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Abstract: A fourth-order accurate gas-kinetic CPR method is developed for the Navier-Stokes
equations on triangular meshes. Different from the previous single-stage third-order gas-kinetic
CPR method, the current method adopts the second-order gas-kinetic flux solver, which is simpler
and less expensive, to reduce the computational cost of flux. Meanwhile, the temporal accuracy is
improved by using the two-stage temporal discretization, which is more efficient than the four-stage
Runge-Kutta method usually adopted in existing fourth-order CPR. Numerical tests are presented
to demonstrate the accuracy and efficiency of the current method.

Keywords: Gas-Kinetic Scheme, Correction Procedure via Reconstruction, Two-stage Temporal
Discretization.

1 Introduction
During the past decades, high-order CFD methods have attracted many researchers due to their advantages
on accuracy and efficiency. There are many popular high-order methods, such as the Discontinuous Galerkin
(DG) method, the PNPM and so on. In recent years, the correction procedure via reconstruction (CPR)
method has been developed rapidly, which provides a unified framework for many high-order methods [1].
The CPR method has been shown to be very competitive in terms of accuracy and efficiency, compared to
the original DG method. Most of high-order methods mainly concentrate on the high-order reconstruction.
As for the flux evolution, the Riemann solution of the Euler equations is the foundation of compressible flux
solvers. However, developing a genuinely multidimensional Riemann solution is very difficult. For solving
viscous flows, the viscous terms in the Navier-Stokes equations require special treatment.

Alternatively, the gas-kinetic scheme (GKS) offers a different way to recover the N-S solutions, which
has shown good performance in a wide range of flow problems. Based on the local integral solution of the
BGK model, the time evolving kinetic flux function can be constructed, in which the inviscid and viscous
terms are coupled and obtained simultaneously. Through the high-order expansion of the gas distribution
function, a high-order gas evolution model has been constructed successfully, which provides more abundant
information to describe the flux evolution process [2]. Accordingly, a series of high-order gas-kinetic schemes
have been developed. Recently, a third-order gas-kinetic CPR method, denoted as CPR-GKS(P2), has
been developed for the Navier-Stokes equations on unstructured meshes [3]. It combines the high-efficient
CPR framework with the third-order single-stage time stepping gas-kinetic flux solver, which shows high
accuracy and efficiency in many typical flow problems. However, the third-order gas-kinetic flux solver is
more complicated and time-consuming than its second-order counterpart.

In this study the fourth-order CPR framework is adopted to enhance the spatial accuracy. The second-
order time-dependent gas-kinetic flux solver [4] is adopted for less computational cost, combined with the
two-stage time-stepping method [5, 6] to improve the temporal accuracy. In comparison with the four-stage
Runge-Kutta time-stepping method, the temporal discretization is more efficient due to less intermediate
stages. The developed scheme, denoted as CPR-GKS(P3) is then validated through typical numerical tests.
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2 Fourth-Order Gas-Kinetic CPR Method

2.1 CPR framework
By dividing the computational domain into N non-overlapping triangular cells Ωi, a solution polynomial Qi

of degree k is constructed in each cell by using the Lagrange interpolation based on a set of solution points
(SPs). For fourth-order CPR, i.e., k = 3, 10 solution points are needed in each cell. Additionally, to compute
the common flux, k+ 1 flux points (FPs) are set at each cell interface. For efficiency, the solution points are
chosen the same as the flux points, as shown in Fig.1.

Figure 1. Solution points (circles) and flux points (squares) for k=3.

Then the CPR framework can be expressed as

∂Qi,j

∂t
+ Πj

(
∇ · ~F (Qi)

)
+

1

|Ωi|
∑
s∈∂Ωi

4∑
l=1

αj,s,l[F
n]s,l|Γ|s = 0, (1)

where Qi,j is the conservative variable at each solution point, j = 1 ∼ 10. The second term is the projection
of the flux divergence onto P k. The last one is the correction term where [F n]s,l is the normal flux difference
at each flux point, i.e., [F ncom(Qi,Qi+, ~n)− F n(Qi)]s,l. αj,s,l is the lifting coefficient, |Ωi| is the area of Ωi,
|Γ|s is the length of triangular edge. More details of the flux divergence term and correction term can be
found in [1].

