medium can be seen by inspecting
the streamlines. The large differences are expected as the non-uniform medium gradually turns more porous
along the airfoil trailing edge, allowing a larger flow velocity along the vertical-direction. This momentum
exchange separates the flow earlier on the suction side of the airfoil leading to a 7% reduction in the lift
coefficient CL as compared to the homogenous porous material PA 80-110. The turbulence distributions,

based on Reynolds stresses Rxx+Rzz
v2
∞

=
v′′
x v′′

x+v′′
z v′′

z

v2
∞

are shown in Figure 7 for the same angle of attack α = 6o.

The absence of turbulence inside the porous media is a well documented phenomenon [7] as a result of strong
Darcy and Forchheimer terms damping out all the turbulence there. A slightly higher turbulence is seen in
the wake of the airfoil for the non-uniform porous medium.

Figure 6: Pressure (cp) distribution and streamlines around the airfoil (left) and the porous trailing edge
(right) for the uniform and non-uniform porous media at an angle of attack α = 6o.
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Figure 7: Turbulence distribution around the airfoil(left) and the porous trailing edge (right) for the uniform
and non-uniform porous media at an angle of attack α = 6o.

5 Conclusion and Future Work

A set of equations are derived based on volume and Reynolds averaging (VRANS) model for simulations
of turbulent flow through non-uniform porous media. The resulting additional terms in the flow equations
represent the gradients of porosity. The extended equations are implemented in a flow solver for the prediction
of aeronautical flows. Numerical simulations of generic test cases provide a verification for the model. Further
datasets are needed at this point to validate the model for turbulent flows. LES simulations for a channel
with turbulent flow through a non-uniform porous medium are foreseen in future works of the collaborative
research center SFB 880. Experimental campaigns for wings with porous trailing edges are also planned in
future to provide data for validating the model. Since a non-uniform porous material in practice would likely
be anisotropic, the numerical model needs to be extended to anisotropic permeabilities and Forchheimer
coefficients inside the porous medium.
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