2.2 Gas-kinetic scheme
In the present study, the flux in the CPR framework is computed by the gas-kinetic flux solver. For
completeness, the gas-kinetic scheme is briefly reviewed. For convenience, the summation convention is
adopted in the following, where ~x = (x1, x2) = (x, y), ~u = (u1, u2) = (u, v), macroscopic velocity vector
~U = (U1, U2) = (U, V ). The scheme is based on the BGK equation,

∂f

∂t
+ ui

∂f

∂xi
=
g − f
τ

, (2)

where f is the gas distribution function, ui is the particle velocity, and τ = µ/p is the particle collision time
related to the viscosity and p is the pressure. The equilibrium state g is the Maxwellian distribution

g = ρ

(
λ

π

)K+2
2

e−λ(|~u−
~U |2+ξ2), (3)

where ρ is the density. λ is equal to 1/(2RT ), where R is the gas constant and T is the temperature. Since
mass, momentum, and energy are conserved during particle collisions, the collision term in Eq.(2) satisfies
the compatibility condition ∫

g − f
τ

ψdΞ = 0, (4)
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where ψ is the the vector of moments

ψ =

(
1, ~u,

1

2

(
|~u|2 + ξ2

))T
, (5)

and dΞ = du1du2dξ1dξ2 · · · dξK is the element of the phase space and ξ2 = ξ2
1 + ξ2

2 + ... + ξ2
K . The total

number of degrees of freedom K is equal to (5− 3γ)/(γ − 1) + 1 for two-dimensional flow, in which γ is the
specific heat ratio.

The relations between macroscopic variables and the distribution function are

Q =

∫
fψdΞ, ~F =

∫
~ufψdΞ. (6)

Taking moments of BGK equation, the N-S equations can be recovered based on the first-order Chapman-
Enskog expansion

fNS = g − τ(
∂g

∂t
+ ui

∂g

∂xi
). (7)

In order to compute the flux at each solution point and flux point, the gas distribution function is
constructed locally at these points. Since the flow distribution inside each cell is continuous, Eq.(7) can
be directly adopted for computing the flux at each solution point (SP). The corresponding gas distribution
function can be expressed as

f
SP

(t, ~u, ξ) =g0 (1− τaiui + (t− τ)A) . (8)

By introducing the notation

〈· · · 〉 =

∫
g0(· · · )ψdΞ, (9)

the coefficients ai and A can be determined by the spatial derivatives of conservative variables and the
compatibility condition [2]

〈ai〉 =
∂Q

∂xi

∣∣∣∣
~x

→ ai, 〈aiui +A〉 = 0→ A. (10)

To compute the common flux at each flux point (FP) where the discontinuity exists, the gas distribution
function is constructed based on the local analytical solution of BGK equation,

f(~x, t, ~u, ξ) =
1

τ

∫ t

0

g(~x′, t′, ~u, ξ)e−(t−t′)/τdt′ + e−t/τf0(~x− ~ut, 0, ~u, ξ), (11)

where f0 is the piece-wise discontinuous initial distribution function at the beginning of each time step
(t = 0), ~x′ = ~x − ~u(t − t′) is the particle trajectory. Note that the construction is performed in a local
coordinate system ~̃x = (x̃1, x̃2), in which the x̃1-axis is perpendicular to the cell interface. Based on Eq.(11),
the second-order time-dependent gas distribution function can be expressed as

f
FP

(t, ~̃u, ξ) =g0

(
1− e−t/τ

)
+ g0

(
(t+ τ)e−t/τ − τ

)
aiũi + g0

(
t− τ + τe−t/τ

)
A

+ e−t/τgR0
(
1− (τ + t)aRi ũi − τAR

)
H(u)

+ e−t/τgL0
(
1− (τ + t)aLi ũi − τAL

)
(1−H(u)) ,

(12)

where H(u) is the Heaviside function. The equilibrium states gL0 , gR0 correspond to the flow states at the
left and right sides of the cell interface. The coefficients ai, A, aLi , AL and aRi , AR come from derivatives of
g0, g

L
0 and gR0 respectively, which can be determined by Eq.(10) as well. Besides, the equilibrium state g0 is
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determined by the compatibility condition∫
g0ψdΞ = Q̃0 =

∫
u1>0

gL0 ψdΞ +

∫
u1<0

gR0 ψdΞ, (13)

where Q̃0 are the conservative variables corresponding the equilibrium state g0. In order to fully determine
g0, a continuous flow distribution across the cell interface is constructed by using the least-square method,
with the stencil shown in Fig.2.

Figure 2. The stencil for constructing the equilibrium state in the local coordinate.

2.3 Two-stage temporal discretization
Based on the above gas-kinetic flux solver, the solution at each solution point inside a cell can be updated
by adopting the following two-stage temporal discretization,

Q∗i,j = Qn
i,j −Πj

(
∇ ·
(∫ t∗

tn

~F (Qn
i , t)dt

))
− 1

|Ωi|
∑
s∈∂Ωi

∑
l

αj,s,l

(∫ t∗

tn

F̂ (Qn
i , t)dt

)
s,l

|Γ|s,

Qn+1
i,j = Qn

i,j −Πj

(
∇ · ~F

)
− 1

|Ωi|
∑
s∈∂Ωi

∑
l

αj,s,l

(
F̂
)
s,l
|Γ|s,

(14)

where t∗ = tn + ∆t/2 is the intermediate stage, F̂ (Qn
i , t) indicates the normal flux difference in Eq.(1), and

~F can be expressed as

~F =
8

3

∫ t∗

tn

~F (Qn
i , t)dt−

1

3

∫ tn+1

tn

~F (Qn
i , t)dt+

4

3

∫ t∗+∆t

t∗

~F (Q∗
i , t)dt−

8

3

∫ tn+1

t∗

~F (Q∗
i , t)dt, (15)

and F̂ has the same form as Eq.(15) by replacing ~F with F̂ .
It is not easy to construct a fourth-order gas-kinetic flux solver with one-step time discretization as the

corresponding gas distribution function is complicated and the computational cost is far more expensive.
Fortunately, with the above two-step time discretization, the second-order gas-kinetic flux solver can be
used, which only takes about one-sixth the computational cost of its third-order counterpart. Therefore,
although the current method computes the flux pointwisely and has two stages, the total cost of flux is at
the same level as the single-stage third-order gas-kinetic CPR, however, both spatial and temporal accuracy
are improved.

Furthermore, the current temporal discretization is more efficient than the fourth-order Runge-Kutta
method due to less intermediate stages. As a result, although the gas-kinetic flux solver is more expensive
than traditional flux solvers, the current scheme can achieve nearly the same efficiency as the original
fourth-order CPR. What’s more, when simulating high-speed compressible viscous flows, the slope limiting
procedure is necessary to capture flow discontinuities, which takes a large part of computational time.
Therefore, it can be expected that the current scheme can be more efficient than the original CPR in
compressible viscous flows.
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3 Numerical Results

3.1 Compressible Couette flow
In order to verify the accuracy of the current scheme in viscous flows, the compressible Couette flow is
simulated. The traditional CPR is also tested by using the HLLC and BR2 scheme with the fourth-stage
Runge-Kutta method, denoted as CPR-BR2(P3). The lower wall with y = 0 is stationary and adiabatic.
The upper wall at y = 2 is moving with a constant speed U1 and temperature T1 = 1. There is an analytical
solution for this steady flow, i.e.,(

1 + Pr
γ − 1

3
Ma2

)
y

2H
=

U

U1
+ Pr

γ − 1

2
Ma2

(
U

U1
− 1

3

(
U

U1

)3
)
,

V = 0,
T

T1
= 1 + Pr

γ − 1

2
Ma2

(
1−

(
U

U1

)2
)
, p = 1/γ,

(16)

where the Prandtl number is Pr = 1, the Mach number is Ma = 0.5. The viscosity is determined by the
linear law µ = µ1T/T1. The Reynolds number is Re = 500. The CFL number to compute time steps is set
as 0.1 in all test cases.
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Figure 3. Computational mesh for compressible Couette flow.
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Figure 4. Temperature error vs. mesh size (left) and CPU time (right) for the compressible Couette flow.

The coarsest mesh used in this case is shown in Fig.3. The temperature error vs. mesh size and CPU
time are presented in figure 4, in which the CPU time is the computational cost to achieve a steady state
when the temperature residual less than 10−15. It shows that CPR-GKS(P3) can achieve the fourth-order
accuracy. To achieve the same level of absolute error, CPR-GKS(P3) is more efficient than CPR-GKS(P2)
and has nearly the same efficiency as CPR-BR2(P3), demonstrating the high accuracy and efficiency of the
current scheme. Nevertheless, further tests are necessary, especially for supersonic flows, to evaluate the
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robustness of the current scheme. It can be anticipated that, with less intermediate stages, CPR-GKS(P3)
can be more efficient than the CPR-BR2(P3) in supersonic flows when the slope limiting is included which
has a considerable computational cost.

3.2 Lid-driven cavity flow
The second case is the lid-driven cavity flow problem. The top boundary of the unit square [0, 1]× [0, 1] is a
moving plate at a speed U1 = 1. The Mach number is set as Ma = 0.15. The Reynolds number is Re = 1000.
The non-slip and isothermal boundary conditions are imposed on all boundaries with temperature Tw = 1.
The initial flow is stationary with density ρ0 = 1 and tempture T0 = Tw. As presented in Fig.5, the mesh
contains 200 elements with the minimum mesh size h = 0.01.
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Figure 5. Computational mesh (left) and streamlines (right) in lid-driven cavity flow.

The streamlines are also shown in Fig.5, in which the flow structure, including the primary and secondary
vortices, are well captured. The results of U -velocities along the vertical centerline and V -velocities along
the horizontal centerline are shown in Fig.6. It can be observed that numerical results obtained by both
CPR-GKS (P3) and CPR-BR2 (P3) match very well with the benchmark data. CPR-GKS (P3) is more
accurate than CPR-GKS (P2) with such a coarse mesh, which also demonstrates the high accuracy and
efficiency of the current scheme.
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Figure 6. U -velocities along the vertical centerline and V -velocities along the horizontal centerline with
Re=1000 in the lid-driven cavity flow.
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4 Conclusion
In this study, based on the second-order gas-kinetic flux solver and the two-stage temporal discretization, a
fourth-order gas-kinetic CPR method is developed for the Navier-Stokes equations on unstructured meshes.
Compared with the previous third-order gas-kinetic CPR method, the second-order gas-kinetic flux solver is
adopted to reduce the computational cost of flux evaluations, while the temporal accuracy can be improved
by using the two-stage temporal discretization. Numerical tests show that the current scheme is more
efficient than its third-order counterpart and achieves nearly the same efficiency as the original CPR method.
Further investigations is required to solve high-speed flows where a more complicated reconstruction with
slope limiters is needed to capture flow discontinuities, which takes much more CPU time. Accordingly,
it can be expected that, with less intermediate stages, the current scheme can be more efficient than the
original CPR method with the four-stage Runge-Kutta method.
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